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Abstract

Ž .We find monopole solutions for a spontaneously broken SU 2 -Higgs system coupled to gravity in asymptotically anti-de
Sitter space. We present new analytic and numerical results discussing, in particular, how the gravitational instability of
self-gravitating monopoles depends on the value of the cosmological constant. q 2000 Published by Elsevier Science B.V.
All rights reserved.

PACS: 11.27; 11.15.-q; 11.10.-z

1. Introduction

Gravitating monopole solutions to gauge theories
have attracted many investigations in the last 25

w xyears 1–15 . In particular, the existence of self-
gravitating monopoles in spontaneously broken non-
Abelian gauge theories, their properties, relation with
black hole solutions and their relevance in Cosmol-
ogy have been thoroughly discussed. Most of these
investigations correspond to asymptotically flat
space-time but there have been recently several stud-
ies for the case in which the cosmological constant

w xL is non-vanishing 16–18 . In particular, we have
w xdiscussed in 18 the existence of gravitating

monopole solutions in the case in which space-time

1 CONICET.
2 Associate CICBA.

Ž .is asymptotically anti-de Sitter AdS , which in our
Žconventions corresponds to L-0. Regular mono-

. Ž .pole and dyon and singular black hole solutions
have been found in this case and the properties of the
magnetically charged solutions for vanishing Newton
constant G were analysed.

It is the purpose of the present work to complete
w xthe investigation initiated in 18 studying in detail

the monopole solution in asymptotically AdS space
both for vanishing and finite G, analytically and
numerically. The plan of the paper is the following:
we present in Section 2 the model, the spherically
symmetric ansatz and the appropriate boundary con-
ditions leading to gravitating monopoles and dyons.
Then, in Section 3, we discuss, analytically, some
relevant properties of the magnetically charged solu-
tion and then describe in detail the numerical results
both for Gs0 and G/0. We summarize and dis-
cuss our results in Section 4.
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2. The model

Ž .We consider the action for SU 2 Yang–Mills–
Higgs theory coupled to gravity in asymptotically
anti-de-Sitter space. The action is defined as

D '< <SsS qS qS s d x G L qL qLŽ .HG YM H G YM H

1Ž .

with
1

1L s RyL 2Ž .Ž .G 2
a0

1
a a mnL sy F F 3Ž .YM mn24e

1 a m aL sy D H D H yV H 4Ž . Ž .H m2

l 2a a 2V H s H H yh 5Ž . Ž .Ž .04
a Ž .Here F , as1,2,3 is the field strength,mn

F a sE A yE Aa q´ abcAb Ac 6Ž .mn m n n m m n

and the covariant derivative D acting on the Higgsm

triplet H a is given by

D H a sE H a q´ abcAb H c 7Ž .m m m

We have defined
a '8p G 8Ž .0

where G is the Newton constant, e the gauge cou-
Žpling and L is the cosmological constant with our

conventions L-0 corresponds, in the absence of
.matter, to anti-de Sitter space .

Ž .The equations of motion that follow from 1 are

E qL G sa T YM qT HŽ .mn mn 0 mn mn

d V HŽ .
r aD D H sr adH

1
r a abc b cD F s´ D H H 9Ž .Ž .mr m2e

where E is the Einstein tensor and the mattermn

energy-momentum tensor is given by
1

1YM a r a rsT s yF F q G F FŽ .mn m r a n mn rs a22e
T H s D H a D H a qG L 10Ž .mn m n mn H

The most general static spherically symmetric
form for the metric in 3 spatial dimensions together
with the ’t Hooft–Polyakov–Julia–Zee ansatz for the
gauge and Higgs fields in the usual vector notation
reads

2 y12 2 2 2Gsym x A x d tqm x d rqr d VŽ . Ž . Ž . 2

Asdt e h J x e ydu 1yK x eŽ . Ž .Ž .ˇ ˇ0 r w

qdw 1yK x sinu eŽ .Ž . ǔ

Hsh H x e 11Ž . Ž .ˇ0 r

where we have introduced the dimensionless coordi-
Žw xnate x'e h r and h sets the mass scale h s0 0 0

1.m .
Using this ansatz, the equations of motion take

the form
X 2x m x s1q3g xŽ .Ž . 0

ya h 2 m x V qVŽ .0 0 1 2ž
2 2 2X2x J x J x K xŽ . Ž . Ž .

q q2 2 /2 A x m x A xŽ . Ž . Ž .
12Ž .

2 2J x K xŽ . Ž .
X 2x A x sa h V q A x 13Ž . Ž . Ž .0 0 1 2 2ž /m x A xŽ . Ž .

XX
m x A x K xŽ . Ž . Ž .Ž .

2K x y1Ž .
sA x K xŽ . Ž . 2ž x

2J xŽ .2qH x y 14Ž . Ž .2 /m x A xŽ . Ž .
XX2x m x A x H xŽ . Ž . Ž .Ž .

l2 22sA x H x 2 K x q x H x y1Ž . Ž . Ž . Ž .Ž .2ž /e
15Ž .

X 2X2x J x 2 J x K xŽ . Ž . Ž .
m x s 16Ž . Ž .ž /A x A xŽ . Ž .
where, for convenience, we have defined the dimen-
sionless parameter

L
g 'y 17Ž .0 2 23e h0
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and

x 2
2 2X XV sK x q H xŽ . Ž .1 2

22K x y1 lŽ . 2Ž . 22V s q x H x y1 18Ž . Ž .Ž .2 2 22 x 4e

2.1. The boundary conditions

Ž .Ansatz 11 will lead to well behaved solutions
for the matter fields if, at xs0, one imposes

Ž . Ž .Ø H x rx and J x rx are regular;
Ž . XŽ .Ø 1yK x and K x go to zero.

Ž .Ø m x ™1
On the other hand we want the system to go

asymptotically to anti-de Sitter space which corre-
sponds to the solution of the Einstein equations with

Ž .L-0 in absence of matter see next Section ; for
this to happen we must impose that the matter
energy-momentum tensor vanishes at spatial infinity.

Ž .From Eq. 10 one can see that the appropriate
conditions for x™` are

A x ™1Ž .
K x ™O xya 1Ž . Ž .

H x ™H qO xy1ya 2Ž . Ž .`

J x ™J qO xya 3 19Ž . Ž . Ž .`

with a )0, is1,2,3.i
Note that, being the equations for A and m first

order, we impose just one condition for each one.

3. The system in AdS space

We shall first consider the case in which the
Newton constant G vanishes, so that the gravita-
tional equations decouple from the matter and then
analyse the full G/0 problem. In the former case

w xwe have already studied in 18 the classical equa-
tions of motion analytically, showing that monopoles
could exist in asymptotically anti-de Sitter spaces
and discussed its main properties. We present in the
next subsection the numerical evidence that this solu-

w xtions do exist, thus completing the analysis in 18 .

Then, we extend our study to the G/0 case and
again present both analytical and numerical analysis
showing the existence of monopole solutions pro-
vided G is smaller than a critical value G .c

3.1. The G s 0 case

Taking the a h 2
™0 limit, one easily finds for0 0

the metric the solution

A x s1Ž .
a

2m x s1qg x y 20Ž . Ž .0 x

which is nothing but the vacuum solution of the
ŽEinstein equations with a cosmological constant as-

.sumed negative , and corresponds to a neutral
Schwarzschild black hole in AdS space. Concerning
the integration constant a, it is related to the mass of
the black hole and will be put to zero in what
follows, in agreement with the condition imposed on

Ž .m at xs0. This metric, in turn, acts as a AdS
background with radius r ,0

'r s y3rL 21Ž .0

for the Yang–Mills–Higgs system.
Ž .For simplicity we study Eq. 16 in the BPS limit

which corresponds to lre2 s0 with h fixed.0
XX

m x K xŽ . Ž .Ž .
2 2K x y1 J xŽ . Ž .2sK x qH x yŽ . Ž .2ž /m xx Ž .

X 2X2x m x H x s2 H x K xŽ . Ž . Ž . Ž .Ž .
X 2X2m x x J x s2 J x K x 22Ž . Ž . Ž . Ž . Ž .Ž .

The total amount of matter M associated to the
Ž . Ž w x.solution of 22 is defined as see for example 13

3 Ž3.(Ms d x g T 23Ž .H 00
St

where g Ž3. is the determinant of the induced metric
on surfaces S of constant time t with normal vectort

Ž .y1r2 m n Ž .e sm x E and T 'e e T sT rm x is0 t 00 0 0 mn t t
the local energy density as seen by an observer
moving on the flux lines of E . For the sphericallyt
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symmetric configuration we are considering, it takes
the form

`
24p h x T0 t tMs dx 24Ž .H 3 2 4e e h0 0

221qg xŽ .0

We quote for completeness the explicit expressions
for T sT ŽYM .qT ŽH .

t t t t t t
2 2ŽYM .T m x J x K xŽ . Ž . Ž .t t 2Xs J x qŽ .2 4 22e h x0

2 2X
m x K xŽ . Ž .

q 2x
m xŽ . 22q K x y1Ž .Ž .42 x

2ŽH .T m x m xŽ . Ž .t t 2 2 2Xs H x q H x K xŽ . Ž . Ž .2 4 22e h x0

25Ž .
It is not difficult to see from these expression that

Ž .the boundary conditions imposed through Eq. 19
are precisely those required for finiteness of M.

As stated above, analytical arguments showing
the possibility of monopole solutions were presented

w xin 18 . To begin with, let us note that is possible to
perform a power series expansion for large x and
calculate the coefficients in the expansion recur-
sively. One can consistently propose an expansion of
the form

K knq1 nK x s 1y q . . .Ž .
nq1 2ž /x x

kn3 H y 1Ž .3H x sŽ . Ý3 2 k2kq3x xks0

hn
qH 1q q . . .` 2nq4ž /x
J j1 nJ x s qJ 1q q . . . 26Ž . Ž .` 2nq4ž /x x

Ž .and, after insertion in Eq. 22 , one can determine
the coefficients k , h and j recursively. For posi-n n n

tive integer n one has

n 2 q3 nq3qJ 2
`k sn 2 2nq3Ž .

K 2
nq1h sn

nq2 2nq1Ž . Ž .
K 2

nq1j s 27Ž .n
nq2 2nq3Ž . Ž .

Similar expressions can be obtained for n a positive
semi-integer.

When such an expansion are assumed, non-trivial
solutions exist if and only if

1 32H sn nq1 g , ns , 1, , 2, . . . 28Ž . Ž .` 0 2 2

Ž .If one relaxes a power behavior like in 26 , then
Ž .one again gets a relation like 28 but with n a real

number, the leading exponent in the asymptotic ex-
Ž .pansion of K x . It is important to note that, having

AdS space a natural scale r , the system trades the in0
principle arbitrary h dimensionfull parameter for0'the AdS radius r s y3rL which now sets the0
scale,

y12 2< <H ` sn nq1 g h sn nq1 erŽ . Ž . Ž . Ž .0 0 o

29Ž .
Ž .Then, using 28 for n real and a given L is

Žequivalent to consider an integer n for example with
. Ž .ns1 provided r i.e. L is changed accordingly.0

To obtain a detailed profile of the monopole
solution, we solved numerically the differential equa-
tions. For simplicity we considered the Js0 case
corresponding to a purely magnetic solution. The
equations of motion read

2K x y1Ž .X 2X
m x K x sK x qH xŽ . Ž . Ž . Ž .Ž . 2ž /x

30Ž .
X 2X2x m x H x s2 H x K x 31Ž . Ž . Ž . Ž . Ž .Ž .

m x s1qg x 2 32Ž . Ž .0

We employed a relaxation method for boundary
w xvalue problems 19 . Such method determines the

solution by starting with an initial guess and improv-
ing it iteratively. The natural initial guess was the

w x Žexact Prassad–Sommerfield solution 20 which cor-
.responds to g s 0 . We have found regular0

monopole solutions for any value of the cosmologi-
cal constant L. We present in Fig. 1 the solution
profile for different values of L. A distinctive fea-
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Ž . Ž . ŽFig. 1. Plot of the functions K r and H r in dimensionless
.variables for the monopole solution with ls0 and a s0. The0

solid line corresponds to the solution with g s1.0 and the dashed0
line corresponds to the BPS flat space solution.

ture of solutions for L/0 compared with the flat-
space Prasad–Sommerfield solution concerns the
asymptotic behavior of the fields. Indeed, when L/

0, the Higgs field approaches its v.e.v. faster than in
Ž .the Prasad–Sommerfield PS case,

CL/ 0H x ;H q , x41 33Ž . Ž .` 3x
1

PSH x ;H y , x41 34Ž . Ž .` x
As a result of this change of the asymptotic behavior,
one can see that the radius R of the monopole corec
decreases. Indeed, as can bee seen in Fig. 1, when g0
Ž .the cosmological constant grows, R becomesc
smaller as the magnetic field concentrates near the
origin.

We have also computed numerically the monopole
mass which can be written as

4p 1
2Ms f lre 35Ž .Ž .g2 0re 0

where, extending the usual flat space notation, we
have introduced the dimensionless function
Ž 2 .f lre . In the present case, the cosmological con-g 0

stant provides a natural scale and this has been
Ž .exploited in 35 . This formula can be written in

units of the mass scale h as0
M 4p

s E 36Ž .
h e0

where E is a dimensionless function of g ,0
2Es g f lre 37Ž .( Ž .0 g 0

We present in Fig. 2 a plot for E as a function of g0
Ž .where one can see that lim g f 0 s1 which(g ™ 0 0 g0 0

is the correct result for Prasad–Sommerfield
monopoles in flat space.

3.2. The G/0 case

In order to study the asymptotic behavior of the
Ž .solutions to Eq. 13 we have taken as independent

Ž . Ž . Ž . Ž .metric functions A x and m x s A x m x .˜
Ž .y1 Ž .Moreover, identifying h s er g s1 , the0 0 0

equations to study become, in the BPS limit,
X 22A x x m x s 1q3 x A xŽ . Ž . Ž . Ž .Ž .˜

22ya h A x VŽ .0 0 2ž
x 2

2Xq J xŽ . /2
2 2X 2x m x A x sa h m x VŽ . Ž . Ž .˜ ˜Ž0 0 1

2 2qJ x K x A xŽ . Ž . Ž ..
2K x y1Ž .XX

m x K x sK x A xŽ . Ž . Ž . Ž .Ž .˜ 2ž x
2J xŽ .2qA x H x yŽ . Ž . /m̃

X 2X2x m x H x s2 A x H x K xŽ . Ž . Ž . Ž . Ž .˜Ž .
XX X X2 2m x A x x J x sx m x A x J xŽ . Ž . Ž . Ž . Ž . Ž .˜ ˜Ž .

2 2q2 A x K x J xŽ . Ž . Ž .
38Ž .
Ž .where, in the first one, we have combined Eqs. 12

Ž .and 13 .

Fig. 2. Energy of the monopole configuration as a function of g0
Ž .for h s1 and different values of l: ls0 solid line , ls100

Ž . Ž .dashed line and ls20 dotted line in the a s0 case.0
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We consider for simplicity the purely magnetic
case, Js0, and propose a power series expansion of
the form

` m̃m2m x sx q , m '1Ž .˜ ˜Ý 0mxms0

` AmA x s , A '1Ž . Ý 0mxms0

` K° m , K '0Ý 0mxms0~K x sŽ . `1 KmÝ m¢' xx ms0

` HmH x s , H 'H , H '0 39Ž . Ž .Ý 0 ` 1mxms0

Again, coefficients can be determined recursively.
The leading coefficients in the expansions for K and
H coincide with those already presented for a s00
Ž Ž ..Eq. 26 . We then just quote the corresponding

Žones for the metric functions for n a positive inte-
.ger

m a h 2 A˜ 1 0 0 62m x s1qx q q y q . . .Ž .˜ 2 4x 2 x x
A6A x s1q q . . . 40Ž . Ž .6x

where
3 22 2 2A sya h H q K dŽ .6 0 0 3 2 n ,14 3

We see that function A is completely determined, to
all orders, in terms of H and K coefficients. As an
example, and from the numerical results described
below, one finds for ns1 and a s0.1 that m s˜0 1
y0.24, K s0.73, H sy0.32 and then A s2 3 6
y0.87.

Concerning the asymptotic expansion for m corre-˜
Žsponds to a Reissner–Nordstrom metric with cos-¨

.mological constant , with the free parameter ym̃1
related to the gravitatory mass and the coefficient of
the 1rx 2 term, which arises for charged solutions,
precisely corresponding to the Q s1 magnetic so-m
lution we are considering. As seen from afar, and for
an appropriate set of parameters, the metric can be
identified with that of a magnetically charged black

w xhole as that described in 18,21 . Concerning the
Ž .expansion for K , it has one free coefficient K ,nq1

while for the expansion for H two coefficients re-
Ž .main free H and H .` 3

In order to get the detailed profile of the solu-
tions, we have again to solve numerically the equa-
tions of motion. For simplicity, we have considered
the BPS limit, lre2 s0. Employing the same relax-
ation method as for the Gs0 case we have found a
self-gravitating monopole solution satisfying the
boundary conditions previously discussed. Solutions
are similar to those corresponding to asymptotically

w xflat space 6–12 . In particular, we have found a
maximum value for the gravitational interaction
strength a such that above a c the solution ceases0 0
to exist. This effect, already encountered in asymp-
totically flat space, can be understood noting that as
a increases from 0 to its critical value, the ratio0
MMsmassrradius for the monopole solution also
increases until it becomes gravitationally unstable.

< <Now, as the cosmological constant L increases, the
Žradius of the monopole decreases the behavior for

a /0 is analogous to that depicted in Fig. 1 for0
.a s0 while the mass of the monopole increases0

Žthe behavior for a /0 is analogous to that in Fig.0
.2 so that MM is a monotonically growing function of

yL or, what is the same, of g . This explains why0
cŽ .the critical value a g for g )0, is smaller than0 0 0

cŽ . cŽ .the asymptotically flat one, a g -a 0 : the crit-0 0 0
ical value MM at which the solution collapses isc

Ž . Ž 2 .Fig. 3. The solution for the metric function m r r 1q r for
fixed g s1 and ls0. The solid line corresponds to a s1 and0 0
the dashed one to a s a c f1.371.0 0
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Ž .Fig. 4. The solution for the metric function A r for fixed g s10
and ls0. The solid line corresponds to a s1 and the dashed0
one to a s a c.0 0

reached before, in the a domain, for g )0 than for0
g s0. As an example, for ls0 and g s1 the0 0

cŽ .critical a -value is a 1 s1.374 to be compared0 0
cŽ .with the asymptotically flat space value a 0 s0

5.549.
Concerning the solution for the metric, as can be

Ž 2 .seen in Fig. 3, mr 1qg x has a minimum which0
decreases as the strength of the gravitation interac-
tion grows and tends to zero as a ™a c. A similar0 0

Ž .behavior can be seen to occur for A x , see Fig. 4,
which has also a minimum at the origin which tends
to zero as a ™a c. As in the case of asymptotically0 0
flat space, A develops a step-like behavior which
becomes more and more sharp as a c is approached.0
The position of the center of the step function can be
used to determine the corresponding value of the
horizon, which for AdS spaces results from the

w xsolution of a quartic algebraic equation. 21,18

4. Discussion

In this work we have studied in detail the
monopole and dyon solutions to Yang–Mills–Higgs
theory coupled to gravity for asymptotically anti-de

w xSitter space presented in Ref. 18 . We have first
considered the case in which the Newton constant
a vanishes so that the Einstein equations decouple0
leading to a Schwarzschild black hole in AdS space.
This metric acts as a background for dyon solutions
which were studied in detail making both an analyti-
cal and a numerical analysis. A distinctive feature of

AdS solutions in this case is that the monopole
radius is smaller than that corresponding to the Ls0
case. Apart from this property, qualitatively, the
Higgs field and magnetic field behavior is very
similar to that corresponding to the ’t Hooft–Poly-
akov solution. More interesting is the behavior of
solutions where gravity is effectively coupled to the
matter fields. In first place, as it happens in asymp-
totically flat space, a critical value for the Newton
constant exists above which no regular monopole or
dyon solution can be found. This effect was ex-

w xplained in asymptotically flat spaces 4–15 by not-
ing that as a grows the mass of the monopole0
grows and its radius decreases so that it finally
becomes gravitationally unstable. Now, the presence
of a cosmological constant enhances this effect and

cŽ .for this reason, the critical value we find, a L is0
smaller than the asymptotically flat one.
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