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Abstract
Information transfer is an essential factor in determining the robustness of biological systemswith
distributed control. Themost direct way to study themechanisms ruling information transfer is to
experimentally observe the propagation across the systemof a signal triggered by some perturbation.
However, thismethodmay be inefficient for experiments in thefield, as the possibilities to perturb the
system are limited and empirical observationsmust rely on natural events. An alternative approach is
to use spatio-temporal correlations to probe the information transfermechanismdirectly from the
spontaneousfluctuations of the system,without the need to have an actual propagating signal on
record.Here we test thismethod onmodels of collective behaviour in their deeply ordered phase by
using ground truth data provided by numerical simulations in three dimensions.We compare two
models characterized by very different dynamical equations and information transfermechanisms:
the classic Vicsekmodel, describing an overdamped noninertial dynamics and the inertial spinmodel,
characterized by an underdamped inertial dynamics. By using dynamicfinite-size scaling, we show
that spatio-temporal correlations are able to distinguish unambiguously the diffusive information
transfermechanismof theVicsekmodel from the linearmechanismof the inertial spinmodel.

1. Introduction

Collective behaviour is a widespread phenomenon in
the living world, occurring over vastly different scales
of space and time, and in a great variety of biological
systems [1–3]. In recent years, a strong interest in
studying collective behaviour through the principles
of statistical physics has emerged [4–7]. Following a
paradigm typical of condensedmatter, the first steps in
this direction have been moved along two main paths:
understanding how the motility of individuals, com-
bined with the features of the interaction, determines
the nature of the ordering transition [6, 8] and study-
ing what are the hydrodynamic properties at very large
scales [4, 7].

A related, although distinct, question is that of how
information propagates across the system and how
it affects the collective response to perturbations.
In many biological systems an efficient propagation of

information across the group is a key to survival. Flocks
of birds are a paradigmatic example in this respect: they
are continuously subject to predatory attacks and yet
they manage to respond very swiftly, changing collec-
tive direction of motion on very short timescales, still
maintaining cohesion. This type of phenomenon sug-
gests that the mechanism to transmit information
across the groupmust be particularly efficient.

Recent experimental observations have shown
that information propagates across flocks of starlings
linearly and with very weak damping [9]. More pre-
cisely, the collective change of heading of a flock origi-
nates locally in space (from one bird) and it propagates
to the rest of the flock as a wave, with awavefrontmov-
ing linearly in time with speed cs. Linear information
transfer is about the most efficient mechanism we can
imagine. Former models [10, 11] and hydrodynamic
theories [4] fail to reproduce such behaviour, both at
the analytic and at the numerical level [12].
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In [9, 12] it has been formulated a novel theory
which revolves around the concept of behavioural
inertia, thus changing the dynamical differential
equations for the velocities from first-order in time, to
second-order. In its polarized phase—the correct one
to describe flocks—the new theory reproduces well
the experimental data of bird flocks, showing that,
when inertia is taken into account, the system can sus-
tain information transfer through linear waves: if the
heading of one individual changes, this change propa-
gates quickly to the rest of the flock causing a collective
turn, while keeping cohesion of the whole group; pre-
vious first-order models of flocks do not sustain linear
information transfer, so that a change of heading of
one individual led to global disruption of the group
(see the simulations of [12]). These results emphasize
the relevance of second-order inertial terms in the
dynamical equations of polarized systems, that is sys-
tems displaying long-range order. Even though iner-
tial terms are asymptotically irrelevant over very large
hydrodynamic scales [4, 5, 13], they are in fact indis-
pensable to explain the behaviour of finite-size real
flocks [14].

It is therefore important to find a way, given an
experimental data set, to assess whether inertial
dynamics rules the system or not. For bird flocks this
has been done through the direct experimental obser-
vation of the propagation of a wavefront across the
group due to some spontaneous change of direction
recorded on camera [9]. For large groups in the field
this is, in general, a cumbersome way to proceed, as
one needs to capture on record a collective change of
state due to some uncontrolled perturbation. For
example, in the study reported in [9] only 12 such
events were captured in over four years of data-taking.
Moreover, unlike in lab studies, in the field the possi-
bilities to actively perturb the system are very limited.
It seems therefore desirable to develop a more prac-
tical and effective approach to the problem.

We discuss here a generalmethod capable of learn-
ing whether or not inertial second-order dynamics
rules a system directly from its unperturbed, sponta-
neous fluctuations. In this way we are able to tell whe-
ther or not a system is inertial by a sampling of its
dynamics, rather than bymanipulating it. The key tool
of themethod is the spatio-temporal correlation func-
tion: the behavioural change of individual i at time t0
influences that of individual j at a later time +t t0 .
The form of this correlation, which extends in both
space and time, bears the fingerprint of the dynamical
equations ruling the system. We test this general
method through numerical simulations of models
with very different dynamical equations, namely with
and without inertial terms We find that spatio-tem-
poral correlation successfully distinguish the different
types of dynamics.

In the present work we will focus only on the
ordered phase of the models of collective motion that
we will analyze. In the language of the renormalization

group, this means that we will only be dealing with the
zero temperature fixed point, rather than with the cri-
tical point. In biological terms we may say that the
results we present are directly applicable only to polar-
ized,‘flock-like’, groups, rather than unpolarized,
‘swarm-like’, systems. Even though the analysis based
on the spatio-temporal correlations has general valid-
ity, the results of such analysis (most importantly, the
dynamical critical exponents) may depend on such
distinction. We will consider swarm-like systems in a
future separate study.

The paper is organized as follows. In section 2 we
introduce two archetypical model of self-propelled
particles encoding non-inertial and inertial dynamics,
and study their natural time scales on the basis of sim-
ple dimensional analysis. In section 3 we define the
spatio-temporal correlation function and discuss its
general properties in Fourier space. In section 4 we use
dynamic finite-size scaling to predict how the correla-
tion behaves in systems with finite size in the two cases
of non-inertial and inertial dynamics. In this section
we also test our theoretical results against numerical
simulations in three dimensions of the two models. In
section 5 we calculate the explicit form of the spatio-
temporal correlation function under an approximate
scheme.We discuss our conclusions in section 6.

2. Twodifferentmodels of collective
motion

2.1.Non-inertial dynamics: theVicsekmodel
Themost important physics-inspired model of collec-
tivemotion is the Vicsekmodel (VM) [10]. It describes
a systemof self-propelled particles with constant speed
v0, which interact through mutual imitation: each
particle i adjusts the direction of its velocity vi by
making it as close as possible to the mean direction of
its neighbors. This effect of the neighbours is some-
times called social force. Several versions of the Vicsek
model have been introduced and studied in the course
of time (see, for example, [8, 11, 15, 16]). Here we will
consider its most basic form and, for the sake of
analytic simplicity, we will write the dynamical
equations in continuous time. In order to keep the
speed v0 of each particle constant, each velocity vector
vi is changed only by the component of the social force
orthogonal to vi. To this purpose, we introduce the
following notation to indicate the projection of a
generic vector w onto the plane orthogonal to vi,

· ( )º -^
⎛
⎝⎜

⎞
⎠⎟v v

w w w
v v

. 1i i

0 0

We can thus write the Vicsek model in the following
way,
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( )=
d
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i

where η is a generalized friction coefficient and zi is a
randomwhite noise, whose variance is given by,

( ) · ( ) ( ) ( ) ( )z z h d dá ¢ ñ = - ¢t t d T t t2 . 4i j ij

We use the standard convention of expressing the
amplitude of the noise as the product of the ‘temper-
ature’ T times the friction coefficient η [17]. Both the
social force due to the neighbors and the noise
contribute to change theflight direction of the particle,
but not its speed, thus ensuring that ∣ ∣ = vvi 0. This
formulation of the VM is slightly different from the
one usually found in the literature, but fully equiva-
lent. In particular, the friction η could be eliminated in
(2) and (4) by a rescaling of time [17], but this would
make the comparison with the inertial model of the
next section (where η cannot be rescaled away) much
less transparent.

The adjacency matrix nij is 1 if i and j are interact-
ing neighbors and 0 if they are not, and it encapsulates
the different kinds of interaction rules. If we consider,
as in the original Vicsek model [10] metric interac-
tions, then =n 1ij if r rij c and =n 0ij if >r rij c ,
where rc is themetric interaction range. If, on the other
hand, interactions are topological, as it is the case in
bird flocks [18], then =n 1ij if j is within the first nc
neighbors of i and =n 0ij otherwise, where nc is the
topological interaction range. The adjacency matrix
depends on time, ( )=n n tij ij : particles do not sit on a
fixed lattice, they are self-propelled, so that the neigh-
borhood of each particle evolves in time. This time-
dependence is what makes self-propelled particles
models intrinsically different from standard equili-
brium statisticalmechanicsmodels.

Finally, we emphasize a very important fact: the
Vicsek model has no inertial term. Even though one
may be tempted to identify the l.h.s. of equation (2) as
an inertial second-order term (it is, after all, an accel-
eration), this is not its correct interpretation. The fun-
damental degree of freedom of the model is the
velocity, not the position, and indeed the social force at
the r.h.s. of (2) is the derivative with respect to the
velocity of a generalized Hamiltonian, function of the
velocities, not of the positions, ·= -åH n v vij ij i j.
The overtones of ferromagnetic physics are evident.
Hence, the Vicsek equation describes a non-inertial,
first-order, overdamped dynamics for the velocity and
for this reason the coefficient of v̇i is friction, not
mass [12].

2.2. Inertial dynamics: the inertial spinmodel
The Inertial Spin Model (ISM) was introduced in [9]
and in [12] to describe linear information transfer in
natural flocks of birds. It correctly reproduces the way
starling flocks perform collective turns and it provides
the right dispersion law in these groups. The ISM is
described by the following equations,

( )
c

= ´
d

dt
a

v
s v
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i i
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with · =v s 0i i . The dynamical state of each particle is
now described by two variables: the velocity vi (again
with fixed modulus v0) and a new variable si called
‘spin’. As it can be seen from equation (5a), the spin
describes howquickly the particle changes its direction
ofmotion. The fact that, contrary to the Vicsekmodel,
the social force åJ n vj ij j and the noise act on the spin,
rather than directly on the velocity, indicates that the
model is inertial, so that the instantaneous update of
the velocities is smooth. The new parameter χ is the
behavioral inertia; it is not the real mass, nor the
mechanicalmoment of inertia. Rather,χ is an effective
parameter describing the resistance of a bird to change
the radius of curvature of its trajectory [12]. If we take
a further derivative of equation (5a) and exploit (5b),
we get a closed equation for the velocity,
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The ISM describes different dynamical regimes
depending on the values of the parameters [12]. In
particular, by tuning the friction η with respect to the
behavioural inertia χ, we can explore both the over-
damped regime (large h c2 ), where the model
behaves as the Vicsek model, and the underdamped
regime (small h c2 ), where the model displays the
behaviour and dispersion law observed in natural
flocks [9]. The Vicsek model of equations (2)–(3) is
exactly recovered when c h  02 . In the opposite
limit, i.e. when h c  02 , we obtain instead a fully
reversible dynamics, where the spins—which repre-
sent the generators of the rotational symmetry of the
velocities—are strictly conserved quantities [12].

2.3. Natural time scales of the twomodels
In order to work out the natural time scales of the
dynamical equations introduced above, it is conveni-
ent to introduce the (semipositive-definite) discrete
Laplacianmatrix,

( )ådL = -n n , 7ij ij
k

ik ij

which approximates in a discrete system the second-
order derivative in space [19]. Notice that in a
topological model the diagonal element of the Lapla-
cian is a constant,å =n nk ik c , while in ametricmodel
it fluctuates; in both cases, thus, the amplitude of Lij is
proportional to the mean number of interacting
neighbours. By using the discrete Laplacian we can
rewrite the non-stochastic part of the Vicsekmodels in

3
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the followingway,

( )åh = - L
^⎛

⎝
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⎞
⎠
⎟⎟d

dt
J

v
v , 8i

j
ij j

where we have used the obvious relation: ( ) =^v 0i .
From this equation we can derive a time scale by mere
dimensional analysis. As we have said, the Laplacian
Lij is a discrete version of the second-order derivative
in space, hence it is dimensionally equivalent to a term
k a2 2, where a is themean interparticle distance and k is
the momentum in Fourier space. We use a Fourier
representation as this will be the space in which we will
work for most of the paper. We have also seen that the
discrete Laplacian is proportional to themean number
nc of interacting neighbours, so that, dimensionally,
L ~ n a kij c

2 2. We therefore conclude that the natural
time scale of theVicsekmodel is given by,

( )t
h

~
Jn a k

. 9
c

VM
2 2

This is a damping time scale expressing the collective
relaxation time of the velocities in the Vicsek model.
The fact that it diverges for k 0 is a consequence of
the fact that the theory has a diverging correlation
length [20]. The origin of this divergence and how it is
tamed for finite size will be discussed in the next
section.

For the inertial spinmodel (6) the situation ismore
complicated because this is a second-order equation
and we expect to have two time scales, rather than one.
As in the Vicsek case, the term ( )å ^n vi ij i can be sub-
stituted with the discrete Laplacian, ( )-å L ^vi ij i .
Hence, the purely dimensional version of equation (6)
reads,

( )c h+ - =t t Jn a k 0. 10c
2 2 2

To simplify this expression it is convenient to intro-
duce the reduced friction coefficient, γ, and the second
sound speed, cs,

( )g
h
c c

º ºc
Jn a

2
, . 11s

c
2

The parameter cs (which indeed has the physical
dimensions of a velocity) is the speed of propagation of
a signal in the inertial case [12]. Using γ and cs into (10)
andmultiplying by t2, we get,

( ) ( )g- - =c k t t 1 0, 12s
2 2

which, on merely dimensional grounds, provides the
two obvious time scales,

( )t
g

t~ ~
c k

1
,

1
. 13

s
1
ISM

2
ISM

The damping scale is the one containing the friction
coefficient, that is t1

ISM: larger friction γ (but not ‘too
large’, otherwise one recovers the Vicsek model—see
below) produces a shorter (quicker) damping time. As
expected, this dissipative time scale accompanies the
linear term in t, which breaks the time-reversal
symmetry. At variance with the non-inertial case, the
damping time is now independent of k. The second

time scale of the inertial case contains the signal
propagation speed, cs, hence it is naturally associated
to the period of oscillation of mode k. Indeed, when
the friction is small, g c ks , that is when

t t1
ISM

2
ISM, the ISM equation becomes time-rever-

sible and propagation emerges [12]. It is important to
notice that the inertial time scale t2

ISM does depend on
k, although with exponent 1, rather than 2 as in the
non-inertial case. This linear dependence on k is
responsible for linear information transfer in the
inertial case [12, 14].

In the limit of large damping and low inertia we
expect to recover the Vicsek model. This overdamped
limit is obtained when the signal gets damped before it
can propagate, which corresponds to having g c ks ,
that is t t1

ISM
2
ISM. Notice that this limit can be also

written as,  gk c ;s the overdamped limit is there-
fore a limit of smallmomentum k and it is in fact noth-
ing else than the hydrodynamic limit, in which inertia is
sub-dominant with respect to damping [17]. If we
rewrite (12) as,

( ) ( )t t- - =t t 1 0, 142
ISM 2

1
ISM

we see that when t t1
ISM

2
ISM, the discriminant of

this equation simplifies and we are left with just one
time scale, namely ( ) ( )t t h= Jn a kc2

ISM 2
1
ISM 2 2 ,

which is the same time scale of the Vicsek model, as
expected.

The important conclusion of this section is that the
two different dynamics are ruled at the naive dimen-
sional level by time scales that have a very different
dependence on k. The time scale of the non-inertial
Vicsek case decays as k1 2, while in the inertial case the
period goes as k1 and the damping time does not
depend on k. These exponents need not to be exact, of
course, as this wasmere dimensional analysis, and they
can change because of renormalization and off-equili-
brium effects [4]. However, dimensional analysis is
helpful, as it unveils a deep, intrinsic difference
between the natural time scales of the twomodels, sug-
gesting that it should be quite possible to detect such
difference in the data, both at the numerical and at the
experimental level. We will see in the next sections
how to practically do that.

3. The spatio-temporal correlation
function

We will introduce in this section the velocity correla-
tion function in space and time, which will be our
main tool of analysis. Before entering into the details,
though, we need to discuss a preliminary issue.

3.1. The issue of anisotropy
As we stated in the Introduction, in this work we will
deal with systems in their ordered phase, that is
systems in which the rotational symmetry is sponta-
neously broken. In this case two kind of anisotropies
arise in the correlation, and we shall briefly discuss
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them here. First, the velocity field has far stronger
fluctuations in the transverse than in the longitudinal
direction.5 This is a well-known fact, also present in
equilibrium systems [21]; it implies that when one
computes the correlation of the full velocity vector vi,
one is actuallymeasuring the transverse correlation. In
fact, transverse and longitudinal fluctuations are con-
nected to each other and it was first demonstrated in
[22] that the longitudinal susceptibility in the broken-
symmetry is slave to the transverse susceptibility,

c c~ ^
1 2. Non-equilibrium effects induced by the

self-propulsion change this exponent, as recently
discovered in [23], but the fact remains that long-
itudinal fluctuations are highly suppressed with
respect to transverse ones. Secondly, it has been
demonstrated in [13, 24] that in active systems with
spontaneously broken symmetry, the feedback
between velocity and position produces also a spatial
anisotropy in the decay of the correlation; more
precisely, the critical exponents along the longitudinal
and transverse directions are different from each
other. This effect is absent in equilibrium systems and
it is therefore quintessential of active matter; in two
dimensions it explains the suppression of fluctuations
and the stabilization of long-range order [13, 24].

It therefore seems that to give a thorough char-
acterization of the correlation in an active system one
should use the anisotropic pairs, ( ) ^v v, and ( ) ^k k, ,
rather than the full isotropic vectors, v and k . A
detailed anisotropic characterization, though, is not
our aim here. Rather, what we want to do is to distin-
guish different types of dynamics (inertial vs non-iner-
tial), from the correspondingly different forms of the
correlation function. As we shall see, an isotropic
study, which does not distinguish between long-
itudinal and transverse directions, is sufficient to this
purpose, as it provides a very strong signal able to pick
up different dynamical rules. This is fortunate, as in
most real biological data sets it is quite difficult to have
enough statistics to be able to separate the correlation
into longitudinal and transverse components [25].
Considering that we want to set a backdrop for future
comparisons between theory and simulations on one
side, and experiments on the other, we believe that an
isotropic study is a first necessary step to take in order
to distinguish inertial fromnoninertial systems.

3.2. The connected correlation function
The connected velocity correlation, Cij, between
individuals i and j, measures how much a change of
direction of i influences (and is influenced by) a change
of direction of j,

· ( )d dº á ñC v v , 15ij i j

where the velocity fluctuation dvi is the deviation of
the velocity of i from themean velocity of the group,

( )åd º -
N

v v v
1

. 16i i
k

k

The systems we are studying are in the polarized
phase, hence the mean velocity is strongly different
from zero; it would therefore make no sense to
compute the correlation of the full velocities (non-
connected correlation), as this would be completely
dominated by the mean velocity; the only physically
and biologically relevant correlation is that between
the fluctuations. However this fluctuation is a dimen-
sional quantity; therefore, in order to have a more
suitable quantity to make a comparison between
natural and numerical systems, we prefer to work with
the dimensionless velocity fluctuation,

ˆ
·

( )
å

d
d

d d
ºv

v

v v
. 17i

i

N k k k
1

We now need to define the connected correlation in
both time and space, between individual i at time t0
and individual j at time +t t0 . Following van Hove
[26, 27], we define the spatio-temporal correlation
function as,

( ) ˆ ( ) · ˆ ( )

[ ( ) ( )] ( )( )

år
d d

d

= +

´ - + +

C t
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t t t

t t t
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, . 18

i j
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,
0 0
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0 0
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The positions are calculated with respect to the center
of mass of the system, that is ( ) ( )=t tr Ri i0 0

( )- tRCM 0 (and similarly for j); ρ is the density; the
bracket indicates an average over time,

( ) ( ) ( )åá ñ =
- =

-

f t t
t t

f t t,
1

, , 19t
t

t t

0
tot 1

00

0

tot

and ttot is the total available time in the simulation or in
the experiment. It is important to remark that in (18)
everything related to particle i (position and velocity) is
evaluated at time t0, while everything related to j is
evaluated at time +t t0 . The basic idea of (18) is to sum
the correlation of all pairs that over time t are found at
distance r from each other. Note that, thanks to the
normalization r1 , the spatio-temporal correlation
functiondefined in (18) is dimensionless.Wecandefine
the scalar distance between i and j at different times,

( ) ∣ ( ) ( )∣ ( )º - +r t t t t tr r, 20ij i j0 0 0

and rewrite the correlation function as,

( )

( )

ˆ ( ) · ˆ ( ) [ ( )]å

p r

d d d

=

´ + -

21

C r t
N r

t t t r r t tv v

,
1

4

, , .
i j

N

i j ij

t

2

,
0 0 0

0

Notice that for t=0 this quantity reduces to the
standard static correlation function previously used in

5
In what follows, we call longitudinal the mean direction of motion

of the flock, whereas transverse are all directions belonging to the
plane orthogonal to themean direction ofmotion.
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the studies of bird flocks [25] and insect swarms
[28, 29], because the normalization term, p rN r4 2 ,
represents the number of pairs at distance r, i.e.

( )då -r ri j ij, . The purpose of ( )C r t, is to measure
howmuch a change of velocity of an individual at time
t0 influences a change of velocity of another individual
at distance r at a later time +t t0 .

3.3. The correlation function in Fourier space
In order to calculate the collective time scale of the
system, namely the longest time scale of relaxation,
one normally introduces the space-integral of ( )C r t, ,

( ) ( ) ( )òr=C t d C r tr , , 22

so as to remain with a purely time-dependent correla-
tion function (we multiply the r.h.s. by a factor ρ in
order to have the same physical dimensions for ( )C t
and ( )C r t, ). However, this prescription cannot work
for us, and in general for discrete data in active
systems. Remember our definition of velocity fluctua-
tions, equation (17): we subtract to each velocity the
space average, rather than the ensemble average. In fact,
we have no choice: in active systems individuals move,
do not sit on a lattice, hence we need to define averages
at any fixed time, and this leaves us with just one
choice, the space average. As a result, we inherit the
sum rule,

ˆ ( )åd =v 0, 23
i

i

whose main consequence is the rather unfortunate
result,

( ) ˆ ( ) · ˆ ( ) ( )åd d= + =C t
N

t t tv v
1

0. 24
i j

N

i j
,

0 0

Hence, the sum rule (23) prevents us from defining a
collective time correlation integrated in space. This
problem can be circumvented by defining the correla-
tion function in Fourier space,

( ) ( )
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r p q
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C k t d e C r t

dr r C r t d e
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2
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The integral over qcos can be performed explicitly
and the Diracʼs delta used to collapse the integral in dr,
so thatwe finally obtain,

( )

( )

( ( ))
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ˆ ( ) · ˆ ( )å d d
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+

26
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k r t t
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1 sin ,

,
, .

i j

N
ij

ij
i j

t,

0

0
0 0

0

This quantity is far more useful than the mere space
integral (22), as by varying the momentum k we can
integrate the correlation over different length scales,
making it a useful tool even in presence of the sum rule
(23). Moreover, it can be easily measured from the
data, both in numerical simulations and in experi-
ments. In the rest of this work we plan to use the

spatio-temporal correlation ( )C k t, defined in (26) as
the principal instrument of analysis to distinguish
inertial fromnon-inertial dynamics.

3.4. The static limit of the correlation function
A particularly important case is the static limit of the
correlation function (26), namely the case t=0, in
which we recover the Fourier transform of the static
correlation function,

( ) ( )

( )
ˆ · ˆ ( )å d d

º =

=

C k C k t

N

k r

k r
v v

, 0

1 sin
, 27

i j

N
ij

ij
i j

t

0

,
0

where now both i and j are evaluated at equal time t0.
What can we say, on general grounds, about the
behaviour of ( )C k0 ? For k 0 we have

( ) kr krsin 1ij ij and the correlation therefore is zero
at all times, due to the sum rule (23),

( ) ( )=


C klim 0. 28
k 0

0

On the other hand, for a generic nonzero value of k,
the sum in (27) is dominated by particle pairs with
distance <r k1ij , as larger distances are suppressed
by the factor ( )kr krsin ij ij becoming a rapidly oscillat-
ing term. In particular, for  ¥k all terms with
¹r 0ij , and therefore with ¹i j, get killed in the sum

and only the terms i=j survive. This implies that,

( ) ˆ ( )å d= =
¥

C k
N

vlim
1

1, 29
k i

N

i

t

0
2

0

because of definition (17) of the dimensionless velocity
fluctuations.

To make further progress we need to introduce a
new crucial player, namely the correlation length, ξ,
which is a measure of the size of the correlated regions
in the system [30]. When the momentum k is
decreased from = ¥k , but it is still larger than x1 ,
the factor ( )kr krsin ij ij is dominated by pairs with

x<rij : hence, by decreasing k we are adding in the
sum (27) more and more correlated pairs. We there-
fore expect ( )C k0 to increasewhen k is decreased from
= ¥k . When the momentum arrives at x~k 1 , we

have added to the sum in (27) all correlated pairs (that
is pairs within one correlation length) and we start
adding uncorrelated pairs, which lie beyond ξ. Hence,
we do not expect ( )C k0 to further increase on decreas-
ing k below x1 . In fact, if we performed ensemble
averages, ( )C k0 would level; however, we perform spa-
tial averages and we are bound by the sum rule (28). As
a consequence, decreasing k below L1 (where L is the
system’s size) has the effect to decrease the static corre-
lation ( )C k0 , until eventually it vanishes for k=0.We
therefore expect the static correlation to have a max-
imum. In a generic system, where there is no relation
between ξ and L, the position of this maximum is a
complicated function of these two scales (e.g. if ξ= L
the static correlation has – in log scale – a broad pla-
teau between x~k 1 and ~k L1 ). However,
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polarized flocks, which are the object of the present
study, are scale-free systems, where x ~ L (see next
section); in this case, the maximum of ( )C k0 occurs
unambiguously at x~ ~k L1 1max / . This beha-
viour of the static correlation ( )C k0 is confirmed by
numerical simulations, see figures 1(a) and 2(a).

In statistical physics, the static correlation at
k=0, that is the volume integral of the correlation in
r space, is the susceptibility, cstat, of the system [30]
(we use the ‘stat’ subscript to distinguish this quantity
from the generalized inertia of the ISM equations). In
our case, though, we have ( )= =C k 0 00 by con-
struction, due to sum rule (23), so this cannot be
the susceptibility. However, we have seen that ( )C k0

has a maximum at intermediate momentum, =k
x~k 1max . The value of the static correlation at this

maximum, ( )C k0 max , is equal to the integral of the sta-
tic real-space correlation up to x~r . Hence, the fact
that ( )C k0 peaks at kmax indicates that ( )C k0 max is a
fair estimate of the static susceptibility,

( ) ( )c x~ ~C k k, 1 . 30stat 0 max max

Notice that evaluating the susceptibility in this way is
equivalent to performing the space integral of the real
space correlation ( )C r0 up to the point where this
integral peaks, which is what has been done in [28].

To conclude this sectionwe notice that in the static
limit the Vicsek model and the inertial spin model
must have the same behaviour, and therefore the same
static correlation function ( )C k0 . This is a very general
consequence of the fact that friction always wins over
inertia at steady state [17]. We will show in numerical
simulations that this is indeed the case.

4. Finite size scaling

Both numerical and real biological systems have finite
size. In this section we will discuss how to take care of
finite-size effects and how to exploit them to our
advantage in distinguishing inertial from non-inertial
dynamics. From now on we will only deal with
collective systems in their ordered (i.e. polarized)
phase. In physical terms this means that we are far
from the ordering transition (be it in temperature, or
in density). In biological terms, this means dealing
with flocks, rather than swarms. For a finite-size
scaling analysis of the dynamics of the Vicsek model
close to the ordering transition (low polarization) we
refer the reader to the comprehensive work of
Baglietto andAlbano [31].

Figure 1. Static behaviour of the non-inertialmodel.Numerical simulation of theVicsekmodel in d=3with topological
interaction (metric interaction gives identical results). (a) Static correlation as a function of themomentum at various values of the size
L, displaying a clearmaximumat =k k .max The position and the height of themaximum shift with L, giving rise to afinite-size proxy
of the bulk divergence (dashed line). (b)Rescaled correlation function, according to equation (37). The best collapse occur for
g n = 2.14. (c)Correlation length, defined as x ~ k1 max as function of the size L (linear scale). (d) Susceptibility, defined as

( ( ) )C k L L;0 max , as a function of the size (log-log scale).
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4.1. Static correlation
In order to make some predictions about the form of
the static correlation function, ( )C k0 , we start from
the classic scaling hypothesis of Widom and Kadanoff
[34, 35], which states that, for length scales much
larger than the interparticle distance a, namely for
k a1 , and for large correlation length, x a, the

correlation function depends on the control para-
meters of the theory only through the correlation
length:

( ) ˆ ( ) ( )x=
g n

C k
k

f k
1

, 310 0

where g n is the ratio between the susceptibility and

correlation length critical exponents [30]; f̂0 is a
scaling function whose explicit form will depend on
several nonuniversal factors, including the particular
choice of how we perform the statistical averages
(space average vs ensemble average). The homoge-
neous form (31) of the correlation function is one of
the cornerstones of the theory of critical phenomena:
once we observe the system over scales much larger
than the discrete microscopic spatial mesh (that is
scales larger than the lattice spacing, or interparticle
distance, a), the only relevant length scale that remains
in the theory is the correlation length, ξ. The general
aim of a finite-size scaling analysis is to learn the value

of the critical exponent g n , without the need to know
the explicit form of the nonuniversal scaling func-
tion f̂0.

There is a second ingredient we need to take into
account to make progress. Flocks, and polarized nat-
ural groups in general, are systems with spontaneously
broken continuous symmetry (rotation). For this rea-
son we expect to find some off-equilibrium relic of the
Goldstone theorem [32], which states that the static
correlation function must be scale-free (or long-
range) [21, 33]. In systems with finite size L, this scale-
free condition implies that the only intrinsic length
scale of the system is the size of the system itself,
namely,

( )x ~ L. 32

Relation (32) has been consistently verified at the
numerical [16] and theoretical [4] level for the Vicsek
model, and at the experimental level for bird flocks
[25]. In the scale-free case the Widom-Kadanoff
scaling form (31) becomes,

( ) ˆ ( ) ( )=
g n

C k L
k

f kL;
1

. 330 0

The scaling function obeys the relation [34],

ˆ ( ) ( )=
¥

f xlim constant, 34
x

0

Figure 2. Static behaviour of the inertialmodel.Numerical simulation of the inertial spinmodel in d=3with topological
interaction (metric interaction gives identical results). All panels are the same as in figure 1. The best collapse occur for g n = 2.09.
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and therefore, in the infinite-size limit, the correlation
function takes the simple power-law form,6

( ) ( )~ = ¥
g n

C k
k

L
1

, . 350

The divergence for k 0 implies that not only the
correlation length, but also the static susceptibility,

( )c = =C k 00 , is infinite in the = ¥L limit of a
scale-free system [30]. Relation (35) holds irrespective
of howwe perform the statistical averages, because in a
very large system the correlation function is a self-
averaging quantity. A naive dimensional analysis of
both theVicsek and the ISM equation gives,

( ) ( )g n = 2, 36naive

because the discrete Laplacian simply translate into a
k2 term.However, naive dimensional analysis could be
corrected by off-equilibrium effects [4], therefore we
hold no prejudices on the true value of the expo-
nent g n .

Going back to finite-size systems, we can multiply
and divide equation (33) by g nL , to obtain the follow-
ing equivalent scaling form of the correlation func-
tion,

( ) ( ) ( )= g nC k L L f kL; , 370 0

which is the onewe shall test in numerical simulations.
From the discussion of the previous section, we expect

( )C k L;0 to have amaximumas a function of k at,

( )x~ ~k L1 1 . 38max

Moreover, as we have seen the finite-size susceptibility
is given by the value of the static correlation at its
maximum,

( ) ( )c~ ~ g nC k L L; , 390 max stat

which is the standard finite-size behaviour of the
susceptibility in critical phenomena.7

We have checked all the predictions of this section
by performing numerical simulations in d=3 in the
ordered phase (polarization F = 0.9) of both the Vic-
sek model and of the inertial spin model (details of the
numerics are provided in appendix A). We have com-
puted in the two cases the static correlation function in
Fourier space, ( )C k L,0 , according to its definition,
equation (26), at various values of the size L. Results
are reported infigures 1 and 2.

First, we observe that the numerical results are vir-
tually indistinguishable between Vicsek model and
ISM: the static phenomenology of the two models is
the same, as it should be. This is a nontrivial

consistency check; in particular, because the dynami-
cal time scales of the two models are very different,
obtaining the same static behaviour is an indication
that the simulation has thermalized for both models,
so that we are really observing steady-state results,
rather than transients. Of course, this result also
clearly shows that in order to distinguish the twomod-
els we need to go beyond the purely static correlation,
which is whatwe shall do in the following section.

To test the static scaling form (37) we notice that
this relation implies that by plotting ( ) g nC k L L;0 vs
kL, correlations calculated at different sizes L should
all collapse on the same curve, provided that we find
the correct value of the exponent g n . This is exactly
what happens (panel (b) of figures 1 and 2). The col-
lapse of the correlation functions at different sizes pro-
vides an estimate of the exponent g n . The data show
that this static scaling exponent is very close to 2, the
value predicted by naive dimensional analysis; given
that the twomodels have identical static behaviour, we
averaged their exponents, thus obtaining,

( ) ( )g n = = 2.11 0.02. 40d 3

Hence, it seems that, at least in this case of highly
ordered phase (F = 0.9), off-equilibrium corrections
are weak. We notice that this value of the polarization
Φ is not at all uncommon in real biological systems, as
bird flocks [25, 36], and fish schools [37]. Notice also
that we find a consistent scaling phenomenology up to
N=2048 particles, a number definitely not too small
for many biological groups. Hence, naive dimensional
analysis seems rather robust in the ordered phase of
such medium-large systems. We will see that this is
also the case at the dynamical level.

Relations (38) and (39) regarding the scaling of the
correlation length and of the susceptibility are equally
well satisfied by the numerical data (panels (c) and (d)
of figures 1 and 2). Moreover, if we evaluate the static
correlation at kmax and plot it as a function of kmax

(rather than L), we obtain from (37) the pseudo-bulk
relation,

( ( ) ) ( )~ g nC k L L
k

;
1

, 410 max
max

which is the finite-size representation of the infinite-
size behaviour (35). Equation (41) is reported as a
dashed line infigures 1(a) and 2(a).

The results of this section show that the classic sta-
tic scaling relations of Widom and Kadanoff, and the
scale-free consequences of Goldstoneʼs theorem, are
verified quite accurately in both models of collective
motion.

4.2. The dynamic scaling hypothesis
In order to study the fully dynamical correlation
function we turn to a powerful concept in classical
statistical mechanics, namely that of dynamic scaling.
The dynamic scaling hypothesis was formulated by
Halperin and Hohenberg in [38] and [39] as a

6
We emphasize again that all these scaling relations only hold for

wavelengths long compared to the interparticle distance, k a1 .
For >k a1 , on the other hand, the scaling form (33) is not valid, so
that we cannot perform the limit  ¥k in it; for this reason the
limit for  ¥k of C0 is 1, as expressed by equation (29), rather
than 0, as (33)would seem to suggest.
7
Equation (39) is only valid when the density and interaction range

are kept constant on changing L, as in the current work.When these
quantities vary onemust keep into account some corrections, which
are particularly relevant in the metric interaction case; this point is
carefully explained in the SI of [28].
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generalization of the static scaling relation of Widom
and Kadanoff, equation (31). The dynamic scaling
hypothesis makes two assertions: (i) the characteristic
time scale of the spatio-temporal correlation (or,
equivalently, its characteristic frequency) is a homo-
geneous function of the momentum k and of the
correlation length ξ,

( ) ( )t x=
k

h k
1

, 42
z

a relation that defines the so-called dynamical
critical exponent, z; (ii) the dynamical part of the
spatio-temporal correlation is a function of the
product xk , rather than of these two variables inde-
pendently,

( ) ( )
( )

( )x x
x

x=
⎛
⎝⎜

⎞
⎠⎟C k t C k f

k t

h k
k, ; ; , . 43

z

0

The dynamic scaling hypothesis is a concept deeply
rooted in the renormalization group idea and it
basically states that the correlation length is the only
relevant length scale in a system, even at the dynamical
level, so that the product xk is the only way external
tuning parameters (as temperature and noise) may
enter the spatio-temporal correlation [38]. In the rest
of this section we will use the dynamic scaling
hypothesis to distinguish inertial from noninertial
model.

4.3.Dynamical correlation: non-inertial case
In section 2 we have derived through naive dimen-
sional analysis the time scale of theVicsekmodel,

( )t
h

~
Jn a k

. 44
c

VM
2 2

The divergence of this relaxation time for k 0 in the
bulk is the dynamical side of the divergence of the
correlation length in the same model. At finite size
there cannot be any real divergence; following the
dynamic scaling hypothesis (42) and considering that
in the scale-free case we have x ~ L, we canwrite,

( ) ( ) ( )t ~k L
k

h kL;
1

, 45
z

VM

where h is a scaling function. From (44) we see that
naive dimensional analysis gives for theVicsekmodel,

( )=z 2. 46naive
VM

However, as in the static case, the naive dynamic
critical exponent can get corrections from renormali-
zation and off-equilibrium effects, so that its value
could verywell be different from2.

The second part of the dynamic scaling hypothesis,
equation (43), implies that the spatio-temporal corre-
lation function depends on the size L exclusively
through the two factors ( )tt k L;VM and kL, hence
giving,

( ) ( )
( )

( )
t

=
⎛
⎝⎜

⎞
⎠⎟C k t L C k L f

t

k L
kL, ; ;

;
, . 470 VM

Using (45), we obtain,

( ) ( )
( )

( )=
⎛
⎝⎜

⎞
⎠⎟C k t L C k L f

k t

h kL
kL, ; ; , . 48

z

0

As first pointed out in [38], we can now eliminate the
dependence on the size L by doing two things: first, we
isolate the time-dependent part by defining the
normalized dynamical correlation, i.e. the correlation
divided by its static value for t=0,

ˆ ( ) ( )
( )

( )ºC k t L
C k t L

C k L
, ;

, ;

;
. 49

0

Secondly, we recall that the maximum of the static
correlation occurs at ~k L1max (equations (38) and
(32)); therefore, if we evaluate the normalized spatio-
temporal correlation at this special momentum of
maximal static correlation, we get,

ˆ ( ( ) )
( )

ˆ ( ) ( )= =
⎛
⎝⎜

⎞
⎠⎟C k L t L f

k t

h
f k t, ;

1
, 1 . 50

z
z

max
max

max

This equation implies that it must exist a dynamic
critical exponent, z, such that the spatio-temporal
correlation functions calculated at different values of L
collapse onto the same L-independent master curve,
provided that we evaluate each correlation at

( )=k k Lmax and plot them as a function of the scaling
variable k tz

max . This collapse is the most conspicuous
and easy-to-test prediction of the dynamic scaling
hypothesis [38].

Numerical simulations of the Vicsek model are in
very good agreement with this prediction (figures 3(a)
and (b)). Dynamical correlations at different sizes L
collapse rather well as a function of the scaling variable
k tz

max . The best collapse is achieved for,

( )= z 2.13 0.02, 51VM

very close to the naive value of the dynamic critical
exponent, indicating, as in the static case, that correc-
tions to naive dimensional analysis exponents are
somewhat weak. Notice that if we keep k fixed for
different values of L, rather than following

( )=k k Lmax , it becomes impossible to collapse the
curves. As stated first in [38], following the peak of the
static correlation by keeping xk fixed is indeed
necessary tomake dynamic scaling work.

4.4.Dynamical correlation: inertial case
In section 2 naive dimensional analysis of the inertial
dynamics of the ISMprovided two time scales,

( )t g t~ ~
c k

1 ,
1

. 52
s

1
ISM

2
ISM

Hence, in the naive case t1
ISM does not depend on k,

whereas t2
ISM does; it is therefore highly probable that

the two time scales will have a different dependence on
k also in the general case. This fact has an unpleasant
consequence: if we follow the dynamic scaling hypoth-
esis and assume that the normalized spatio-temporal
correlation function depends on L only through its
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two time scales and through the factor kL, we obtain,

ˆ ( )
( ) ( )

( )
t t

=
⎛
⎝⎜

⎞
⎠⎟C k t L g

t

k L

t

k L
kL, ;

,
,

;
, , 53

1
ISM

2
ISM

from which it would seem impossible to scale both
time scales and obtain a collapse of the correlation
functions at different values of L as we had in the non-
inertial case.

Fortunately, there is a way out of this problem.We
are interested in the underdamped regime of the iner-
tial model, which corresponds to having a damping
time much larger than the time of propagation of
mode k,

( )t t . 541
ISM

2
ISM

If we ask this condition to hold for all physical modes,
including the smallest one, which is of order L1 , we
get,

( ) tL c . 55s 1
ISM

whose meaning is clear: the time a signal takes to cross
the system (~L cs) must be much shorter than the
time the signal takes to get damped ( t~ 1

ISM), which is a
rather reasonable definition of the underdamped
phase.Notice that (55) can be rewritten as,

( ) g
ºL

c
k1 . 56

s
0

In other words, there is a threshold momentum, k0,
which separates the overdamped phase ( L k1 0),
from the underdamped phase ( L k1 0) [12]. We
are interested in a system where information can
propagate, hence we consider the underdamped
regime (54)–(56). Moreover, we will consider short
times, which is the regime in which it is the easiest to
obtain the correlation function with good accuracy,
especially in real experiments. Hence, we work in the
following condition,

( )t t~t , 572
ISM

1
ISM

under which the normalized correlation (53) becomes
a function of just one time scale,

ˆ ( ) ( ) ( )t=C k t L g t kL, ; , . 582
ISM

We can now use the same scaling procedure as in the
non-inertial case. We first extend the dynamic scaling
hypothesis (42) to the inertial time scale t2

ISM,

( ) ( ) ( )t ~k L
k

h kL;
1

, 59
z2

ISM

where, again, we have left the dynamical exponent z
free to take a value different from that of naive
dimensional analysis,

Figure 3. Spatio-temporal correlation and scaling.Numerical simulations in d=3 of theVicsekmodel—panels (a) and (b) - and of
the inertial spinmodel—panels (c) and (d). (a) Spatio-temporal correlation of theVicsekmodel as a function of time at various sizes L
for ( )=k k Lmax , themaximumof the static correlation. (b)Rescaled correlation of theVicsekmodel; the best collapse occurs for
=z 2.13. (c) Spatio-temporal correlation of the inertial spinmodel as a function of time at various sizes L for ( )=k k Lmax . (d)

Rescaled correlation of the inertial spinmodel; the best collapse occurs for =z 1.15.
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( )=z 1. 60naive
ISM

We then evaluate the dynamical correlation at the
maximum of the static correlation, = ~k k L1max ,
which gives,

ˆ ( ( ) )
( )

ˆ ( ) ( )~ =
⎛
⎝⎜

⎞
⎠⎟C k L t L g

k t

h
g k t, ;

1
, 1 . 61

z
z

max
max

max

To check this prediction of dynamic scaling we
performed three-dimensional simulations of the iner-
tial spin model, figures 3(c) and (d). Results confirm
fully the validity of the scaling equation (61).Wenotice
that the correlation function has quite a different form
from the non-inertial one: there are oscillations, a clear
fingerprint of the underdamped regime of the inertial
dynamics [12]; moreover, the correlation is quadratic,
rather than linear, in the limit t 0. Yet the most
clearcut difference with the non-inertial case is pro-
vided by the different value of the dynamical exponent;
the best collapse of the data is given by,

( )= z 1.15 0.02, 62ISM

well distinguishable from the Vicsek value, relation
(51). Again, we find an exponent very close to its naive
counterpart, indicating that off-equilibrium and
renormalization corrections are weak.

To conclude we test equations (45) and (59) about
the scaling behavior with k of the characteristic time
scales in the two different models. As usual, to elim-
inate the dependence on the scaling function, ( )h kL ,
we need to work at the maximum of the static correla-
tion, = ~k k L1max . To extract the time scale τ

from figures 3(a) and (c) we use the simple crossing
condition,

ˆ ( ) ( )t =C k e, 1 . 63max

In figure 4 we report ( )t kmax vs kmax at various values
of the size L in the non-inertial case (orange points)
and in the inertial case (green points). As predicted by

equations (45) and (59), the characteristic time scale
depends on themomentum as a power law.Moreover,
the critical dynamical exponents, z, obtained by the
dynamic scaling, equations (51) and (62), fit rather
well the data and differentiate sharply the two cases.

Note that, although the two time scales have been
obtained by using exactly the same protocol in the two
models—calculating the correlation ( )C k t, , evaluat-
ing it at ( )k Lmax , crossing the correlation with a con-
stant—they have a rather different physical meaning:
in the non-inertial case τ is a damping time of an over-
damped correlation function, while in the inertial case
τ is actually the period of an underdamped, oscillating
correlation function.

The results of this section fully demonstrate that a
finite-size scaling analysis of the spatio-temporal cor-
relation function successfully distinguishes between
the non-inertial dynamics of the Vicsekmodel and the
inertial dynamics of the ISM. The fundamental fact
underlying this result is that the intrinsic, merely
dimensional, time scales of the two systems depend on
the momentum k in such sharply different ways that
off-equilibrium corrections are unable to wash out
this distinction, at least in the ordered phase we are
considering. In the next sectionwewill compute expli-
citly the dispersion relations of the two models under
an approximate scheme, hence making even more
clear the different mathematical structure of inertial
and non-inertial models. In the present section, how-
ever, we stress that we have made no particular
approximation in the derivation of the finite-size scal-
ing relations. The only simplification that we have
adopted has been to neglect the difference between
longitudinal and transverse direction (and therefore
momentum) and to describe everything as a function
of the scalarmomentum k. Our exact numerical simu-
lations of the actual off-equilibrium, self-propelled

Figure 4. Times scales of the twomodels.We computed the time scales of the Vicsekmodel (orange points) and of the inertial spin
model (green points) by crossing the spatio-temporal correlations infigure 3with a fixed value, ˆ ( )t =C k e, 1max , thenwe have
normalized the values obtained in such away that in each of the two cases the smallest τwas equal to 1. The dependence of the time
scales with themomentum is rather different in the twomodels, due to the difference in the two critical dynamical exponents.
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models fully confirm the theoretical expectations of
dynamic scaling.

4.5. Summary of themethod
At this point our procedure may seem rather intricate.
In fact, it is not; it simply consists of three steps, let us
briefly summarize themhere.

4.5.1. Calculate ( )C k t L, ; from the data
Given a certain dataset, the first thing to do is to
compute the spatio-temporal correlation function in
Fourier space, ( )C k t L, ; , using definition (26).
Clearly, for the method to work it is vital to have data
at different sizes L. We recall that to compute the
correlation function one must perform a time average
(average over t0). As always when computing time-
correlation functions, the total time of the simulation
(or of the experiment) must be much larger than the
relaxation time. In experiments, however, this is not
always possible. Some help comes from the fact that
our scaling relations are particularly strong for short
times, which are more experimentally accessible.
However, the time averages must be at least long
enough to stabilize the static correlation, ( )C k L;0 .

Regarding the interval in k to be considered when
computing ( )C k t, , we notice that the natural upper
limit is the inverse of the mean interparticle distance,

a1 . Well above this point the ( )kr krsin ij ij factor oscil-
lates very strongly. On the other hand, although a nat-
ural scale for the minima value of k is L1 , the
correlation function must be calculated down to
k=0, in order to check that ( )= =C k t0, 0 and to
clearly see themaximumof the static correlation.

4.5.2. Find the peak of the static correlation ( )C k L;0

Once the full spatio-temporal correlation, ( )C k t L, ; ,
is calculated, one must plot its static limit, namely its
amplitude, ( ) ( )= =C k L C k t L; , 0;0 , as a function
of k. This function must be zero at k=0 and (as long
as the system has non-negligible correlation length) it
has a maximum at some intermediate kmax (figures 1
and 2). This maximal momentum corresponds to the
inverse correlation length, x~k 1max , and in a scale-
free system it will scale as ( ) ~k L L1max . On the
other hand, the value of the static correlation at kmax is
the best estimate of the susceptibility and it scales as
some power of the size, ( ) ~ g nC k L0 max . Both these
relations should be checked for consistency.

4.5.3. Collapse the dynamical correlations at different
sizes
For each size L, one must evaluate the normalized
spatio-temporal correlation function ˆ ( )C k t L, ; at

( )=k k Lmax . All these curves must be plotted against
the rescaled time, k tz

max , and one must find the value
of the dynamical exponent z that produces the best
collapse of all the curves at different sizes L (figure 3).
The value of the dynamical exponent z can then be
compared in different models to distinguish their

dynamics. Our analysis shows that, in the ordered
phase, a large exponent, ~z 2, is associated to the
non-inertial, overdamped dynamics of the Vicsek
type, while a small exponent, ~z 1, is associated to
the inertial, underdamped dynamics of the ISM type.
Aswewrote in the Introduction, an equivalent analysis
close to the ordering transition should be conducted to
see whether or not a similar change in the dynamical
exponent occurs in ‘swarm-like’ collective systems.

5. Approximate theory

In this section we perform an analytical calculation of
the spatio-temporal correlation function, ( )C k t, ,
based on an approximate scheme. As we shall see, the
results are in line with the general theory describe
above.

5.1. Fixed network approximation
The first approximation we adopt is that of fixed
network. This approximation has the great advantage
of enormously simplifying the computations, but it
may seem rather extreme given the very nature of
active systems. We briefly discuss here the nature,
limitations and range of applicability of this approx-
imation. For a more detailed discussion we refer
to [40].

Biological systems displaying collective motion
differ from traditional physical systems because they
are inherently out of equilibrium: its constituents are
particles that move by self-propulsion, constantly
compensating for the dissipation effects by injecting
energy into the system. The key ingredient of an active
system is the rearrangement of the interaction net-
work, a phenomenon that has very important effects
[13, 24, 41].

Taking into account the full active nature of these
systems at a theoretical level requires a hydrodynamic
approach [5, 13, 24, 41], which describes the coupling
between velocity and density fields, providing an ele-
gant description of the large scale behaviour of active
fluids. In order to select the relevant terms in the con-
tinuum equations, this approach focuses on large
length scales, i.e. on the so-called hydrodynamic limit
k 0. Inertial effects, however, are completely domi-

nated by dissipation in this limit. And yet we know as
an experimental fact that inertial effects are essential to
reproduce real flock phenomenology: real flocks are
finite-size systems, therefore far from the k 0
hydrodynamic limit, and for this reason inertial effects
dominate over dissipation, not the other way around.
The inevitable conclusion is that in order to describe
real, finite-size biological groups, we need to give up
the simplifying framework of the hydrodynamic limit.
Even though this can still be done in the framework of
a continuum theory of the velocity and density fields
(see [14]), we take here a different route.
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Let us assume that, even though the particles of
our system move, the rearrangement of the neigh-
bours’ interaction network is slow. By this we mean
that there is a separation of timescales: if we consider
the scale of local relaxation, trelax, defined as the char-
acteristic time needed to relax locally the order para-
meter with the interaction network fixed, and the
network reshuffling time, tnetwork, that is the average
time it takes for an individual to change its interacting
neighborhood, then by slow network rearrangement
wemean [40],

( )t t . 64relax network

Under this condition of local quasi-equilibrium, the
update of the velocity of a particle occurs on a time-
scale much faster than that needed to change the
matrix of its neighbours, ( )n tij , which can then be
considered constant in time,

( ) ( )~n t n . 65ij ij

Natural flocks of birds are precisely in such a state of
local quasi-equilibrium [40] and indeed the predic-
tions for the propagation law based on the fixed
network analysis work very well [9, 12]. Of course
theremust be a crossover length scale l beyondwhich
the network rearrangements become relevant and a
hydrodynamic approach is mandatory. The fixed net-
work approximation therefore describes all the modes
with  > =k k l1 . However, as we stated above,
experimental evidence shows that real flocks are well
within this scale, <L l , and this is why we adopt
approximation (65).

5.2. Spin-wave expansion and continuous limit
In this work we are considering systems in their
strongly polarized phase. To fix ideas, we shall assume
that the mean velocity of the group is pointing in
direction x, i.e. along the unit vector ( )=n 1, 0, 0x .
Each velocity vi can be decomposed into a longitudinal
component, let us call it vi

x, along the direction of
motion nx and a transverse component, which is a
( )-d 1 -dimensional vector pi lying on the plane
perpendicular to the direction ofmotion,

( )p= +vv n . 66i i
x

x i

Notice that the transverse components pi have the
physical dimension of a velocity and they satisfy the
obvious relation,

( )åp = 0. 67
i

i

Given that we are studying models with fixed speed,
∣ ∣ = vvi 0, we canwork out the longitudinal component
as a function of the transverse one,

( )p= -v v . 68i
x

i0
2 2

When the polarization is large all velocities will be
mainly along the mean direction of motion, implying
p vi

2
0. This is the so-called spin-wave approx-

imation, which yields,

( )p~ -⎜ ⎟⎛
⎝

⎞
⎠v v v1

1

2
, 69i

x
i0
2

0
2

and,

( )pp= - +⎜ ⎟⎛
⎝

⎞
⎠v vv n 1

1

2
. 70i x i i0

2
0
2

It is convenient to write the transverse components of
the velocity, pi, in terms of dimensionless angles
expressing the departure of each vi from the mean
direction ofmotion, nx,

( )p j j= ~v vsin , 71i
y

i
z

i
z

0 0

( )p j j= ~v vsin . 72i
z

i
y

i
y

0 0

To understand these relations we must recall that to
create a y component of the velocity one needs to
rotate vi around the z axis, and vice-versa. These
transverse angles ji

z and ji
y are the key degrees of

freedom in a polarized system and they are called
phases. They simply represent the (small) angular
deviations of each individual vi with respect to the
mean velocity of the group.

We can nowplug equations (70), (71) and (72) into
the full dynamical equations describing the models
and expand them up to the first order in the phase, so
to obtain equations directly for the ji. This is called
spin-wave expansion [42]. For theVicsekmodel (2) the
spin-wave expansion gives the same equation for both
j y andjz , namely,

( )åh
j

j z= - L + ^d

dt
J , 73i

j
ij j i

where Lij is the Laplacian matrix defined in (7).
Similarly expanding the ISMequation (6), we obtain

( )åc
j

h
j

j z+ = - L + ^d

dt

d

dt
J . 74i i

j
ij j i

2

2

From relations (70), (71) and (72)we can alsowork out
an expression of the polarization Φ in terms of the
phase,

( ) ( )å åjF º = -
-

N v

d

N

v1
1

1

2
, 75

i

i

i
i

0

2

from which we see that the limit of large polarization,
F ~ 1, is equivalent to the limit of small
phases, j 1i

2 .
If we look at spatial scales larger than the nearest

neighbor distances—and we must do that, to prevent
that all our scaling relations lose their validity–we can
approximate the discrete Laplacian with its con-
tinuous counterpart (we recall that a is themean inter-
particle distance),

( )åL  - J Jn a . 76
j

ij c
2 2

In performing this substitution it is of course crucial
the previous fixed-network assumption, that is the fact
that Lij does not depend on time. Similarly, we can
substitute the discrete-space phases with continuous
fields,
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( ) ( ) ( )j jt tx, . 77i

In this waywe can rewrite theVicsekmodel as,

( ) ( ) ( )h j z
¶
¶

-  =⎜ ⎟⎛
⎝

⎞
⎠t

Jn a t tx x, , . 78c
2 2

whereas for the inertial spinmodel, we obtain,

( ) ( )

( )

c h j z
¶
¶

+
¶
¶

-  =
⎛
⎝⎜

⎞
⎠⎟t t

Jn a t tx x, , .

79

c

2

2
2 2

In both cases ζ is aGaussianwhite noise,

( ) ( ) ( ) ( )
( )

( )z z h d dá ¢ ¢ ñ = - ¢ - ¢t t T a t tx x x x, , 2 .

80

3 3

where the factor a3 is necessary to keep the original
physical dimensions once we introduce the spatial
Diracʼs delta.

In the highly polarized phase, from the definition
of velocity fluctuations (17), and from (71) and (72),
we obtain,

ˆ ( ) ( )d j j=
- F

v
1

1
0, , , 81i i

z
i
y

up to linear order in the phase. This equation
embodies the fact that in a polarized system the
fluctuations are strongly dominated by their transverse
components. Accordingly, the connected velocity
correlation (15) becomes,

( )j j= á ñC , 82ij i j

up to a constant factor equal to ( ) ( )- - Fd 1 1 , and
where we have taken into account the fact that the
statistical correlation of j y is the same as that of jz , as
they satisfy identical stochastic equations. In the light
of this result the spatio-temporal correlation function,

( )C tr, , defined in (18) can bewritten as,

( ) ( ) ( )

( )

ò j j= + +C t
V

d t t tr x x x r,
1

, , ,

83
t

0 0 0 0 0
0

which in k-space becomes,

( ) ( ) ( ) ( )j j= á - + ñC t t t tk k k, , , . 840 0

This compact form of the correlation will be particu-
larly useful for the theoretical calculations of the next
section.

5.3. Theory: non-inertial dynamics
The linear stochastic differential equations (78) and
(79) can be easily solved by using the Green functions
method [43], whose details are described in
appendix B. The Green function, ( )wG k, , is essen-
tially the inverse, in Fourier space, of the differential
operator ruling a dynamical equation. For the Vicsek
model, we have from (78),

( ) ( )w
hw

=
+

G
i Jn a k

k,
1

. 85
c

2 2

Once the Green function is known, the correlation
function (84) is given by,

( ) ( ) ( )

( )
ò

h
p

w w w= - -wC t
T a

d e G Gk k k,
2

2
, , .

86

i t
3

The frequency integral is performed by Cauchyʼs
residue method, which consists in evaluating the
integrand at its simple poles in the complex ω plane.
For this reason the frequencies at which the Green
function has the poles acquire particular importance;
these frequencies are defined by the so-called disper-
sion relation, which in this case of Vicsek non-inertial
dynamics reads,

( )hw + =i Jn a k 0. 87c
2 2

The frequency ω is purely imaginary with a quadratic
(i.e. diffusive) dispersion law,

( )w
h

= i
Jn a

k . 88c
2

2

The integral in (86) can be easily performed, giving the
dynamical correlation function of theVicsek case,

( ) ( ) ( )= h-C k t C k e, . 89
Jn a

k tVM
0

c
2

2

where the static correlation function is given by,

( ) ( )=C k
Ta

Jn k

2
. 90

c
0 2

In the non-inertial Vicsek model the correlation
function (89) is therefore a pure exponential, with
relaxation time given by,

( ) ( )t
h

=k
Jn a k

, 91
c

VM
2 2

which is the same result that we obtained with naive
dimensional analysis, equation (9).

5.4. Theory: inertial dynamics
The dynamics of the inertial spin model is given by
equation (79), which gives theGreen function,

( ) ( )w
cw hw

=
- + +

G
i Jn a k

k,
1

, 92
c

2 2 2

with dispersion law,

( )cw hw- + + =i Jn a k 0. 93c
2 2 2

This equation has two complex solutions,

( )w
h
c c

c h=  -i Jn a k
2

1

2
4 . 94c

2 2 2

The first thing to notice is that in the k 0 limit we
recover exactly the same dispersion law as in the non-
inertial theory. Indeed, in this limit (that is in the
hydrodynamic limit) we obtain two purely imaginary
frequencies, the smallest of which is,

( ) ( )w
h

~ k i
Jn a

k k, 0, 95c
2

2

equal to equation (88). This fact is a further confirma-
tion that the inertial spin model gives in the hydro-
dynamic limit k 0 the same results as the Vicsek
model [12].

For generic k the dispersion relation can be simpli-
fied by introducing the reduced friction coefficient, γ,
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and the second sound speed, cs, previously defined in
(11), and the threshold momentum, k0, defined in
(56). In this waywe obtain,

( )w g=  -i c k k k1 , 96s 0
2 2

We see that for >k k0 the frequency has nonzero real
part, so that there is signal propagation, while for
<k k0 the frequency is purely imaginary and the

dynamics is overdamped, as in the Vicsek case. In the
deeply underdamped regime, k k0, the dispersion
relation further simplifies andwe get,

( )w g= i c k. 97s

In this case each mode k propagates linearly with the
same speed, cs, and damping γ. The two different
dispersion relations, (88) and (96) are depicted in
figure 5.

By plugging the inertial Green function (92) into
(86) and performing the residue integral in the com-
plex ω plane, we obtain the spatio-temporal correla-
tion function in the inertial case,

( ) ( )

( )

( )

( )

g

=

´
-

-

+ -

g-

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

C k t C k e

c k k k
c k t k k

c k t k k

,

1

1
sin 1

cos 1 , ,

98

t

s
s

s

ISM
0

0
2 2

0
2 2

0
2 2

where that the static correlation function, ( )C k0 is the
same as in the non-inertial case, equation (90): as we
already remarked several times, the static correlation
function does not distinguish between different
dynamics. In the deeply underdamped regime,
k k0, the inertial correlation function takes the

simpler form,

( ) ( )

( ) ( ) ( )g
=

´ +

g-

⎡
⎣⎢

⎤
⎦⎥

C k t C k e

c k
c k t c k t

,

sin cos . 99

t

s
s s

ISM
0

This spatio-temporal correlation is completely differ-
ent from the non-inertial case: it is an oscillating
function of time, characterized by two time scales,

( ) ( )t g t= =k
c k

1 ,
1

. 100
s

1
ISM

2
ISM

Again, we recover the same time scales as in the naive
dimensional analysis, relations (13). The expansion for
short times of the normalized correlation function in
the inertial case, equation (98), gives,

ˆ ( ) ( ) ( )~ -C k t c kt, 1
1

2
. 101s

ISM 2

This result shows that for short times: (i) the inertial
correlation function decays quadratically, unlike the
linear decay of the non-inertial case; (ii) the inertial
correlation function depends on just one time scale,
namely the period,

ˆ ( ) ( ( )) ( )t~ -C k t t k, 1
1

2
, 102

ISM
2
ISM 2

which is the result we anticipated in (58), on which is
based thefinite-size scaling analysis of the inertial case.

The approximate scheme we presented (fixed net-
work, large polarization and continuous limit) gives
rise to a linear theory which is essentially the massless
Gaussian field theory [30]. From equations (90), (91)
and (100)we see the critical exponent are given by,

( ) ( )g n = = =z z2, 2, 1 103gauss gauss
VM

gauss
ISM

As usual in critical phenomena, the Gaussian approx-
imation gives the same critical exponents as naive
dimensional analysis [30]. We have seen in the
previous sections that numerical simulations give
critical exponents very close to the Gaussian/
naive ones.

Figure 5.Dispersion relations.Real (blue) and imaginary (red) part of the frequencyω as a function of themomentum k. (a)—Vicsek
model: the frequency is purely imaginary, as the system is overdamped and no signal propagation occurs. (b)—Inertial spinmodel:
for >k k0 the frequency develops a real part, giving rise to signal propagation.Notice that for  ¥k the imaginary part grows
asymptotically as k2 in the non-inertial case, while it saturates to γ in the inertial case. On the other hand, for k 0, the inertial and
non-inertial frequencies coincide: both real parts are zero and both imaginary parts go to zero as k2.
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5.5. The boundary of the approximate theory
We have seen that in the context of the approximate
theory we can work out an exact expression for the
polarization, equation (75). In d=3 we can rewrite
that equation as,

( ) ( )jF = - á ñx1 , 1042

where we have indicated with a bracket the space
average. From (83)we see that the average of the phase
squared is simply the static spatio-temporal correla-
tion function evaluated at =r 0, namely,

( ) ( ) ( )

( )
òjá ñ = = = =C t d Cx r k k0, 0 ,

105

a
2

1

0

where the upper limit of integration keeps into
account the discrete nature of the system. From
equation (90), we finally obtain an explicit expression
for the polarization as a function of the parameters of
themodel,

( )ò
p

F = - = -d
Ta

Jn k

T

Jn
k1

2
1

8
. 106

a

c c

1

2

We tested this relation against numerical simulations.
The results (which, being static, are identical for the
Vicsekmodel and for the ISM) are shown infigure 6.

We remark that expression (106) is valid only
within the approximate scheme adopted in this
section, namely: fixed network, large polarization
(spin wave) and continuous limit. We have already
seen that the critical exponents provided by this
approximation agree with those of exact numerical
simulations, which were run at F = 0.9. One may
wonder up to what values of polarizations this will
happen. Figure 6 provides an answer: the spin-wave
expansion (i.e. the Gaussianmodel) of the polarization
is valid down to –F ~ 0.7 0.8. Below these values the
nonlinear corrections become significant. We notice
that these values of the polarization are not out-
rageous: several biological groups display polarization

larger than this value, which is therefore well within
the range of the spin-wave expansion.

Finally, we stress that the validity of (106) implies
that all the approximations used in this section are
valid; on the contrary, the break down of (106) does
not indicate which one of the approximations—fixed
network, spin-wave, continuous limit—breaks down.

6. Conclusions

We have discussed a method able to distinguish
models of collective motion with different dynamical
behaviour. Themethod uses spontaneous fluctuations
rather than explicit signal propagation across the
system, which is very convenient, especially at the
experimental level. The key quantity of the method is
the spatio-temporal correlation function in Fourier
space, ( )C k t, , which we have defined in (26) in
practical terms, easy to implement numerically and
experimentally.

We emphasize that the use of space-time correla-
tions to infer information about the dynamics—more
precisely, to work out the dispersion law—is definitely
not new. This is a standard procedure in equilibrium
statistical physics, and it has also been used in the con-
text of self-propelled particles models by Tu, Toner
and Ulm [13], who made a numerical study of first-
sound dispersion law in the Vicsek model. Our new
contribution here has been to apply the method to
inertial dynamics, which had never been made before,
and to use it as a tool to distinguish non-inertial from
inertial dynamics.

Our simulations indicate that the method is very
promising and that it may now be exported to exper-
imental data on real biological systems.We have, how-
ever, to be careful. As we have seen, in the limit k 0
all models (inertial and non-inertial), give the same
result, namely the static correlation. Hence, the
method we have described is fruitful at non-zero

Figure 6. Polarization.We report here the polarization in the topological Vicsekmodel in d=3 as a function of the temperature
(results for the ISM and formetric interaction are identical). The full line is the spin-wave prediction (106).
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values of themomentum k.What does thismean at the
quantitative level? The answer depends on the correla-
tion length, ξ. We have seen that the crucial scale for
the analysis is x~k 1max . If the system is strongly
correlated, then ξ will be large, so that the method will
use information integrated over a large spatial scale
(that is, summed over many individuals), thus provid-
ing an accurate signal. If, on the other hand, the system
is poorly correlated, then ξ is small, and the method
integrates information on short spatial scales; this is a
problem, because short scales aremuchmore prone to
experimental error (mainly, but not solely, due to seg-
mentation errors in the image analysis [44]). In scale-
free systems, which are likely to be all systems where a
continuous symmetry is spontaneously broken, we
expect x ~ L, hence the method should work well as
long as wemanage to gather data on systems which are
reasonably large. In generic, non-scale-free systems
one should take care in determining the amount of
static correlation before proceeding with the full
fledged dynamical analysis.

One may ask whether the method is useful in gen-
eric biological data sets, for which we have no a priori
reason to believe that either the Vicsek model, or the
inertial spin model are correct. This is a very pertinent
question and we are afraid that our answer may per-
haps sound reasonable only to statistical physicists.
The two models we have analyzed here are probably
the simplest collective motion models with non-iner-
tial and inertial dynamics. This is clear by their mathe-
matical structure: the differential spatial part is a
Laplacian in both models, which is a very basic way to
implement imitation, while the differential dynamical
part is first-order in the Vicsek model and it is second-
order in the inertial spin model, which is the minimal
way to have the emergence of linear phase waves
uncoupled to density waves. Many other models, dif-
ferent from both Vicsek and the ISM, can be envi-
saged, of course. However, we believe that the essential
mathematical difference between inertial and non-
inertial dynamics can hardly be represented by some-
thing radically different from what we have descri-
bed here.
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AppendixA.Details of the numerical
simulations

To simulate the Vicsek or ISM models means to
integrate numerically the corresponding equations. In

[12], this was done with an Euler method, but this has
the disadvantage that it is not very stable when the
friction is low (i.e. when the inertial effects dominate).
Also, the constraint ( ) =v t vi

2
0
2 is not exactly enforced

this way, because the exact equations enforce it by
requiring that d dtvi be perpendicular to vi, but this is
not sufficient when using finite time differences. For
these reasons here we have resorted to an integration
scheme used in Brownian Dynamics, which allows for
exact implementation of the constraint via Lagrange
multipliers and which in the underdamped (h  0)
case reduces to the velocity Verlet integrator used in
Molecular Dynamics, widely used due to its good
energy conservation properties and computational
affordability [45]. The only drawback is that the
overdamped (Vicsek) case with m=0 cannot be
integrated this way. We thus have treated the Vicsek
model separately, with an Euler integrator, as in
simulations of overdamped Brownian motion in
liquids [46].

A.1. Integration of the ISMequations
We start from the second order equation for the
velocity, whichwe rewrite as

[ ({ }) ] ( )
c

= + +
d

dt

vv
F r v F f, , A1i

i j j v i c i

2

2
0
2

, ,

where thefirst two terms on the r.h.s. include the social
interaction, which is function of the positions and
velocities of the particles, and the random and viscous
forces,

( )å=
J

v
nF v , A2i

j
ij j

0
2

( )
zh

= - +
v

d

dt v
F

v
, A3v i

i i
,

0
2

0

and the term fc i, is the constraint force, given by the
rest of the terms of equation (6), but which we
compute differently in the discretized equations, so
that the constraint is exactly enforced. To obtain the
discretized equations we integrate equation (A1)
assuming Fi varies linearly in time in a small interval
Dt [46, 47]. The term fc i, is disregarded at first, and
later reintroduced as explained below. Defining

= d dta vi i , = d dtb ai i , one arrives at

( ) ( ) ( )+ D = + Dt t t t ar r v , A4i i i

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( )
l X

+ D = + D + D
+ D +
t t t tc t t c t

t c t t

b

v v a b

,

A4

i i i i

i v

1
2

2
2

2

( ) ( ) ( ) [ ( )
( )] [ ( )
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l
m X

+ D = + - D
+ + D + D
+ + D +

t t c t c c t t

t c t t t

t t t

c

a a b
v b
v ,

A4
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i i i
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( ) ({ ( ) ( )})

( )
c

+ D = + D + Dt t
v

t t t t

d

b F r v, ,

A4

i i j j
0
2

where li and mi are related to the constraint (see
below) and the other constants result from the
integration: c0, c1, and c2 are

( )= h c- Dc e , A5v t
0 0

2

( ) ( )c
h

=
D

-c
v t

c1 , A61
0
2 0

( ) ( )c
h

=
D

-c
v t

c1 , A72
0
2 1

and Xv and Xa are random variables related to the
random force. They are independent for each axis, and
each pair of components is drawn from a bivariate
Gaussian distribution with zero first moments and
secondmoments given by

)

( )

( ) ( )

c
h

h
c
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2
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2
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2
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2
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2

This scheme has the advantage that it reduces to the
velocity Verlet integrator for Molecular Dynamics
[46, 48] in the underdamped h  0 limit, which is
known to stably reproduce the energy conservation
property of Newtonʼs equations (in our case applying
to the conservation of the Hamiltonian in the case
h = 0 for metric interactions on a fixed arbitrary
lattice).

The constraint is enforced as in the RATTLE algo-
rithm [49], only that since the constraints on each par-
ticle are independent, the Lagrange multipliers can be
found analytically and there is no need of an iterative
procedure. Imposing ( )+ D =v t t vi

2
0
2 and

( ) · ( )+ D + D =t t t tv a 0i i one obtains

( )
( ) · ( )

l

m

=
-

D

=-
+ D ¢ + D

D

+w

t c

t t t t

c v t

v a

1
,

,

i

i
i i

2
2

2 0
2

where +w is the positive root of

( ) ·
( ) ( ) ( ) ( )

+ D + D =
D = D + D

v w t w v v

c t t c t t

v v

v a b

2 ,

, A9
i i i

i i i

0
2 2 2

0
2

1 2
2

and ( )¢ + Dt ta i is equal to ( )+ Dt tai as given by
equation (A4c) but without the term proportional
to mi.

Each step is performed in two stages, as in the velo-
city Verlet scheme [46]: First the random variables are
drawn, ri is updated, ai is partially updated using only
the terms that depend on quantities evaluated at t; the
vi are updated, and the constraint terms computed and
applied. Then the force at the new positions and

velocities is computed, and finally the update of ai is
completed.

A.2. Integration of theVicsek equations
The Vicsek model (equations (2), (3)) is the over-
damped (c h  02 ) limit of the ISM, but although
the above scheme works very well for h  0, it is not
suitable for the overdamped case, which is equivalent
to setting c = 0. We thus use a simple Euler integra-
tion [46], derived by integrating equation (2) over Dt
assuming ({ })F r v,i i i constant, and enforcing the
constraint as before. Setting h = 1 (which amounts to
a rescaling of time), this results in

( ) ( ) ( )+ D = + Dt t t tr r v , A10i i i

( ) [ ( ) ] ( ) ( )X+ D = D + +t t v t t w tv F v, , A11i i i i i0
2

wherewi is the smallest solution of

( ) ·
( ) ( )X

+ D + D =

D = D +

v w t w v v

v t t

v v

v F

2 ,

, A12

i i i

i i i

0
2 2 2

0
2

0
2

and X are Gaussian random variables, independent
for each axis, of zeromean and variance

( )s = DX
T

v
t

2
. A132

0
2

A.3. Parameters and runs
We performed numerical simulations on both Vicsek
and ISM models in d=3 on a cube with periodic
boundary conditions, for systems of different sizes:

=N 512, 724, 1024, 1448, 2048. In all cases the den-
sity was fixed, r = =N L 0.1473 , corresponding to a
mean interparticle distance, ~a 1. For both models
we choose the following parameters: temperature
T=1, friction h = 1, strength of the interaction
J=1. These parameters correspond to polariza-
tion F ~ 0.9.

In the ISM model we fixed c = 5, so that

g h c= =2 0.1, c= =c Jn a 1.79s c
2 and =k0

g =c 0.056s . This choice of the parameters guaran-
tees that the ISM simulations are in the underdamped
regime, because =k L0.056 10 for all the ana-
lyzed systems: [ ]p ÎL2 0.26: 0.41 , where the lower
bound corresponds to the biggest system (N=2048,
L=24) and the upper bound to the smallest system
(N=512, L=15). In terms of the dispersion relation
depicted in figure 5, we can say that in all our systems
the physical momentum k is always much larger than
the edge of overdamping, k0.

We run simulations with both topological and
metric interaction. In the topological case the number
of interacting neighbours is =n 16;c in the metric
case the interaction range is =r 2.95c , such that, on
average, each particle has ~n 16c interacting neigh-
bors and a fair comparison between topological and
metric interaction is possible. We find no significant
difference of the scaling laws and critical exponents
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between the two cases (shown in the figures are topo-
logical results).

Systems were initialized in order to have randomly
distributed particles with all the velocities directed
along the x-axis, ( )= vv 1, 0, 00 and =v 0.10 . Vicsek
simulations have a total duration = ´t 6 10tot

5 time
steps, while ISM simulation have a total duration

=t 10tot
6 time steps; in both cases we saved the parti-

cles position and velocity at intervals of 102 time steps,
we analyzed 6 samples of the duration of 104 time steps
for each simulation and we averaged the correlation
functions on the different samples in order to reduce
fluctuations.

Appendix B.Green functionsmethod

To fix ideas we will describe the Green functions
method [43] by using as an example the Vicsek model
in its continuous limit form,

( ) ( ) ( )h j z
¶
¶

-  =⎜ ⎟⎛
⎝

⎞
⎠t

Jn a t tx x, , B1c
2 2

To solve this linear stochastic equation it is convenient
to first find the solution of the following Green
equation,

( ) ( ) ( ) ( )( )h d d
¶
¶

-  =⎜ ⎟⎛
⎝

⎞
⎠t

Jn a G t tx x, B2c
2 2 3

where ( )G tx, is the Green equation (or dynamical
propagator) associated to the original dynamical
equation. Once we know the Green function, we can
write the general solution of the original equation (up
to a solution of the homogenous problem) as,

( ) ( ) ( )

( )
òj z= ¢ ¢ - ¢ - ¢ ¢ ¢t d dt G t t tx x x x x, , ,

B3

It is convenient at this point to switch to a Fourier
representation in terms of momentum k and fre-
quencyω,

( )
( )

( ) ( )( · )òp
w w= w-G t d d e G ax k k,

1

2
, B4i tk x

4

( )
( )

( ) ( )( · )òj
p

w j w= w-t d d e bx k k,
1

2
, B4i tk x

4

so that the previous equations become polynomial,

( ) ( ) ( )hw w+ =i Jn a k G k, 1 B5c
2 2

In this way one obtains a simple algebraic expression
for the dynamical Green function,

( ) ( )w
hw

=
+

G
i Jn a k

k,
1

B6
c

2 2

Clearly, the Green function ( )wG k, contains all the
relevant information to infer the dispersion relation,
and thus the full dynamical equation ruling the system.
The most direct way to access ( )wG k, is to compute
the correlation of the field ( )j wk, : the solution of the
dynamical equation in Fourier space is,

( ) ( ) ( ) ( )j w w z w= Gk k k, , , B7

so that if we now multiply two fields and average over
the noise we get,

( ) ( ) ( ) ( )w j w j wº á - - ñC k k k, , , B8

( ) ( ) ( )h w w= - -T a G Gk k2 , , B93

By doing the Fourier integral in the frequency we
finally obtain the spatio-temporal correlation function
in Fourier space, ( )C tk, ,

( ) ( ) ( )

( )
ò

h
p

w w w= - -wC t
T a

d e G Gk k k,
2

2
, ,

B10

i t
3

This integral is solved in general by Cauchy
residue method, so that the poles of the Green
function acquire particular importance. It is for
this reason that one needs to write the so-called
dispersion relation associated to the original dynamical
equation,

( )hw + =i Jn a k 0. B11c
2 2
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