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Within self-cousistent field theory we study the phase behavior of a symmetrical binary 
AB polymer blend confined into a thin film. The film surfaces interact with the monomers 
via short range potentials. One surface attracts the A component and the corresponding 
semi-infinite system exhibits a first order wetting transition. The surface interaction of 
the opposite surface is varied as to study the crossover from capillary condensation for 
symmetric surface fields to the interface localization/delocalization transition for antisym- 
metric surface fields. In the former ease the phase diagram has a single critical point close 
to the bulk critical point. In the latter case the phase diagram exhibits two critical points 
which correspond to the prewetting critical points of the semi-infinite system. Only below 
a triple point there is a single two phase coexistence region. The crossover between these 
qualitatively different limiting behaviors occurs gradually, however, the critical temper- 
ature and the critical composition exhibit a non-monotonic dependence on the surface 
field. 

The dependence of the phase behavior for antisymmetric boundaries is studied as a 
function of the film thickness and the strength of the surface interactions. Upon reducing 
the film thickness or decreasing the strength of the surface interactions we can change the 
order of the interface localization/delocalization transition from first to second. 

The role of fluctuations is explored via Monte Carlo simulations of a coarse grained 
lattice model. Close to the (prewetting) critical points we observe 2D Ising critical be- 
havior. At lower temperatures capillary waves of the AB interface lead to a pronounced 
dependence of the effective interface potential on the lateral system size. 

© 2001 Elsevier Science B.V. All fights reserved. 

1. I N T R O D U C T I O N  

Confining a binary mixture gives rise to a rich interplay between wetting and miscibility 
behavior.J1-4] In a porous material or a slit-like pore with identical surfaces the critical 
point of the mixture is shifted away from its bulk value to lower temperatures and higher 
compositions of the component preferred by the walls.J4] The phenomenon of capillary 
condensation which occurs if the two confining boundaries are symmetric is well-known.J5] 
In some applications (e.g., coatings or dielectrics), however, the surfaces of the film (e.g., a 
solid substrate and vacuum) interact very differently with the constituents of the mixture. 
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In the opposite limit of antisymmetric walls, i.e., one wall attracts the A-component 
with exactly the opposite strength than the other wall the B-component, an interface 
localization/delocalization transition[6-10] occurs close to the wetting transition of the 
semi-infinite system. 

We study the dependence of the phase behavior of a polymer mixture confined into 
a thin film on the surface interactions and film thickness via self-consistent field cal- 
culations[ll-13] and Monte Carlo simulations.[14] Our paper is arranged as follows: In 
the next section we describe our mean field calculations and discuss the dependence of 
the phase diagram on the monomer-wall interactions. Then we investigate the effect of 
fluctuations via simulations of a coarse grained lattice model. The paper closes with a 
discussion of the anticipated chain length dependence and an outlook on experimental 
systems. 

2. S E L F - C O N S I S T E N T  F I E L D  C A L C U L A T I O N S  

We calculate the phase behavior of a confined AB mixture within the self-consistent 
field theory of Gaussian polymers.J15,16] The film comprises a volume V0 = A0 x L x L. 
Ao denotes the film thickness, while L is the lateral extension of the film. The density at 
the film surfaces decreases to zero in a boundary region of width Aw according to[17] { 1-~(~) 

2 ; 0 < x < A , ~  
¢0(x) = 1 ; ~ _< x < Ao - A,n (1) 

2 ; A o - A ~  < x < A 0  

where @o denotes the ratio of the monomer density and the value p in the middle of 
the film. The thickness A of an equivalent film with constant monomer density p is 
A = Ao - Aw. We choose A~ = 0.15P~,[17] where R~ is the end-to-end distance. Both 
surfaces interact with the monomer species via a short range potential H: { 4A,P~{I+~(~.)} 

A~ ; 0 < x < A w  

, 
Ao - Aw _< z _< Ao Aw 

H > 0 is attractive for the A monomers and repulsive for the B species. The normalization 
of the surface fields A1 and A2, which act on the monomers close to the left and the right 
surface, is chosen such that the integrated interaction energy between the surface and the 
monomers is independent of the width of the boundary region A~. 

A and B polymers contain N monomers and are structurally symmetric. The polymer 
conformations {ra(r)} determine the microscopic A monomer density 

N nA . 1  
= E ]o (r -  i A ( r )  P o :o  0 

where the sum runs over all nA A polymers in the system and 0 < r < 1 parameterizes 
the contour of the Gaussian polymer. A similar expression holds for iv( r ) .  With this 
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definition the semi-grandcanonical partition function takes the form: 

hA= 1 hA! riB! 

x exp ( - p  f d3r {X~bA~I3 - I ' I ( ~  A - ~B)}) (3) 

where n = nA +nB and A/~ represents the exchange potential between A and B poly- 
mers. The functional integral 7 ~ sums over all conformations of the polymers with the ( , ,  statistical weight exp -2-~/R, f0 dr  ~ of a non-interacting Gaussian polymer. The 

second factor enforces the monomer density profile to comply with Eq.(1) (incompressibil- 
ity). The Boltzmann factor in the partition function incorporates the thermal repulsion 
between unlike monomers, which is described by the Flory-Huggins parameter X, and the 
interactions between monomers and surfaces. 

In mean field approximation the free energy is obtained as the extremum of the semi- 
grandcanonical free energy functional: 

G _ + i n  n if nkBT ~00 - In Q + ~ d3r x N ~ A c ~ B  - -  HN {~A -- ~B} 

1 
f dSr (WAC~A -[" WBC~B} -~- E {(I} 0 -- OA -- OB} (4) 

V 

with respect to its arguments WA, WB,/I~A, On, E. QA denotes the single chain partition 
function: 

~A[WA] = ~ f ~l[r]~l[ l ' ]  e -  f~ d,'r WA(r(,)) (5) 

and similarly for Qs; Q = exp(Al~/2ksT)Qa + exp(--Al~/2kBT)Qz. 
The values of WA, WB, ~a, @s, ~ which extremize the free energy functional are denoted 

by lower-case letters and satisfy the self-consistent set of equations 

V DQA 
WA(r) = xNq~B(r) -- H(r )N + ~(r) and ~bA(r) ---- Q ~DwA(r) (6) 

• 0(r) = ~bA(r) + ~B(r), and similar expressions for wB and ~B. Substituting the extremal 
values of the densities and fields into the free energy functional (4) we calculate the 
free energy G of the different phases. At coexistence the two phases have equal semi- 
grandcanonieal potential. 

To calculate the monomer density we employ the end segment distribution which sat- 
isfies a diffusion equation. We expand the spatial dependence of the densities and fields 
in a set of orthonormal functions.[16,17] This procedure results in a set of non-linear 
equations which are solved by a Newton-Raphson-like method. We use up to 80 basis 
functions and achieve a relative accuracy 10 -4 in the free energy. 

The phase diagram in a thin film (A0 = 0.9P~) with antisymmetrie surface fields of 
various strengths is presented in Fig.1. For weak surface fields we find a second-order 
interface loealization/deloealization transition.[13] 
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Close to the critical point of the hulk enrichment layers form gradually at each surface 
and stabilize an interface in the center of the film. The films remains laterally homoge- 
neous in this "soft-mode" phase. Only below the second order transition the interface is 
localized at one wall and A-rich and B-rich domains coexist laterally. Upon increasing 
the monomer-wall interaction strength the transition temperature shifts to lower values. 

0.5 

0.4 

0.3 
Z 

0.2 

0.1 

0 

(a) 

e .  • 

i , i , i , 

012 0.4 0.6 0.8 

O.G 

0.4 

0.3 

0.2 

0.1 

(b) 

- - .  A N ~ . ' I ' ~  

I~-  . . . . . . . . . . . . . . . . . . . .  - . . . . . . . .  • 

0 . . . .  , , , . • . 

• 4).1§ -0.10 --0.06 0,00 0.1~ 0.10 0.15 
~ T  

Figure 1. (a) Phase diagrams in a film with antisymmetric surface fields. The values of 
the surface fields AN are indicated in the key. For AN < 0.1425 we find a single critical 
point, while we find two critical points for larger surface fields. (a) displays the phase 
diagram in the temperature-composition plane, while (b) presents the coexistence curves 
Al~co~(XN). (For AN = 0.15 the two critical points are indistinguishable on the scale of 
panel (b)). From [13]. 

At large monomer-wall interaction the wetting transition is of first order and we observe 
also a first order interface localization/delocalization transition.[12,13] The prewetting 
coexistence slightly above the first order wetting transition temperature gives rise to 
two miscibility gaps in a film. At each wall a thin and a thick enrichment layer of the 
preferred component coexist. These coexistence regions terminate in two critical points 
which are the analogs of the prewetting critical points at each wall. When we decrease 
the temperature the miscibility gaps open and form a triple point at which an A-rich 
phase, a phase where the interface is delocalized in the middle of the film, and a B-rich 
phase coexist. Below the triple temperature an A-rich and a B-rich phase coexist. 

The two types of phase diagrams are separated by a tricritical interface localization/de- 
localization transition. For our model we find a tricritical transition at AN = 0.1425 and 
Ao = 0.9P~. When we increase the film width the tricritical strength of the surface inter- 
actions decreases. At tricriticality, there is only a single critical point, but the binodal8 
are characterized by an exponent ~ -- 1/4 in mean field approximation. 

Fig.lb presents the coexistence curves as a function of temperature and exchange po- 
tential. For a second order or a tricritical transition phase coexistence occurs at A/~ = 0 
due to the symmetry of the system with respect to exchanging A ~ B. For a first order 
transition the coexistence curve lays on the symmetry axis A/~ = 0 for low temperatures. 
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When the temperature rises, it bifurcates at the triple point; each continuation is the thin 
film analog of the prewetting line at the corresponding surface. Since the coexisting phases 
do not possess the symmetry of the Hamfltonian, A / ~  ~ 0. For short range monomer- 
wall interactions the prewetting-like curves deviate linearly from the bulk coexistence 
value[18] and terminate in critical points. 
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Figure 2. (a) Phase diagram for AN = 0.5 and various film thicknesses Ao. For Ao = 
2.6-Re and 0.9P~ the interface localization-delocalization transition is first order, A0 = 
0.605P~ corresponds to a tricritical transition, while the transition is second order for 
A0 = 0.5R~. (b) Phase diagram as a function of temperature and chemical potential,for 
the same parameters than in (a). From [12]. 

The interface localization/delocalization transition can also be changed from first to sec- 
ond order by decreasing the film thickness,[8,12-14,19] because the effective interactions 
between the interface and each wall interfere. The three minimum structure of the effec- 
tive interface potential close to the triple point changes to a single minimum as the film 
thickness becomes comparable to the range of the effective interaction between the inter- 
face and the wall. The film thickness dependence of the miscibility behavior is presented 
in Fig.2. For A0 < 0.6051~ the interface localization/delocalization transition is second 
order even though the wetting transition in the semi-infinite system is first order. 

Of course, surface interactions in experimental realizations are never strictly antisym- 
metric or symmetric and it is important which degree of asymmetry is permissible with- 
out loosing the qualitative features of the limiting cases. The phase diagram for non- 
symmetric boundary fields is discussed in Fig.3. The right walls attracts the A-component 
of the mixture and the surface fields lead to a first order wetting transition in the semi- 
infinite system. The monomer-wall interactions at the opposite wall are tuned from 
attracting A (symmetric boundaries, capillary condensation) to attracting B (antisym- 
metric boundaries, interface localization/delocalization).[ll] 

For symmetric boundaries the critical point is shifted to lower temperatures and higher 
concentration of the A speeies attracted by both surfaces. The coexistence value of the 
chemical potential A/&o~ is shifted to values disfavoring the A component and the shift 
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is roughly proportional to the inverse film widths (Kelvin equation). Above the wetting 
transition temperature an almost pure A-rich phase coexist with a B-rich phase. In the 
latter phase, there are thick enrichment layers of A at the walls and the B component 
prevails at the center of the film. When the temperature is lowered towards the wetting 
transition temperature Twet, the thickness of the enrichment layers rapidly decreases. This 
gives rise to a convex curvature of the B-rich binodal slightly above Twet. Below Twet the 
coexisting phases are almost pure , i.e., the enrichment layers in the B-rich phase are 
negligible and Apcoex is independent of temperature. 

0.5 

0.3 / .  .... 

0A 

0.0 
0.0 0.2 0.4 

(a) 

+0.0 

O.S 0.8 1.0 
$ 

0.5 

0.4 

0.3 

0.2 

0A 

0.0 

(b) 
-41.8 " -l).S -0.4 -0.2 0.0 0.2 

~ ' r  

Figure 3. (a) Binodals for A0 = 2.6P~ and AIN = 0.5. A2N varies as indicated in 
the key. The dashed curve shows the location of the critical points. Filled circles mark 
critical points, open circles/dashed horizontal lines denote three phase coexistence for 
A2N = -0.3675 and -0.5. The inset presents part of the phase boundary for antisym- 
metric boundaries. (b) Coexistence curves in the xN-A# plane. A2N varies according 
to the key. The "quasi-prewetting" lines for Ap < 0 and A2N = -0.3675 and -0.5 
are indistinguishable, because they are associated with the prewetting behaviour of the 
surface with interaction A1N = +0.5. From [11] 

As we reduce the preference of the left wall for the A component the system becomes 
more symmetric and the critical point shifts to more symmetrical composition and higher 
temperature (i.e., closer to the bulk critical point at x N  = 2 and ~b -- 1/2). If we 
make the left wall repulsive for the A component (attractive for the B-component) the 
character of the transition gradually changes from a bulk-like unmixing transition, where 
the composition of the two phases varies little spatially across the film but differs between 
the two phases, to a prewetting-like transition, where an interface runs parallel to the 
walls and the distance between the wall and the interface is the order parameter. As 
this change occurs the critical temperature (composition) passes through a maximum 
(minimum). Upon approaching the strictly antisymmetric limit the coexistence curve (at 
low temperatures) approaches the bulk value. When it intersects with the prewetting line 
of the left wall, which attracts the B--species, a second two phase region opens between a 
thin and a thick enrichment layer at the left wall. 
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3. M O N T E  C A R L O  S I M U L A T I O N S  

The self-consistent field calculations presented in the previous section neglect fluctua- 
tions. In a cylindrical pore, fluctuations destroy a true phase transition. In a thin film 
they change the universality class of the critical points from 3D Ising-like in the bulk 
to 2D Ising-like in a film. Moreover, there is an strong interplay between the wetting 
behavior of the semi-infinite system and the phase diagram of a film with antisymmetric 
boundaries and interface fluctuations (i.e., capillary waves) might modify the predictions 
of the mean field theory. 

Being interested in the universal features of the phase diagram we have investigated a 
coarse grained lattice model of a binary polymer blend[20] via Monte Carlo simulations. 
In the framework of the bond fluctuation model[21] each monomer occupies the corner 
of a unit cell of a simple cubic lattice from further occupation. Monomers along the 
polymer are connected via bonding vectors of length 2, v~, v/-6, 3 or 10 in units of the 
lattice spacing. Monomers interact through a square well potential which comprises the 
54 nearest sites on the lattice. A contact between like monomers lowers the energy of 
the system by an amount e (measured in units of ksT),  while a contact between different 
species increases the energy by the same amount. These interactions set a temperature 
scale and lead to a liqnid-liqnid phase separation at T = 1/ec = 69.3(3) in the bulk.[22] 
The parameter ~ is related to the Flory-Hnggins parameter via X = 2zc~, where zc = 
2.65 denotes the number of monomers of other chains in the range of the square well 
potential.J20] 

We work at a chain length N = 32 and monomer number density p = 1/16. The 
molecules end-to-end distance is Re ~ 17 in units of the lattice spacing. We study thin 
film of geometry L x L x A. Periodic boundary conditions are applied in the two lateral 
directions, while there are hard impenetrable walls a distance A apart. Monomers in the 
two layers nearest to the walls interact with the boundaries. An A-monomer close to the 
right wall decreases the energy by ew = 0.16, while a B-monomer increases the energy 
by the same amount. For symmetrical walls the interactions at the left wall are identical 
to the right wall; for antisymmetrical walls B-monomers are attracted by the left wall 
and A-monomers repelled. Using the Young equation we have determined the wetting 
transition temperature to Twet = 14.1(7).[23] The wetting transition occurs well inside the 
strong segregation limit and is of first order. 

We use the semi-grandcanonical ensemble, i.e., we fix the temperature and the exchange 
potential A# and monitor the composition ~b and its fluctuations. In addition to Monte 
Carlo moves which update the conformations of the polymers on the lattice (local hopping 
attempts and slithering-snake-like motions) we try to change the chain species A ~ B at 
fixed conformation. This semi-grandcanonical simulation scheme is employed in junction 
with reweighting methods as to encourage the system to sample all compositions with 
roughly equal probability. 

In the simulations we monitor the joint distribution of the composition, energy and 
monomer-wall interaction; and we use finite size scaling techniques and histogram re- 
weighting methods to locate the critical point. As an example Fig.4, presents the proba- 
bility distribution of the composition as a function of the film thickness in the vicinity of 
the tricritical point. The distribution shows a clear three peak structure. The tempera- 
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Figure 4. Probability distribution of the composition scaled to unit norm and variance 
for various film thickness A (Re = 17 in units of the lattice spacing) and temperatures as 
indicated in the key. The probability distribution of the 2D tricritical universality class 
is represented by circles. From [14] 

ture is adjusted such that the ratio of the heights of the central and outer peaks equals 
1.2. This value corresponds to the ratio of the distribution of the tricritical universality 
class. The latter quantity has been measured in simulations of the Blume-Capel model 
at its tricritical point.J24] To compare the distributions without adjustable parameter we 
scale them to unit norm and variance. For film thickness A _-- 14 ~-, 0.82P~ the shape of 
the distribution matches closely the universal function and this holds also true for larger 
systems. For A < 0.82Re we find a second order interface localization/delocalization 
transition, while there is a first order transition for A > 0.82~.  

The probability distribution of the composition yields information about the interaction 
g(l) between the walls and the interface. Since the wetting transition occurs in the strong 
segregation limit, the coexisting phases in the bulk are almost pure ~ k  x ~, 0 or 1 and 
"bulk"-like composition fluctuations can be neglected. Hence, the distance l between the 
wall and the interface is given by l = A~ and the effective interface potential g(1) can be 
measured in the Monte Carlo simulations according to g(l) = - k B T / L  2 In P(~), where 
P(~) denotes the probability distribution of the composition. 

The result for the effective interface potential g(l) in the vicinity of the triple point is 
presented in Fig.5. The three minima correspond to the A-rich phase, the phase with the 
delocalized interface, and the B-rich phase. Unlike the situation at the tricritical point 
the position of the minima does not depend on the lateral system size. However, the 
effective interface potential does depend on L; the minima broaden upon increasing the 
lateral system size L and the free energy of the delocalized state decreases with respect to 
the localized ones. The dependence of g(l) on the lateral system size gives rather direct 
evidence for a renormalization of the effective interface potential by interface fluctuao 
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Figure 5. Dependence of the effective interface potential g(l)/ksT on the lateral film 
extension L for A = 48 ~ 2.8P~ and ~ = 0.069. The inset presents an enlarged view on 
the minimum of the localized state. From [14] 

tions[25,26] in the framework of a microscopic model. The interface in the simulations is 
not ideally flat, but there are long wavelength fluctuations of the local interface position 
(i.e., capillary waves). Since the interface is not unconstraint, the interface potential im- 
parts a parallel correlation length onto the capillary waves. ~1[ "~ ~c~-/d2@ • This parallel 
correlation length is larger in the delocalized state than in the localized one. For the pa- 
rameters of the simulation the lateral system size and the parallel correlation lengths are 
of the same order of magnitude. For lateral distances smaller than ~[I the local position 
fluctuates like a free interface, for lateral distance that exceed ~ll interface fluctuations are 
strongly suppressed.J27] In the simulations the lateral system size L also cuts off interface 
fluctuations when L < ~11.[28] Interface fluctuations reduce the free energy of the system 
and the minima corresponding to the delocalized state benefits more from an increase 
of the lateral system size. This rationalized qualitatively the effect observed in Fig.5 
and quantitative description shall be presented elsewhere.[14] The effect is important for 
accurately locating the triple temperature. 

The phase diagramR for A ~ 2.8R~, as revealed by Monte Carlo simulations in Fig.6, 
confirm the qualitative predictions of the self-consistent field calculations. For symmetric 
boundary conditions there is a small shift of the critical point to lower temperatures and 
higher concentration of the A species preferred by the walls. The "bulge" of the A-poor 
binodal is a consequence of the vicinity of the prewetting critical point.[23] If the film 
thickness were larger the coexistence value Apc~x would be smaller (Kelvin equation) 
and the coexistence curve would intersect the prewetting line. In this case there would 
be a two phase coexistence region also in the case of symmetric boundaries.[23,29] In 
the antisymmetric case the phase diagram comprises two critical points - the analogs of 
the prewetting critical points at each surface. The concomitant miscibility gaps joint to 
form a triple point ultimately above the temperature of the first order wetting transition 
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potential and temperature (b) for film thickness A48 ~ 2.8Re. From [14] 

temperature of the semi-infinite system. Unlike the mean field predictions, however, the 
shape of the binodals is much flatter reflecting the 2D Ising behavior close to the critical 
points. 

4. DISCUSSION 

We have calculated the phase diagram of a symmetric polymer mixture confined into 
a thin film in mean field approximation and by Monte Carlo simulations. The mean field 
calculations reveal a rich interplay between the phase behavior in confined geometry and 
the wetting behavior of the semi-infinite system and the general features of the phase 
behavior are confirmed by our Monte Carlo results. However, fluctuations result in two 
modifications of the mean field results: (i) In the vicinity of the critical point we observe 
2D Ising critical behavior with much flatter binodals than the parabolic binodals of the 
mean field universality class. (ii) The effective interface potential is renormalized by 
capillary waves. This leads, e.g., to a systematic overestimation of the triple temperature 
by the mean field treatment. 

Qualitatively the interplay between the prewetting behavior and the phase diagram in 
a film with antisymmetric boundaries is not specific to polymer blends but is rather char- 
acteristic of all binary mixtures. We expect, however, polymer mixtures, be particularly 
suitable model systems for exploring these effects experimentally. 

If we measure the incompatibility of the species/temperature by x N  and the length 
scale in units of the end-to-end distance Re = by/N, the typical scale of the free energy 
in a volume R~ is given by v/~, where where the reduced chain length _K r = (pR3e/N) 2 
measures the degree of interdigitation. 

The importance of fluctuations close to the critical point can be gauged by the Ginzburg 
criterium. For binary polymer blends one finds that fluctuations are important in the 
range I1 - x c N / x N  I << Gi with Ginzburg number Gi ,,~ 1/N. The importance of interface 
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fluctuations can be described by the capillary parameter[30,31] 

kBTA 2 1 2 kBTv~ 
= = ( 7 )  

where 1/A denotes the characteristic length of the interface potential and a is the interface 
tension. AP~ and aR~/vl~ksT are functions of xN only. Upon increasing the degree of 
interdigitation fi/, the capillary parameter w ~ 1 /v /~  decreases. 

In the limit of long chains (or strong interdigitation) these fluctuation effects are sup- 
pressed and the self-consistent field theory is believed to describe the confined blend 
quantitatively appropriately. For the bond fluctuation model N -- 32 corresponds to 
fir ~ 91 and this chain length of our coarse grained model corresponds roughly to 100-150 
repeat units of a real polymer. Since fluctuations do not alter the qualitative mean field 
scenario for the rather short chains investigated by Monte Carlo simulations, we expect 
this afortiori for experimental systems. Furthermore the wetting transition in binary 
polymer mixtures occurs far below the critical point. Bulk-like composition fluctuations 
are only of minor importance; the systems are well describable via effective interface 
Hamiltonians and the effect of interface fluctuations is clearly observable. Additionally, 
the size of the enrichment layers is set by R¢ and, hence, is much larger than in atomic 
liquids. Sophisticated profiling techniques (e.g., nuclear reaction analysis, neutron reflec- 
tometry or secondary ion mass spectrometry) are available to accurately determine the 
thickness of wetting layers in experiments. 

Indeed, experiments on polymer mixtures were the first to investigate fluctuation effects 
in the delocalized state[32,33] and the wetting transition in polymer blends has been 
observed experimentally.[34,35] Our results imply, for instance, that ultrathin enrichment 
layers with a thickness l ~. Re~5 be unstable in the temperature range Tw~ < T < T p ~ t .  
Such instabilities slightly above Tw~ have been observed for compressible one-component 
polymer films.[36] 

Of course, both the self-consistent field calculations and the Monte Carlo simulations 
deal with highly idealized models. The effect of architectural asymmetry between the 
constituents of the mixture or the role of long-range van der Waals interactions between 
the monomers and the surfaces has not be considered. 
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