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Canonical sphere bundles of the Grassmann manifold.

E. Andruchow, E. Chiumiento and G. Larotonda

Abstract

For a given Hilbert space H, consider the space of self-adjoint projections P(H). In this
paper we study the differentiable structure of a canonical sphere bundle over P(H) given by

R = { (P, f) ∈ P(H)×H : Pf = f, ‖f‖ = 1 }.

We establish the smooth action onR of the group of unitary operators ofH, thereforeR is an
homogeneous space. Then we study the metric structure of R by endowing it first with the
uniform quotient metric, which is a Finsler metric, and we establish minimality results for
the geodesics. These are given by certain one-parameter groups of unitary operators, pushed
into R by the natural action of the unitary group. Then we study the restricted bundle R+

2

given by considering only the projections in the restricted Grassmannian, locally modelled by
Hilbert-Schmidt operators. Therefore we endow R+

2
with a natural Riemannian metric that

can be obtained by declaring that the action of the group is a Riemannian submersion. We
study the Levi-Civita connection of this metric and establish a Hopf-Rinow theorem for R+

2 ,
again obtaining a characterization of the geodesics as the image of certain one-parameter
groups with special speeds. 1

1 Introduction

Let H be a complex Hilbert space, B(H) the algebra of bounded operators and P(H) the set of
all orthogonal projections on H. Throughout, we identify P(H) with the Grassmann manifold
of H (i.e. the set consisting of all closed subspaces of H). In this paper, we study the differential
and metric structure of the following set

R = { (P, f) ∈ P(H) ×H : Pf = f, ‖f‖ = 1 },

which is the total space of the canonical sphere bundle given by πR : R → P(H), πR(P, f) = P.
Clearly, the unitary group U(H) acts on R:

U · (P, f) = (UPU∗, Uf), U ∈ U(H), (P, f) ∈ R.

As we shall see below, the connected components of R turn out to be a smooth homogeneous
spaces of U(H). Thus, the present work can be seen as a contribution to the geometry of infinite
dimensional homogeneous spaces arising in operator theory and operator algebras, which has
been a subject of study in different settings, for instance Grassmann manifolds [1, 6, 9, 16, 21],
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Stiefel manifolds [4, 8] and orbits of selfadjoint operators [2, 7]. Also abstract homogeneous
spaces are considered in [3, 11, 18]; for more examples and a detailed account we refer to the
book [5]. On the other hand, the definition of the bundle (πR,R,P(H)) is motivated from
classical concepts in topology. Canonical bundles over finite dimensional Grassmann manifolds
played a fundamental role in classification problems of vector bundles [19], meanwhile results on
classification of sphere bundles goes back to the works [24, 25].

The contents of this paper are as follows. In Section 2 we show that the connected com-
ponents of R coincide with orbits given by the action defined above. This is indeed a direct
consequence of the following fact: given (P0, f0) ∈ R, the map

ρ(P0,f0) : U(H) → R, ρ(P0,f0)(U) = (UP0U
∗, Uf0)

has continuous local cross sections. In Section 3 we also use this result to prove that each orbit
is a smooth homogeneous space of U(H) and a submanifold of B(H) × H. The latter means
that the quotient topology in R coincides with the topology inherited from B(H)×H, and that
tangent spaces, which can be described as

(TR)(P0,f0) = { (XP0 − P0X,Xf0) : X = −X∗ ∈ B(H), },

are closed and complemented in B(H)×H. Section 4 contains the results on the metric geometry
of R. As a homogeneous space, the natural way to endow each component of R is to push down
a metric from U(H). If we consider in U(H) the Finsler metric defined by using the operator
norm ‖ · ‖, then the Finsler metric on R is given as follows: for (XP0−P0X,Xf0) ∈ (TR)(P0,f0),

‖(XP0 − P0X,Xf0)‖(P0,f0) := inf{ ‖X + Y ‖ : Y = −Y ∗, Y P0 = P0Y, Y f0 = 0 }.

This is the quotient norm in (TR)(P0,f0) ≃ Bah(H)/g, where Bah(H) is the space of anti-
Hermitian operators and g is the Lie algebra of the isotropy group. Indeed, note that Y = −Y ∗,
Y P0 = P0Y and Y f0 = 0 if and only if Y ∈ g. We show that the quotient norm is always
attained, or in the terminology of [11], there exists a minimal lifting for each tangent vector.
To prove this, we observe that the quotient norm can be interpreted as a two-step best approx-
imation problem using 3× 3 block operator matrices. In the first step, we use Krein’s extension
theorem (see [17, 23, 10]).

The Finsler metric defined in R allows us to measure the length of curves. If γ : [0, 1] → R
is a piecewise smooth curve, then its length is given by

L(γ) =

∫ 1

0
‖γ̇(t)‖γ(t) dt.

We prove that the initial value problem has a solution: given (P0, f0) ∈ R and a tangent vector
(XP0 − P0X,Xf0) ∈ (TR)(P0,f0), there exists X∗

0 = −X0 such that the curve

δ(t) = etX0 · (P0, f0) = (etX0P0e
−tX0 , etX0f0)

satisfies δ(0) = (P0, f0), δ̇(0) = (XP0−P0X,Xf0) and δ(t) has minimal length in some interval.
This problem was already solved in [21] for the Grassmann manifold P(H), where the quotient
Finsler metric coincides with the metric given by the usual operator norm. Remarkably, it was
also solved for smooth homogeneous spaces which are the quotient of the unitary group of a von
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Neumann algebra by the unitary group of a sub-algebra [11]. Although our homogeneous space
does not fit in this category, our proof is adapted from that work.

Section 5 is devoted to the Riemannian geometry of the canonical sphere bundle of the
restricted (or Sato) Grassmannian [1, 6, 20]. The total space of this bundle is

R+
2 = {(P, f) ∈ R : P ∈ P2

+(H)},

where P2
+(H) is the connected component containing a fixed projection P+ in the restricted

Grassmannian. The group U2(H) of unitaries which are Hilbert-Schmidt perturbations of the
identity acts transitively on P2

+(H). We observe that R+
2 is also acted upon transitively by

U2(H), and has structure of smooth homogeneous space of U2(H). It is a submanifold of B2(H)×
H, where B2(H) denotes the Hilbert-Schmidt operators on H. We endow R+

2 with two different
Riemannian metrics: the ambient metric and the reductive (or quotient) metric. These metrics
are shown to be equivalent and complete. The geodesics of the reductive metric are computed.
Any geodesic is minimal up to a critical time value (which is characterized). The main result in
this section establishes an estimate of the geodesic radius, which is at least π/4 (points of R+

2

at distance less than π/4 are joined by a unique minimal geodesic).

2 Transitivity and local cross sections for the action

Given P0 ∈ P(H), we define

RP0 = {(P, f) ∈ R : P is unitary equivalent to P0}.

It is well known that P is unitary equivalent to P0 if and only if dimR(P0) = dimR(P ) and
dimN(P0) = dimN(P ).

Proposition 2.1. Let P0 ∈ P(H). The action of U(H) on RP0 is transitive. If f0 ∈ R(P0),
then the map

ρ(P0,f0) : U(H) → RP0 , ρ(P0,f0)(U) = (UP0U
∗, Uf0)

has continuous local cross sections.

Proof. Let f0 ∈ R(P0) with ‖f0‖ = 1, and (P, f) ∈ RP0 . There exists U ∈ U(H) such that
UP0U

∗ = P . Then U∗f and f0 belong to the unit sphere of R(P0). Then there exists a unitary
operator V0 in U(R(P0)) such that V0f0 = U∗f . V0 can be extended to a unitary operator V
in H, defining it as the identity on R(P0)

⊥. Note that V commutes with P0. Then W = UV
satisfies

Wf0 = UV f0 = UV0f0 = UU∗f = f and WP0W
∗ = UV P0V

∗U∗ = UP0U
∗ = P.

The same procedure provides continuous local cross sections for ρ(P0,f0). Consider the open
subset of P(H):

{P ∈ P(H) : ‖P − P0‖ < 1}.
It is well known that if ‖P − P0‖ < 1 then there exists µP0(P ) a unitary operator which is
continuous (and smooth) in the parameter P , such that

µP0(P0) = 1 and µP0(P )P0µ
∗
P0
(P ) = P.
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Then one has that the following set

B(P0,f0) = {(P, f) ∈ R : ‖P − P0‖ < 1 and ‖µP0(P )∗f − f0‖ < 2}

is a open subset of R (and of RP0). Moreover, for any pair of unit vectors ξ, η in an arbitrary
Hilbert space H, satisfying that ‖ξ−η‖ < 2, there exists νξ,η ∈ U(H), which is a continuous and
smooth map in terms of ξ and η, such that νξ,ηξ = η. Explicit formulas for ν can be obtained in
several ways. For instance, if x, y, z ∈ H, and (x⊗ y)(z) = 〈z, y〉x denotes the elementary rank
one operator, we use ν = νξ,η the unitary operator given by rotation in the plane generated by
ξ, η

ν = 1 + (c− 1)ξ ⊗ ξ + (c− 1)ξ′ ⊗ ξ′ + s(ξ′ ⊗ ξ − ξ ⊗ ξ′) =





c s 0
−s c 0
0 0 1



 ,

where c = 〈η, ξ〉, s =
√

1− |c|2 > 0 (assuming ‖ξ − η‖ < 2), and ξ′ = 1
s (η − cξ).

If (P, f) ∈ B(P0,f0), then f0 and µP0(P )∗f are unit vectors in R(P0). Let V(P0,f0)(P, f) be the

unitary operator which acts as νf0,µP0
(P )∗f on R(P0) and as the identity in R(P0)

⊥. Then

σ(P0,f0) : B(P0,f0) → U(H), σ(P0,f0)(P, f) = µP0(P )V(P0,f0)(P, f)

is a continuous local cross section for ρ(P0,f0).

Corollary 2.2. The connected components of R are RP0 , P0 ∈ P(H), where two projections P0

and P1 define the same component if and only if they are unitarily equivalent.

3 Regular structure

Let us prove that R is a C∞ differentiable manifold, and that the map πR is a C∞ fibre bundle.
In order to establish this assertion, the following lemma will be useful (see [22]).

Lemma 3.1. Let G be a Banach-Lie group acting smoothly on a Banach space X. For a fixed
x0 ∈ X, denote by ρx0 : G → X the smooth map ρx0(g) = g · x0. Suppose that

1. ρx0 is an open mapping, regarded as a map from G onto the orbit {g · x0 : g ∈ G} of x0
(with the relative topology of X).

2. The differential d(ρx0)1 : (TG)1 → X splits: its nullspace and range are closed comple-
mented subspaces.

Then the orbit {g · x0 : g ∈ G} is a smooth (analytic) submanifold of X, and the map

ρx0 : G → {g · x0 : g ∈ G}

is a smooth submersion.

Denote by Bah(H) = {X ∈ B(H) : X∗ = −X}, the space of anti-Hermitian operators, which
is the Banach-Lie algebra of U(H), and let Bh(H) = {X ∈ B(H) : X∗ = X} be the space of
selfadjoint (or Hermitian) operators.
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Proposition 3.2. R is a C∞ submanifold of B(H)×H. For any (P0, f0) ∈ R, the map

ρ(P0,f0) : U(H) → RP0

is a C∞-submersion, and in fact all manifolds and maps are real analytic.

Proof. By Proposition 2.1, ρ = ρ(P0,f0) has a local continuous cross section σ such that
σ((P0, f0)) = 1, and ρ ◦ σ = idV where V ⊂ RP0 is an open neighbouhood of (P0, f0). Let
Z ⊂ U(H) be an open neighbourhood of 1, note that ρ−1(ρ(Z)) = ZK where K is the isotropy
group of ρ. Therefore

ρ(Z) = σ−1ρ−1ρ(Z) = σ−1(ZK)

is open in RP0 since the section σ is continuous and ZK = ∪k∈KZk is open in U(H). This
proves that ρ is locally open around 1 ∈ U(H); by the transitivity of the action of ρ in RP0 , it
follows that ρ : U(H) → RP0 is an open mapping.

Now by elementary computations, δ(P0,f0) = d(ρ(P0,f0))1 : Bah(H) → B(H)×H is given by

δ(P0,f0)(X) = (XP0 − P0X,Xf0).

The nullspace of δ(P0,f0) consists of anti-Hermitian operators X which commute with P0 and
satisfyXf0 = 0. Since f0 ∈ R(P0), this set consists of 2×2 matrices in terms of the decomposition
H = R(P0)⊕N(P0) which are of the form

X =

(

X11 0
0 X22

)

,

with Xii anti-Hermitian and X11f0 = 0. Furthermore, X11 can be written as a matrix in terms
of the decomposition R(P0) =< f0 > ⊕ < f0 >

⊥,

X11 =











0 0 0 . . .
0 x′11 x′12 . . .
0 x′21 x′22 . . .
...

...
...

. . .











=

(

0 0
0 X ′

)

,

where X ′ is an anti-Hermitian operator acting in R(P0)⊖ < f0 >. A natural supplement for the
nullspace δ(P0,f0), as matrices in the decomposition

H =< f0 > ⊕(R(P0)⊖ < f0 >)⊕N(P0)

is the set of matrices of the form






it ~f

− ~̄f t 0
Y

−Y ∗ 0






, (1)

with t ∈ R.
The range of δ(P0,f0) is given by

(TR)(P0,f0) = { (XP0 − P0X,Xf0) : X = −X∗ } ⊆ Bh(H)×H.
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To prove that this subspace is complemented in B(H) × H, it is sufficient to prove that it is
complemented in Bh(H)×H. This can be done using the projection E : Bh(H)×H → Bh(H)×H
defined by

E((X,h)) = (P⊥
0 XP0 + P0XP⊥

0 , iIm < h, f0 > f0 + (P0 − (f0 ⊗ f0))h+ P⊥
0 Xf0). (2)

Clearly, E is continuous, linear, and it is not difficult to check that E2 = E and

E((XP0 − P0X,Xf0)) = (XP0 − P0X,Xf0)

for any anti-Hermitian operator X. Let us prove that the range of E is contained in (TR)(P0,f0).
Given X = X∗, h ∈ H, we have to construct an operator Y = −Y ∗ such that E((X,h)) =
((Y P0−P0Y, Y f0)). First we use the following fact: given vectors f, g in a Hilbert space L, with
‖f‖ = 1 there is an operator z ∈ Bah(L) such that zf = g if and only if < g, f >= − < f, g >.
In this case, the operator z can be taken as

z = g ⊗ f+ < f, g > f ⊗ f − f ⊗ g.

Using this fact with f = f0 and g = iIm < h, f0 > f0 + (P0 − (f0 ⊗ f0))h, we have an operator
z ∈ Bah(R(P0)) satisfying zf0 = iIm < h, f0 > f0 + (P0 − (f0 ⊗ f0))h. Now suppose that the
matrix of X with respect to P0 is

X =

(

x11 x12
x∗12 x22

)

,

then take

Y =

(

z −x12
x∗12 0

)

.

It follows that Y P0 − P0Y = P⊥
0 XP0 + P0XP⊥

0 , and

Y f0 = P0Y P0f0 + P⊥
0 Y P0f0 = zf0 + P⊥

0 Xf0

= iIm < h, f0 > f0 + (P0 − (f0 ⊗ f0))h + P⊥
0 Xf0.

This proves that E is a projection with range (TR)(P0,f0).

Remark 3.3. The range of δ(P0,f0) consists of pairs (XP0−P0X,Xf0), the left hand part of this

pair is a selfadjoint operator which is co-diagonal with respect to P0, P0ZP0 = P⊥
0 ZP⊥

0 = 0.
It is easy to see that any selfadjoint operator with this property is of the form [X,P0] for some
X∗ = −X. Indeed, the conditions are equivalent to Z = ZP0+P0Z as seen from the computation

Z = ZP0+(P⊥
0 +P0)ZP⊥

0 = ZP0+P⊥
0 ZP⊥

0 +P0ZP⊥
0 = ZP0+0+P0Z−P0ZP0 = ZP0+P0Z.

Therefore if we take X = ZP0−P0Z = [Z,P0], then clearlyX∗ = −X and [X,P0] = ZP0+P0Z =
Z as claimed. Note that X is not unique, it can be modified by adding to it any skew-adjoint
operator commuting with P0.

Proposition 3.4. The map

πR : R → P(H), πR(P, f) = P

is a locally trivial fibre bundle.
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Proof. Fix (P0, f0) ∈ R, and consider the open subsets

V(P0,f0) = {(P, f) :∈ R : ‖P − P0‖ < 1} and VP0 = {P ∈ P(H) : ‖P − P0‖ < 1}

and the map
V(P0,f0) → VP0 × S(R(P0)), (P, f) 7→ (P, µ∗

P0
(P )f),

where µP0 is the U(H)-valued map defined in the proof of Proposition 2.1. Clearly µ∗
P0
(P )f ∈

R(P0), and therefore this map is well defined, with inverse (P, h) 7→ (P, µP0(P )h), which is a
local trivialization of the map πR.

4 The quotient metric in R
In [11] Durán, Mata-Lorenzo and Recht presented a program to study homogeneous spaces which
are quotients of the unitary group of a C∗-algebra by the unitary group of a sub-C∗-algebra.
This program does not apply exactly to the homogeneous space R, since the isotropy subalgebra
of U(H) is not the unitary group of a C∗-algebra. Nevertheless, the main ideas of their approach
apply in our context with minor modifications.

Durán, Mata-Lorenzo and Recht start with a natural idea: since R is a quotient, the tangent
space (TR)(P0,f0) identifies with the quotient

(TR)(P0,f0) ≃ Bah(H)/ ker δ(P0,f0) = Bah(H)/{X ∈ Bah(H) : [X,P0] = 0,Xf0 = 0}.

This is a quotient of Banach spaces, so one endows it with the quotient norm: if V ∈ (TR)(P0,f0)

|V |(P0,f0) = inf{‖X‖ : X ∈ Bah(H), δ(P0,f0)(X) = V }. (3)

The elements X in Bah(H) such that δ(P0,f0)(X) = V , will be called liftings of V ∈ (TR)(P0,f0).
Let us define minimal liftings:

Definition 4.1. Let V ∈ (TR)(P0,f0). A lifting X0 of V is called a minimal lifting if it achieves
the quotient norm, i.e.

‖X0‖ = inf{‖X‖ : X is a lifting of V } = |V |(P0,f0).

It can be proved that minimal liftings exist for any tangent vector. We shall postpone the
proof of this fact, before let us further characterize minimal liftings.

Given a vector V ∈ (TR)(P0,f0), by the form of the kernel of δ(P0,f0) described in Section 3,
it is clear that different liftings of V have the following common form:

X∗ =





ix0 ~x
−~̄xt ∗ A

−A∗ ∗∗



 , (4)

where x0 ∈ R, and ∗ and ∗∗ are to be filled with anti-Hermitian operators in R(P0)⊖ < f0 >
and N(P0), respectively. Therefore the problem of finding a minimal lifting consists in filling the
spots ∗ and ∗∗ in order that the completed matrix has the least possible norm. This problem has
certain resemblance to M.G. Krein’s extension problem (see [17], [23, p. 336] or [10]). In fact,
as it will be shown next, it can be tackled using this method. In our context, Krein’s extension
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problem consists in completing the ∗ spot in the matrix operator (in terms of the decomposition
H = R(P0)⊕N(P0))

(

B A
−A∗ ∗

)

in order that the matrix has the least possible norm. We shall divide our quest into two steps.

1. First fill the space ∗ in the first row of X∗:

(

ix0 ~x
~̄xt ∗ A

)

(5)

with ∗ = Y0, in order that the row has the least possible norm.

2. Next, fill the ∗∗ spot in the matrix





ix0 ~x
−~̄xt Y0

A

−A∗ ∗∗



 (6)

Proposition 4.2. Suppose that Y0 and Z0 are operators acting respectively in R(P0)⊖ < f0 >
and N(P0), where Y0 optimizes the norm of the row (5), and Z0 optimizes the norm of the
matrix (6). Then

X0 =





ix0 ~x
−~̄xt Y0

A

−A∗ Z0



 (7)

is a minimal lifting. Any minimal lifting can be obtained in this fashion.

Proof. By hypothesis, for any anti-Hermitian operator Y in R(P0)⊖ < f0 >, one has that

∥

∥

∥

∥

(

ix0 ~x
~̄xt Y0

A

)∥

∥

∥

∥

≤
∥

∥

∥

∥

(

ix0 ~x
~̄xt Y

A

)∥

∥

∥

∥

.

Since Z0 is a solution of Krein’s extension problem, for our optimal choice of Z0 we have

∥

∥

∥

∥

∥

∥





ix0 ~x
−~̄xt Y0

A

−A∗ Z0





∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

(

ix0 ~x
~̄xt Y0

A

)∥

∥

∥

∥

.

On the other hand, for any block matrix operator, the norm of the first row is less or equal than
the norm of the full matrix:

∥

∥

∥

∥

(

ix0 ~x
~̄xt Y

A

)∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

∥





ix0 ~x
−~̄xt Y

A

−A∗ Z





∥

∥

∥

∥

∥

∥

,

for any anti-Hermitian operator Z in N(P0), which proves our first assertion.
Let X1 be a minimal lifting,





ix0 ~x
−~̄xt Y1

A

−A∗ Z1



 .
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Then, if Y0 and Z0 are obtained as above

∥

∥

∥

∥

(

ix0 ~x
~̄xt Y1

A

)∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

∥





ix0 ~x
−~̄xt Y1

A

−A∗ Z1





∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥





ix0 ~x
−~̄xt Y0

A

−A∗ Z0





∥

∥

∥

∥

∥

∥

.

This last norm equals
∥

∥

∥

∥

(

ix0 ~x
~̄xt Y0

A

)∥

∥

∥

∥

.

From these inequalities it follows that also Y1 minimizes the norm of the first row, and therefore
also Z1 is a solution of Krein’s extension problem for the matrix





ix0 ~x
−~̄xt Y1

A

−A∗ ∗∗



 .

Therefore to obtain minimal liftings, it suffices to solve the first row problem (5). Let us show
that solutions to this problem always exist.

Proposition 4.3. There exists an anti-Hermitian operator Y0 in R(P0)⊖ < f0 > such that

∥

∥

∥

∥

(

ix0 ~x
~̄xt Y0

A

)∥

∥

∥

∥

≤
∥

∥

∥

∥

(

ix0 ~x
~̄xt Y

A

)∥

∥

∥

∥

for any other anti-Hermitian operator Y in R(P0)⊖ < f0 >.

Proof. Denote by ι the infimum of all possible completions of the first row matrix (5). Let Yn

be a minimizing sequence of anti-Hermitian operators in R(P0)⊖ < f0 >:

∥

∥

∥

∥

(

ix0 ~x
~̄xt Yn

A

)∥

∥

∥

∥

→ ι.

Note that

‖Yn‖ ≤
∥

∥

∥

∥

(

ix0 ~x
~̄xt Yn

A

)∥

∥

∥

∥

.

Therefore the sequence Yn is norm bounded, and therefore it has a weak operator convergent
subsequence Ynk

, < Ynk
ξ, η >→< Y0ξ, η >. Clearly Y0 is anti-Hermitian. We claim that Y0

is a solution to the problem. Indeed, for any ǫ > 0, there exists a unit vector ξǫ such that
| < Y0ξǫ, ξǫ > | ≥ ‖Y0‖ − ǫ. Then

‖Ynk
‖ ≥ | < Ynk

ξǫ, ξǫ > | → | < Y0ξǫ, ξǫ > | ≥ ‖Y0‖ − ǫ.

Then ι ≥ ‖Y0‖ − ǫ for any ǫ, and thus ι = ‖Y0‖.

The following result is again adapted from [11], with minor modifications which allow to
treat the case when the isotropy group of the unitary action is an arbitrary Banach-Lie group
(and not the unitary group of a sub-C∗-algebra).
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Proposition 4.4. Let X0 be a lifting of V ∈ (TR)(P0,f0). Then X0 is a minimal lifting if and
only if there exists a representation π of B(H) on a Hilbert space L, and a unit vector ξ ∈ L
such that

1. π(X2
0 )ξ = −‖X0‖2ξ

2. Re < π(X0)ξ, π(B)ξ >= 0, for all B ∈ ker δ(P0,f0).

Proof. Suppose first that conditions 1. and 2. hold. Then for any B ∈ ker δ(P0,f0),

‖X0+B‖2 ≥ ‖π(X0+B)ξ‖2 = ‖π(X0)ξ‖2+‖π(B)ξ‖2 ≥ ‖π(X0)ξ‖2 = − < π(X2
0 )ξ, ξ >= ‖X0‖2.

Conversely, suppose that X0 is a minimal lifting. Let S be the real subspace of Bh(H) spanned
by X2

0 + ‖X0‖21 and the operators of the form BX0 + X0B, for B ∈ ker δ(P0,f0) (note that
since B and X0 are anti-Hermitian, these operators are indeed selfadjoint). We claim that the
minimality condition of X0, implies that

S ∩Gl(H)+ = ∅.

Suppose that this intersection is non empty, i.e. there exists s ∈ R and b ∈ ker δ(P0,f0) such that

s(X2
0 + ‖X0‖21) +BX0 +X0B ≥ r1

for some r > 0. We may suppose s > 0, otherwise add (1 − s)(X2
0 + ‖X0‖2) to the above

inequality. Dividing by s we get

X2
0 + ‖X0‖21 +BX0 +X0B ≥ r1 (8)

for some (other) B ∈ ker δ(P0,f0) and r > 0. In particular this implies that

X2
0 +BX0 +X0B ≥ (r − ‖X0‖2)1,

and therefore the spectrum of X2
0 +BX0 +X0B satisfies

σ(X2
0 +BX0 +X0B) ⊂ (−‖X0‖2,+∞).

Also, for n ≥ 1,

n(X2
0 + ‖X0‖21) +BX0 +X0B ≥ X2

0 + ‖X0‖21 +BX0 +X0B ≥ r1

and thus

X2
0 + ‖X0‖21 +

B

n
X0 +X0

B

n
≥ r

n
1.

Since X2
0 + B

nX0 +X0
B
n → X2

0 , by the semi-continuity of the spectrum, given the open neigh-
bourhood (−∞, ‖X0‖2) of X2

0 (recall that X0 ≤ 0), there exists n0 such that for n ≥ n0

σ

(

X2
0 +

B

n
X0 +X0

B

n

)

⊂ (−∞, ‖X0‖2).

In particular, there exists B ∈ ker δ(P0,f0) of arbitrary small norm such that

σ(X2
0 +BX0 +X0B) ⊂ (−‖X0‖2, ‖X0‖2),

i.e. ‖X2
0 + BX0 +X0B‖ < ‖X0‖2. We claim that this inequality contradicts the minimality of

X0. Indeed, this follows from the following result:
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Lemma 4.5. If ‖X0 + B‖ ≥ ‖X0‖ for all B ∈ ker δ(B0,f0), then ‖X2
0 + BX0 +X0B‖ ≥ ‖X0‖2

for all B ∈ ker δ(B0,f0).

Proof. Consider for t ∈ (0, 1) the function

g(t) = −X2
0 +

1

t
{(X0 + tB)∗(X0 + tB) +X2

0}.

We claim that ‖g(t)‖ ≥ ‖X0‖2. Otherwise, the convex combination

tg(t) + (1− t)(−X2
0 )

would have norm strictly less than ‖X0‖2. Note that this convex combination equals (X0 +
tB)∗(X0 + tB). Thus we would have ‖X0‖2 > ‖(X0 + tB)∗(X0 + tB)‖ = ‖X0 + tB‖2, which
contradicts the minimality of X0. Then

‖ −X2
0 −X0B −BX0 − tB‖ ≥ ‖X0‖2

for all t ∈ (0, 1). If t → 0 this yields

‖X2
0 +X0B +BX0‖ ≥ ‖X0‖2,

which proves the lemma.

Our claim follows: S ∩ GL(H)+ = ∅. Gl(H)+ is a convex open subset of Bh(H), S is
a subspace of Bh(H). Therefore, by the Hahn-Banach theorem there exists a (real) linear
functional ϕ0 in Bh(H) such that

ϕ0(S) = 0 and ϕ0(Gl(H)+) > 0.

This functional extends to a complex linear functional ϕ defined in B(H). The fact that
ϕ(Gl+(H)) > 0 implies that ϕ is positive and bounded. We may normalize it so that it has
norm 1. Consider π the Gelfand-Naimark-Segal representation induced by ϕ, with cyclic vector
ξ. Let us prove that π and ξ satisfy the conditions in the statement of the proposition. Since ϕ
is zero at the generators of S,

ϕ(X2
0 + ‖X0‖2) = 0, i.e. ϕ(X0)

2 = −‖X0‖2

and
ϕ(X0B +BX0) = 0.

The first condition means that < π(X2
0 )ξ, ξ >= −‖X0‖2. Thus one has equality in the Cauchy-

Schwarz inequality

‖X0‖2 =< π(X2
0 )ξ, ξ >= | < π(X2

0 )ξ, ξ > | ≤ ‖π(X2
0 )‖‖ξ‖2 ≤ ‖X0‖2.

Then π(X2
0 )ξ is a multiple of ξ, and thus π(X2

0 )ξ = −‖X0‖ξ. The second condition

0 = ϕ(X0B +BX0) = ϕ(X0B) + ϕ((X0B)∗) = ϕ(X0B) + ϕ(X0B),

i.e.
0 = Reϕ(X0B) = Re < π(X0B)ξ, ξ >= −Re < π(B)ξ, π(X0)ξ > .

Considering iB ∈ ker δ(P0,f0), one also gets that Im < π(B)ξ, π(X0)ξ >= 0, which finishes the
proof.
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Theorem 4.6. Let V ∈ (TR)(P0,f0) with |V |(P0,f0) = 1. Let X0 be a minimal lifting of V . Then
the curve

δ(t) = etX0 · (P0, f0) = (etX0P0e
−tX0 , etX0f0)

has minimal length along its path for |t| ≤ π/2.

Proof. Following Durán, Mata Lorenzo, and Recht [11], we shall construct a smooth map from
R, in fact, from the connected component of (P0, f0) in R to the unit sphere of an appropriate
Hilbert space. Let π0 and ξ0 be the cyclic representation and the cyclic vector in the Hilbert
space H0 obtained by means of Proposition 4.4. Denote by δ̄0 the natural extension of δ(P0,f0),
which is defined in Bah(H), to the whole B(H), namely: δ̄0(A) = (AP0 − P0A,Af0). Consider
the closed subspace

S0 = {π0(A)ξ0 : A ∈ ker δ̄0} ⊂ H0.

and the symmetry ρ0 acting in H0, which equals the identity in S0 and minus the identity in
S⊥
0 . Let W be in the isotropy group I(P0,f0). Then π0(W ) commutes with ρ0, indeed, it leaves

S0 invariant
π0(W )π0(A)ξ0 = π0(WA)ξ0 ∈ S0,

because WA ∈ ker δ̄0. Consider the map, defined in the connected component R0 of (P0, f0)
in R, to the set of symmetries of H0 (denoted appropriately in [11] the Grassmann manifold
Gr(H0) of H0),

F0 : R0 → Gr(H0), F0(U · (P0, f0)) = π0(U)ρ0π0(U)∗.

F0 is well defined: if U1 · (P0, f0) = U2 · (P0, f0), then U∗
2U1 ∈ I(P0,f0). Then

π0(U
∗
2U1)ρ0 = ρ0π0(U

∗
2U1), i.e. π0(U1)ρ0π0(U1)

∗ = π0(U2)ρ0π0(U2)
∗.

Also F0 is smooth: because of the manifold structure of R0 is final with respect to the smooth
submersion ρ = ρ(P0,f0) (Proposition 3.2) it suffices to check that

(F ◦ ρ)(U) = π0(U)ρ0π0(U)∗

is smooth. This is apparent since π0 is bounded and linear, the product and the adjoint are
smooth in B(H0), and Gr(H0) is an embedded submanifold of B(H0).

There is a natural map from Gr(H0) to the unit sphere S(H0), by means of ξ0,

Π0 : Gr(H0) → S(H0), Π0(ρ) = ρξ0.

The proof of the theorem proceeds with the following syllogism:

1. The maps 1
2F0 and Π0 are length reducing.

2. The composition Π0F0 exactly doubles the length of δ (i.e. length of Π0F0δ is 2 times the
length of δ), and Π0F0δ is a minimal geodesic of S(H0).

3. Therefore, δ has minimal length along its path, provided that |t| ≤ π/2.

Let us check these steps.

Step 1: Since Π0 is the restriction of a linear map, if ρ(t) is a curve in Gr(H0) with ρ(0) = ρ
and ρ̇(0) = X

d(Π0)ρ(X) =
d

dt

∣

∣

∣

∣

t=0

Π0(ρ(t)) = Xξ0,
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and thus ‖d(Π0)ρ(X)‖ = ‖Xξ0‖ ≤ ‖X‖. On the other hand, let γ(t) = U(t)·(P0, f0) be a smooth
curve in R, with γ(0) = (P, f) = U · (P0, f0), γ̇(0) = (X, v) = V . Denote u(t) = π0(U(t)) and
u = π0(U). Then

d

dt

∣

∣

∣

∣

t=0

F0(γ(t)) =
d

dt

∣

∣

∣

∣

t=0

u(t)ρ0u
∗(t) = u̇(0)ρ0u

∗ +uρ0u̇
∗(0) = u{u∗u̇(0)ρ0 + ρ0u̇

∗(0)u}u∗. (9)

Since 0 = ˙u∗u = u̇∗u+ u∗u̇, and thus u̇∗u = −u∗u̇, (9) equals

u{u∗u̇ρ0 − ρ0u
∗u̇}u∗,

whose norm equals
‖u{u∗u̇ρ0 − ρ0u

∗u̇}u∗‖ = ‖u∗u̇ρ0 − ρ0u
∗u̇‖.

Since ρ0 = 2PS0 − 1,
u∗u̇ρ0 − ρ0u

∗u̇ = [u∗u̇, ρ0] = 2[u∗u̇, PS0 ],

and therefore this commutant is a co-diagonal matrix with respect to the decomposition H0 =
S0 ⊕ S⊥

0 . Then its norm equals the norm of the first column u∗u̇PS0 . Thus,

‖d(F0)(P,f)(V )‖ = 2‖[u∗u̇, PS0 ]‖ = 2‖u∗u̇PS0‖ ≤ 2‖u∗u̇(0)‖ = 2‖π0(U∗U̇(0))‖ ≤ 2‖U̇ (0)‖.

On the other hand, (UP0U
∗, Uf0) = γ(0) = (P, f) and

V = γ̇(0) = (U̇ (0)P0U
∗ + UP0U̇

∗(0), U̇ (0)f0) = (U̇(0)U∗P + PUU̇∗(0), U̇ (0)U∗f).

Again using that UU̇∗(0) = −U̇(0)U∗, one has that

V = (U̇(0)U∗P − PU̇(0)U∗, U̇(0)U∗f) = δ(P,f)(U̇(0)U∗),

i.e. U̇(0)U∗ ∈ Bah(H) is a lifting for V ∈ (TR)(P,f).
We claim that any lifting Z of V is obtained in this fashion. Indeed, if δ(P,f)(Z) = (ZP −

PZ,Zf) = V , consider U(t) = etZ and γ(t) = U(t) · (P, f) ∈ R. Clearly U(0) · (P, f) = (P, f)
and U̇(0)U∗ = Z.

It follows from this claim and inequality (9) that

‖d(F0)(P,f)(V )‖ ≤ 2‖Z‖

for any lifting Z of V . Then
‖d(F0)(P,f)(V )‖ ≤ 2|V |(P,f).

Step 2: Clearly, we have ‖d(Π0F0)Π0F0(P,f)(X)‖ ≤ 2|V |(P,f). Let us compute the image of

δ(t) = etX0 · (P0, f0) under Π0F0:

Π0F0(δ(t)) = π0(e
tX0)ρ0π0(e

−tX0)ξ0 = etπ0(X0)ρ0e
−tπ0(X0)ξ0.

Note that since π0(X
2
0 )ξ0 = −‖X0‖2ξ0, we have

π0(X0)
2nξ0 = ‖X0‖2nξ0 and π0(X0)

2n+1ξ0 = (−1)n‖X0‖2nπ0(X0)ξ0
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for n ≥ 0. Then e−tπ0(X0)ξ0 = cos(t‖X0‖)ξ0 − 1
‖X0‖

sin(t‖X0‖)π0(X0)ξ0. Note that since <

π(X0)ξ0, π0(A)ξ0 >= 0 for any A ∈ ker δ̄0, one has that π0(X0)ξ0 ∈ S⊥
0 (whereas ξ0 ∈ S0). Then

ρ0ξ0 = ξ0 and ρ0πo(X0)ξ0 = −π0(X0)ξo. Thus

ρ0e
−tπ0(X0)ξ0 = cos(t‖X0‖)ξ0 +

1

‖X0‖
sin(t‖X0‖)π0(X0)ξ0 = etπ0(X0)ξ0,

and

Π0F0δ(t) = etπ0(X0)ρ0e
−tπ0(X0)ξ0 = e2tπ0(X0)ξ0 = cos(2t‖X0‖)ξ0 +

1

‖X0‖
sin(2t‖X0‖)π0(X0)ξ0,

which is a minimal geodesic of S(H0), up to |2t| ≤ π, i.e. |t| ≤ π/2. Finally, the length of Π0F0δ
is 2‖π0(X0)ξ0‖ = 2‖X0‖, by the properties of π0 and ξ0 established in the previous lemma. The
proof finishes comparing the lengths of the images in the unit sphere (using the mapping Π0F0)
of δ on any subinterval of [−π/2, π/2] and any other curve in R joining the same endpoints.

Remark 4.7. Let us examine particular directions in R, and compute minimal liftings (and
thus minimal geodesics).

1. Let V = (0, g) ∈ (TR)(P0,f0). Then P0g = g, and < f0, g >∈ iR. Also note that

Xg = g ⊗ f0 − f0 ⊗ g+ < f0, g > f0 ⊗ f0

satisfies X∗
g = −Xg and Xgf0 = g. Since g ∈ R(P0), Xg commutes with P0:

XgP0 = g ⊗ P0f0 − f0 ⊗ P0g+ < f0, g > f0 ⊗ P0f0 = Xg = P0Xg.

Thus, Xg is a lifting of V , i.e. δ(P0,f0)(Xg) = ([Xg, P0],Xgf0) = (0, g) = V . To find
minimal liftings, use the vector f0 as the first vector of an orthonormal basis {fi}αi=0 of
R(P0), where α = dimR(P0) ∈ [1,∞]. Note that if e, e′ ∈ H are orthogonal to f0, then
< Xge, e

′ >= 0. Thus, if g =
∑α

i=0 gifi, then the matrix of Xg in the decomposition
H = (< f0 > ⊕(R(P0)⊖ < f0 >))⊕N(P0) is

Xg =















ig0 −ḡ1 −ḡ2 . . .
g1 0 0 . . .
g2 0 0 . . .
...

...
...

. . .

0

0 0















with g0 ∈ R. Since the 1, 2, 2, 1 and 2, 2 block entries are zero, the second step stated in
(6) has the trivial solution, so it remains to solve the best approximation problem in (5).
According to [10, Corol. 1.3] all the solutions of this problem can be parametrized as

YZ = ig0T + ‖g‖(1 − T )1/2Z(I − T )1/2,

where Z is any anti-Hermitian operator and

T =
(

‖g‖2 − |g0|2
)−1







g1
g2
...







(

ḡ1 ḡ2 . . .
)

.
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We thus get that

XZ =















ig0 −ḡ1 −ḡ2 . . .
g1
g2 YZ
...

0

0 0















is a minimal lifting of V . Next note that the minimal curve δZ(t) = etXZf0 remains inside
the unit sphere of R(P0):

δZ(t) = (etXZP0e
−tXZ , etXZf0) = (P0, e

tXZf0).

If Z = 0, then the minimal lifting X0 may be expressed as

X0 = γ0 ⊗ f0 − f0 ⊗ γ0 + ig0(f0 ⊗ f0 + e⊗ e),

where e = γ0/‖γ0‖. Since X1 = γ0 ⊗ f0 − f0 ⊗ γ0 and X2 = ig0(f0 ⊗ f0 + e⊗ e) commute,
a straightforward computation shows that

δ0(t) = (P0, e
tX0f0) = (P0, e

tX1etX2f0)

= (P0, e
itg0etX1f0) = (P0, e

itg0(cos(t‖γ0‖)f0 + sin(t‖γ0‖)e)).

Clearly, this curve is a geodesic in the unit sphere if and only if g0 = 0. Therefore our
metric, given by minimal liftings, does not induce the usual metric when restricted to the
sphere.

2. Let V = (Z, 0) ∈ (TR)(P0,f0). Then Zf0 = f0, with Z∗ = Z P0-codiagonal. Consider
XZ = ZP0 − P0Z. Then clearly X∗

Z = −XZ and XZf0 = ZP0f0 − P0Zf0 = f0 − f0 = 0.
Moreover,

XZP0 − P0XZ = (ZP0 − P0Z)P0 − P0(ZP0 − P0Z) = ZP0 − 2P0ZP0 + P0Z = Z,

because Z is P0-codiagobal. Thus δ(P0,f0)(XZ) = (Z, 0) = V . Also it is clear that XZ is
a minimal lifting: it is codiagonal. Its norm coincides with the norm of Z. Finally, since
XZf0 = 0, the geodesic δ(t) = etXZf0 is

δ(t) = (etXZP0e
−tXZ , f0),

where the first coordinate of the pair is a minimal geodesic of P(H) (alas a special one,
which leaves the unit vector f0 ∈ R(P0) fixed).

5 The restricted sphere bundle

In this section we shall consider the restricted version of the canonical bundle by using the
restricted Grassmann manifold induced by a (fixed) decomposition H = H+ ⊕ H−. Denote
by P+ the orthogonal projection onto H+, and by P− the projection onto H−. The restricted
Grassmann manifold is the space

P+
2 (H) = {P ∈ P(H) : P − P+ ∈ B2(H), j(P+, P ) = 0 },
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where B2(H) denotes the ideal of Hilbert-Schmidt operators and j(P+, P ) is the index of the
pair of projections (P+, P ) defined by j(P+, P ) = index(PP+ : R(P+) → R(P )). It should be
said that this space P+

2 (H) is in fact the zero index component of the restricted Grassmannian,
or the component containing P+. In [1] the geodesic structure of P+

2 (H) was studied.
P+
2 (H) is a Hilbert-Riemann manifold, its tangent spaces are naturally embedded in B2(H)h,

the (real) Hilbert space of Hermitian Hilbert-Schmidt operators, endowed with the usual trace.
The group U2(H) = {U ∈ U(H) : U − 1 ∈ B2(H)} acts transitively on P+

2 (H). The restricted
version R2

+ of the space R is the set

R+
2 = { (P, f) ∈ R : P ∈ P2

+(H) }.

With the same proof as in Proposition 3.2, restricting the action and the local sections, we obtain
that R+

2 is an embeded, smooth (real analytic) submanifold of the Hilbert space B2(H)h × H,
and the action is transitive.

Thus (TR+
2 )(P0,f0) has a natural inner product and Riemannian metric,

〈(X, f), (Y, g)〉 = Tr(XY ) +Re < f, g >, (10)

that we shall call the ambient metric.
It is apparent that the tangent space (TR+

2 )(P0,f0) at a given (P0, f0) is

(TR+
2 )(P0,f0) = {(ZP0 − P0Z,Zf0) : Z ∈ B2(H), Z∗ = −Z}

= {(X, f) ∈ B2(H)h ×H : X is P0 − codiagonal and Re < f, f0 >= 0}
⊂ B2(H)h ×H.

It will be useful to compute explicitly the orthogonal projection

Π = Π(P0,f0) : B2(H)h ×H → (TR+
2 )(P0,Q0) ⊂ B2(H)h ×H.

In the proof of Propostion 3.2, we otained the formula (2) of the projection E , defined in B(H)×H
onto the tangent space of the whole space R at (P0, f0). Namely

E(X, f) = (P⊥
0 XP0 + P0XP⊥

0 , iIm < h, f0 > f0 + (P0 − (f0 ⊗ f0))h + P⊥
0 Xf0).

It is apparent that if X ∈ B2(H)h, then E(X, f) belongs to the tangent space of the restricted
version R+

2 , and thus E is a projection onto (TR+
2 )(P0,f0). However E is not orthogonal. To

compute the orthogonal projection Π we shall use the following known fact (see [14, Theorem
1.3]):

Π = E(E + E∗ − 1)−1.

Proposition 5.1.

Π(X, f) = (Π1(X, f),Π2(X, f)) (11)

where

Π1(X, f) = P⊥
0 XP0+P0XP⊥

0 +
1

3
f0⊗P⊥

0 f +
1

3
P⊥
0 f ⊗f0−

1

3
f0⊗f0XP⊥

0 − 1

3
P⊥
0 Xf0⊗f0, (12)

and

Π2(X, f) = iIm < f, f0 > f0 + (P0 − f0 ⊗ f0)f +
2

3
P⊥
0 Xf0 +

1

3
P⊥
0 f. (13)

Proof. Straightforwrd verification.
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5.1 Levi-Civita connection of the ambient metric

From now on, for (P0, f0) ∈ R+
2 , let us denote by Π(P0,f0) the projection Π defined in (11),(12),

(13). We endow R+
2 with the Hilbert-Riemann metric given by the usual trace and real part of

the inner product of H:

Definition 5.2. Let (X, f), (Y, g) ∈ (TR+
2 )(P0,f0). Then we define

〈(X, f), (Y, g)〉(P0 ,f0) = Tr(XY ) +Re < f, g > .

Remark 5.3. Let (P, f) ∈ R+
2 and U ∈ U2(H). Then

ΠU ·(P,f)(X, g) = Π(P,f)(U
∗XU,U∗g).

This can be verified by means of routine computations, involving elementary facts, such as
UP⊥

0 U∗ = (UPU∗)⊥, U(f ⊗ f)U∗ = Uf ⊗ Uf , etc.

Given (P0, f0) ∈ R+
2 , we still denote by ρ(P0,f0) the restriction of the former map ρ(P0,f0) to

the group U2(H), and by δ(P0,f0) its differential at the identity,

δ(P0,f0) : B2(H)ah → T (R+
2 )(P0,f0) ⊂ B2(H)h ×H, δ(P0,f0)(Z) = (ZP0 − P0Z,Zf0),

where B2(H)ah denotes the space of anti-Hermitian Hilbert-Schmidt operators. The description
of the nullspace of δ(P0,f0) done in the proof of Propostion 3.2, is valid in this context, assuming
that the elements lie in B2(H)ah. Namely, X ∈ N(δ(P0,f0)) if X ∈ B2(H), and it is of the form

X =

(

X11 0
0 X22

)

with Xii anti-Hermitian and X11f0 = 0, and X11 can be written as a matrix in terms of the
decomposition R(P0) =< f0 > ⊕ < f0 >

⊥,

X11 =











0 0 0 . . .
0 x′11 x′12 . . .
0 x′21 x′22 . . .
...

...
...

. . .











=

(

0 0
0 X ′

)

,

where X ′ is an anti-Hermitian Hilbert-Schmidt operator acting in R(P0)⊖ < f0 >. The in-
tersection of B2(H) with the supplement found in Propostion 3.2, presented as matrices in the
decomposition

H =< f0 > ⊕(R(P0)⊖ < f0 >)⊕N(P0)

which are the elements of the form




it ~g
−~̄gt 0

Y

−Y ∗ 0



 =





it g Y1

−ḡt 0 Y2

−Y ∗
1 −Y ∗

2 0



 , (14)

with t ∈ R. Denote this set of matrices by H(P0,f0). A straigthforward computation shows that
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Proposition 5.4. The space H(P0,Q0) is the orthogonal complement for N(δ(P0,f0)), for the trace
inner product in B2(H)ah.

Since the metric is defined by means of a metric in the ambient space, the covariant derivative
consists of differentiating in the ambient space and projecting onto the tangent spaces. Therefore
a curve δ is a geodesic if it satisfies the equation

Πδ(t)(δ̈) = 0

for all t.

Remark 5.5. Let Z ∈ B2(H)ah. Then γ(t) = etZ · (P0, f0) is a geodesic of the connection if and
only if

Π(P0,f0)(Z
2P0 − 2ZP0Z + P0Z

2, Z2f0) = 0.

Indeed, γ̈(t) = (etZ{Z2P0−2ZP0Z+P0Z
2}e−tZ , etZZ2f0) = etZ ·(Z2P0−2ZP0Z+P0Z

2, Z2f0),
and thus, using Remark 5.3,

Πγ(t)(γ̈(t)) = ΠetZ ·(P0,f0)(e
tZ · (Z2P0 − 2ZP0Z + P0Z

2, Z2f0))

= Π(P0,f0)(Z
2P0 − 2ZP0Z + P0Z

2, Z2f0).

If one takes Z to be P0-codiagonal (and thus in H(P0,f0)), such that f0 is not an eignevector for
Z2, then γ is not a geodesic.

5.2 Reductive connection

We shall consider another natural linear connection in R+
2 , induced by the decomposition of the

Banach-Lie algebra B2(H) of U2(H), induced by (P0, f0) ∈ R+
2 : B2(H)ah = N(δ(P0,f0))⊕H(P0,f0).

Let us denote by I2(P0, f0) the isotropy group of the restricted action

I2(P0, f0) = {V ∈ U2(H) : V · (P0, f0) = (P0, f0)}.

Note that if V ∈ I2(P0, f0), then Ad(V )(N(δ(P0,f0)) = N(δ(P0,f0)). Indeed, let Y ∈ N(δ(P0,f0)),
then Y P0 = P0Y and Y f0 = 0. Since V ∈ I2(P0, f0), V P0 = P0V and V f0 = f0 (thus,
V ∗f0 = f0). Then V Y V ∗ also commutes with P0 and V Y V ∗f0 = V Y f0 = 0. On the other
hand, Ad(V ) is an orthogonal transformation of B2(H) (endowed with the (real part of the)
trace inner product). Therefore Ad(V ) leaves H(P0,f0) (= N(δ(P0,f0))

⊥) invariant.
Let us prove that the distribution

R+
2 ∋ (P0, f0) 7→ H(P0,f0) ⊂ B2(H)ah

is smooth. In other words, if we denote by P(P0,f0) the ReTr-orthogonal projection onto H(P0,f0),
we must prove that the mapping

R+
2 ∋ (P0, f0) 7→ P(P0,f0) ∈ BR(B2(H)ah)

is smooth, where BR(B2(H)ah) denotes the Banach space of real linear bounded operators acting
in B2(H)ah (endowed with the Hilbert-Schmidt norm).
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Lemma 5.6. Let Q = P⊥
(P0,f0)

= 1B2(H)ah −P(P0,f0). Then

Q(X) = P0XP0 + P⊥
0 XP⊥

0 + f0 ⊗ f0Xf0 ⊗ f0 − f0 ⊗ f0XP0 − P0Xf0 ⊗ f0.

In particular, the mapping R+
2 → BR(B2(H)ah), (P0, f0) 7→ P(P0,f0) is smooth.

Proof. Since f0 ∈ R(P0), clearly Q(X) commutes with P0. Also it is clear that if X anti-
Hermitian and Hilbert-Schmidt, then so is Q(X). Finally, note that Q(X)f0 = 0. With this
formula, it is clear that the map (P0, f0) 7→ P(P0,f0) is smooth.

These facts imply:

Corollary 5.7. The distribution of supplements R+
2 ∋ (P, f) 7→ H(P,f) defines a reductive

structure in R+
2 (as a U2(H)-homogeneous space).

Remark 5.8. For (P0, f0) ∈ R+
2 , we will denote

δ0 = δ(P0,f0) = (ρ(P0,f0))∗1,

then the map δ0|H(P0,f0)
: H(P0,f0) → (TR+

2 )(P0,f0) is a linear isomorphism. Let us denote by
κ(P0,f0) its inverse. The distribution (P, f) 7→ κ(P,f) is usually called the 1-form of the reductive
structre, and is used to define the invariants of the linear connection.

Accordingly, we define a Hilbert-Riemann metric which is coherent with this structure: we
postulate that the 1-form to be isometric. That is,

Definition 5.9. If (X, g) ∈ (TR+
2 )(P0,f0), then

|(X, g)|2r,(P0 ,f0)
= −Tr

(

(κ(P0,f0)(X, g))2
)

,

i.e., |(X, g)|r,(P0 ,f0) = ‖Z‖2, where Z ∈ H(P0,f0) is the unique element such that δ(P0,f0)(Z) =
(X, g).

Note that we endowed R+
2 with the quotient metric, giving it the Riemannian metric such

that the map ρ0 = ρ(P0,f0) : U2(H) → R+
2 is a Riemannian submersion. That is, ρ0 is a smooth

submersion such that for any U ∈ U2(H), if (P, f) = ρ(U), then δ = δ(P,f) is an isometry between

H(P,f) and (TR+
2 )(P,f).

Remark 5.10. The metric defined above in Defintion 5.9 coincides with the quotient metric,
as defined in (3), if one replaces the operator norm by the Hilbert-Schmidt norm.

If V ∈ (TR+
2 )(P,f), then κ(P,f)(V ) ∈ H(P,f) is its unique horizontal lift ; and if X is a smooth

vector field in R+
2 then Xh = κ ◦ X : u 7→ κρ(u)(Xρ(u)) is a smooth vector field in U2(H), the

horizontal lift of X. For obvious reasons N(δ), the kernel of δ = ρ∗ is also known as the vertical
space, and vectors in that kernel are named vertical vectors.

Remark 5.11. It is apparent from the definition of quotient metric that if V = δ0(Z) =
(ZP0 − P0Z,Zf0) ∈ (TR+

2 )(P0,f0) with Z a horizontal vector described as in (14), then

‖X‖2q = ‖Z‖2 = Tr





t2 + g · gt + Y1Y
∗
1 . . . . . .

. . . gt · g + Y2Y
∗
2 . . .

. . . . . . Y1Y
∗
1 + Y2Y

∗
2





= t2 + 2‖g‖2 + 2‖Y1‖22 + 2‖Y2‖22.
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On the other hand, if we endow R+
2 with the ambient metric of Definition 5.2, we obtain

‖X‖2a = ‖δ(Z)‖22 = ‖ZP0 − P0Z‖2 + ‖Zf0‖2

=

∥

∥

∥

∥

∥

∥





0 0 Y1

0 0 Y2

Y ∗
1 Y ∗

2 0





∥

∥

∥

∥

∥

∥

2

2

+ ‖(it g Y1)‖2

= Tr





Y1Y
∗
1 . . . . . .

. . . Y2Y
∗
2 . . .

. . . . . . Y ∗
1 Y1 + Y ∗

2 Y2



+ t2 + ‖g‖2 + ‖Y1‖2

= t2 + ‖g‖2 + 3‖Y1‖22 + 2‖Y2‖22.

Therefore
1√
2
‖X‖q ≤ ‖X‖a ≤

√

3

2
‖X‖q

which makes both Riemannian metrics equivalent (the inequalities are sharp). Consequently, if
d denotes the Riemannian distance given by taking the infima of the lengths of paths joining
given endpoints, both distances are equivalent with constants

1√
2
dq(x, y) ≤ da(x, y) ≤

√

3

2
dq(x, y) (15)

for all x, y ∈ R+
2 .

Corollary 5.12. The distance induced by the Levi-Civita connection of the quotient metric
induces in R+

2 the same ambient topology of its embedding in the Hilbert space B2(H)h ×H.

Proof. Combine the equivalence of distances of the previous remark, with the fact that R+
2 is

an embedded submanifold, and use that the Riemannian distance gives the manifold topology
[15, Proposition 6.1].

We collect below some known results we will use on Riemannian submersions:

Theorem 5.13. Let ρ : (U, g0) → (R, g) be a Riemannian submersion, let X,Y be smooth vector
fields in (R, g). Then

1. If Z0 is a smooth vertical field in (U, g0), then

[X,Y ]v := [Xh, Y h]− [X,Y ]h and [Xh, Z0]

are smooth vertical vector fields in (U, g0) (here [·, ·] denotes the usual Lie bracket of smooth
vector fields).

2. If ∇0 is the Levi-Civita connection of (U, g0) and ∇ is the Levi-Civita connection of (R, g),
then

(∇XY )ρ(u) = δ(∇0
XhY

h)

where δ = ρ∗ and moreover

∇0
XhY

h = (∇XY )h +
1

2
[X,Y ]v.
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3. Let Γ be a geodesic of (U, g0), with Γ′(0) horizontal, then Γ′(t) is horizontal for all t in the
domain of Γ, and γ = ρ(Γ) is a geodesic of (R, g) of the same length of Γ. Conversely, if
γ is a geodesic of (R, g) with γ(0) = ρ(u), there exists a unique horizontal lift Γ of γ such
that Γ(0) = u and Γ is a geodesic of (U, g0).

4. The exponential maps are thus related by ExpR(v) = ρ ◦ expU (vh).

5. If (U, g0) is complete (resp. geodesically complete) then (R, g) is complete (resp. geodesi-
cally complete).

6. If X,Y are orthonormal, the sectional curvatures are related by O’Neill’s formula.

KR(X,Y ) = KU (Xh, Y h) +
3

4
‖[X,Y ]v‖2.

7. In particular, if R = U/I is a quotient of Lie groups and the metric g0 on U is bi-invariant,
then geodesics of (R, g) are given by ρ(etZ) where Z is an horizontal vector, and sectional
curvature is positive and given by

KR(v,w) =
1

4
‖[v,w]h‖2 + ‖[v,w]v‖2,

if v,w ∈ (TR)ρ(1) and now [·, ·] denotes the usual Lie algebra bracket.

Proof. See for instance [12] Lemma 3.54, Proposition 3.55, Proposition 2.109, Theorem 3.61,
Theorem 3.65.

Remark 5.14. If Z(t) is a tangent field along a curve γ(t) ∈ R+
2 , the covariant derivative Dγ̇Z

can be computed using the formula in the second item above, and the formula for the covariant
derivative in the unitary group

(∇0
XY )u = DYu(Xu) +

1

2
[XuY

∗
u u+ uY ∗

uXu] .

Combining these formulas, we obtain

Dγ̇Z = δγ

(

d

dt
κγ(Z)− 1

2
[κγ(γ̇)κγ(Z) + κγ(Z)κγ(γ̇)]

)

.

Remark 5.15. Since the geodesics of the unitary group are the one-parameter groups t 7→ etZ ,
it follows from the fourth item above that geodesics or R+

2 are exactly the image through ρ of
the one-parameter groups with horizontal speed, i.e. Dγ̇ γ̇ = 0 and γ(0) = (P, f) if and only if
γ(t) = ρ(etZ) with Z ∈ H(P,f)

The exponential map of R+
2 with the quotient metric is then given by

Exp(V ) = Exp(P0,f0)(V ) = ρ(eκ(P0,f0)
V ),

or equivalently, if V = (ZP0 − P0Z,Zf0) for horizontal Z, then

Exp : V = (ZP0 − P0Z,Zf0) 7→ (eZP0e
−Z , eZf0). (16)

Since δ0 = δ|H(P0,f0)
: H(P0,f0) → (R+

2 )(P0,f0) is an isometric isomorphism, we can equivalently

study the map E = Exp ◦ κ = ρ ◦ exp : H(P0,f0) → R+
2 , that is

E : Z 7→ (eZP0e
−Z , eZf0) = ρ(eZ). (17)
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If exp∗Z(W ) denotes the differential at Z of the Lie-group exponential, eZ =
∑

n≥1
1
n!Z

n,
evaluated in W , then it is well-known that

exp∗Z(W ) = eZ(F (adZ)W ) =

∫ 1

0
e(1−s)ZWesZds = (G(adZ)W )eZ .

Here F,G : C → C denote the entire functions F (λ) = 1−e−λ

λ , F (λ) = eλ−1
λ , note that G(−λ) =

−F (λ). Therefore

E∗Z(W ) = (eZ(F (adZ)W )P0e
−Z + eZP0(G(−adZ)W )e−Z , eZ(F (adZ)W )f0),

and thus

e−Z · E∗Z(W ) = ((F (adZ)W )P0 − P0(F (adZ)W ), (F (adZ)W )f0) = δ0(T (W )) (18)

where we denote T = TZ = F (adZ) : B2(H)ah → B2(H)ah for short. Note that T it is a bounded
linear operator.

Remark 5.16. Since the roots of F are located at {λ = 2kπi, k ∈ Z 6= 0}, and ‖adZ‖ ≤ 2‖Z‖,
it is well-know that as long as ‖Z‖ < π, T is an invertible operator. In what follows we need
to refine this remark to obtain better control on the range of T acting on H. Consider the real
even function

g(t) =
sin(t)

t
+

cos(t)− 1

t2
,

extended as g(0) = 1/2 to make it continuous. Then the first root of g will be denoted by r0 > 0,
a straightforward computation indicates that π

2 < r0 <
2π
3 and g is strictly decreasing in (0, r0)

(and increasing in (−r0, 0) by symmetry).

Lemma 5.17. For each Z ∈ H(P0,f0), let T = F (adZ). Then T is a normal contraction acting
on B2(H)ah, and moreover if ‖Z‖ < r0

2 , then ‖T − 1‖ < 1.

Proof. From the definition of adZ(W ) = ZW −WZ and the trace inner product in the Hilbert
space B2(H)ah, it follows that adZ is anti-Hermitian for any anti-Hermitian Z. Therefore T =
F (adZ) is a normal operator; it is a contraction because

‖T‖ = ‖F (adZ)‖ = ‖
∫ 1

0
es adZds‖ ≤

∫ 1

0
‖es adZ‖ds ≤ 1.

Here, since s adZ is anti-Hermitian, es adZ is unitary. Now since T is normal, its norm can be
computed using its spectral radius, and for it ∈ σ(Z) we obtain

|F (it)− 1|2 = |1− e−it

it
− 1|2 = 1

t2
|1− e−it − it|2 = 1

t2
|1− cos t+ i(sin t− t)|2

=
1

t2
(1 + cos2 t− 2 cos t+ sin2 t+ t2 − 2t sin t)

= 1 + 2(
1− cos t

t2
− sin t

t
) = 1− 2g(t). (19)

This tells us that ‖F (adZ) − 1‖ < 1 when |t| < r0. If ‖Z‖ < r0/2 then ‖adZ‖ < r0, then
σ(adZ) ⊂ (−ir0, ir0) and the conclusion of the lemma follows.
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Corollary 5.18. Let (P, f) = U · (P0, f0) ∈ R+
2 , let Exp(P, f) : (TR+

2 )(P,f) → R+
2 be the

Riemannian exponential of the quotient metric, given by

Exp(P,f)(V ) = ρ(P,f)(e
κ(P,f)V ).

Then its differential is an isomorphism in the ball of radius r0/2 around 0 ∈ (TR+
2 )(P,f).

Proof. Since the action of the unitary group is an isometric isomorphism of the Riemannian
manifold R+

2 , it will suffice to prove the assertion for (P0, f0). Since δ0 is an isometric iso-
morphism, it will be more convenient to prove this assertion of the simplified exponential map
E : H(P0,f0) → R+

2 ⊂ B2(H)×H given by equation (17). We have to show that the differential
of E is invertible in a certain ball; since the action of the unitary group is isometric, it suffices to
prove that the map given in (18) is an isomorphism for V = (X, g) = δ0(Z) = (ZP0 −P0Z,Zf0)
if ‖V ‖q = ‖Z‖ < r0/2 (here Z is the unique horizontal lift of V ).

In what follows we denote H = H(P0,f0) and P = P(P0,f0) (the orthogonal projection onto the
horizontal space H), Let A = TP+ (1−P) which is a bounded operator acting on the Hilbert
space B2(H)ah (T = F (adX) as before). Then ‖A − 1‖ = ‖(T − 1)P‖ ≤ ‖1 − T‖ = c0 < 1
therefore A is invertible, which shows that B2(H)ah = TH + ker(δ) = TH + H

⊥. On the other
hand if TPξ = (1−P)η,

‖Pξ‖2 > ‖(1 − T )Pξ‖2 = ‖TPξ −Pξ‖2 = ‖(1−P)η −Pξ‖2 = ‖(1−P)η‖2 + ‖Pξ‖2,

i.e. (1−P)η = 0, which proves that TH ∩H
⊥ = {0}.

Therefore B2(H)ah is the direct sum of the kernel of δ0 (the vertical space, H⊥) and TH,

B2(H)ah = TH +̇H
⊥.

This implies that δ0|TH is still an isomorphism onto (TR+
2 )(P0,f0). By equation (18), this proves

the claim that E∗Z is an isomorphism.

Recall the Riemannian distances dq, da in R+
2 are defined as the infima of the lengths of the

piecewise smooth paths joining given endpoints, when the curves are measured with the quotient
metric (resp. the ambient metric). Regarding the minimality of geodesics, the injectivity radius,
and the metric completeness, the following can be established.

Theorem 5.19. Let (P0, f0) ∈ R+
2 , endowed with the quotient metric given in Definition 5.9.

1. For any (X, g) ∈ (TR+
2 )(P0,f0), let Z ∈ H(P0,f0) the unique element such that δ(P0,f0)(Z) =

(X, g). Then
δ(t) = etZ · (P0, f0),

which is the unique geodesic of the reductive connection which satisfies δ(0) = (P0, f0) and
δ̇(0) = (X, g), has minimal length along its path for t such that |t| ≤ π

4‖Z‖2
. This geodesic

is unique if |t| < π
4‖Z‖2

.

2. The space R+
2 is complete with both its metrics dq, da (quotient and ambient).

3. Let (P1, f1) ∈ R+
2 such that dq((P1, f1), (P0, f0)) < π/4. Then there exists a unique

geodesic δ of the reductive connection such that δ(0) = (P0, f0) and δ(1) = (P1, f1). This
geodesic has minimal length (among smooth curves joining (P0, f0) and (P1, f1)).

23



Proof. The first assertion is a consequence of the estimation for the injectivity radius of homo-
geneous spaces of the p-Schatten unitary groups given in [3, Theorem 4.9]. From that theorem
also follows the uniqueness when 4‖Z‖2 |t| < π.

Regarding the second assertion, it was also proven in [3, Theorem 5.5] that homogeneous
spaces of the restricted unitary group are complete with the quotient metric. Therefore (R+

2 , dq)
is complete. Since both metrics are uniformly equivalent by (15), (R+

2 , da) is also complete.
Now note that the first assertion says that the Riemannian exponential is injective in the

open ball of (quotient) radius π/4. Combining this with Corollary 5.18, it follows that the
injectivity radius of the Riemannian exponential of R+

2 is at least π/4 (since r0/2 > π/4).
Therefore by the theory of Hilbert-Riemann manifolds (see for instance [15, Theorem 6.4]), the
third assertion follows.
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