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Abstract

We extend a non-local and non-covariant version of the Thirring model in order to describe a
many-body system with backward and umklapp scattering processes. We express the vacuum to
vacuum functional in terms of a non-trivial fermionic determinant. Using path-integral methods we
find a bosonic representation for this determinant which allows us to obtain an effective action for
the collective excitations of the system. By introducing a non-local version of the self-consistent
harmonic approximation, we get an expression for the gap of the charge-density excitations as
functional of arbitrary electron–electron potentials. As an example we also consider the case of a
non-contact umklapp interaction.  2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years there has been much interest in the study of low-dimensional field
theories. In particular they are useful to describe the behavior of strongly anisotropic
physical systems in condensed matter, such as organic conductors [1], charge transfer
salts [2] and quantum wires [3]. Probably the two most widely studied 1d systems are the
Hubbard model [4] and the so-called “g-ology” model [5]. They are known to display the
Luttinger liquid [6] behavior characterized by spin-charge separation and by non-universal
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(interaction dependent) power-law correlation functions. In a recent series of papers [7,8]
an alternative, field-theoretical approach was developed to consider this problem. In these
works a non-local and non-covariant version of the Thirring model [9] was introduced, in
which the fermionic densities and currents are coupled through bilocal, distance-dependent
potentials. This non-local Thirring model (NLT) contains the Tomonaga–Luttinger (TL)
model [10] as a particular case. Although it constitutes an elegant framework to analyze
the 1d many-body problem, one serious limitation appears if one tries to make contact
with real systems. Indeed, one has to recall that the building blocks of the NLT are the
forwardscattering (fs) processes which are supposed to dominate the scene only in the
low transferred momentum limit. This means that in its present form it can only provide
a very crude description of the Luttinger liquid equilibrium and transport properties.
In Ref. [11] we started to develop an improved version of the NLT in which larger
momentum transfers are taken into account by including backscattering (bs) [12] and
umklapp (us) [13]. This formulation led us to a highly non-trivial action whose physical
content was very hard to extract. In the present paper we reconsider this problem from a
different point of view which allowed us to get insight on the spectrum of the collective
modes. By using a non-local version of the self-consistent harmonic approximation
(SCHA) [14] we were able to obtain general expressions for the bosonic gaps as functionals
of arbitrary forward, backward and umklapp scattering coupling functions. In Section 2
we present the model and review the steps that allow us to write a purely bosonic action
describing the dynamics of collective excitations. In Section 3 we analyze the bosonic
action by using a self-consistent harmonic approximation. We derive our main formal
result, i.e., the general formula for the gap, valid for pure backscattering (g1 �= 0, g3 = 0)
and pure umklapp scattering (g3 �= 0, g1 = 0). In Section 4, as an example, we study
in some detail the case of a non-local umklapp interaction. In Section 5 we present our
conclusions. In Appendix A we review the main points of the non local SCHA.

2. The model

In this section we begin the study of an extended version of the NLT which includes
the contribution of forward, backward and umklapp scattering. Following the formulation
proposed in [7] we shall attempt to describe these interactions by means of a fermionic
(1 + 1)-dimensional Quantum Field Theory with Euclidean action given by

(2.1)S = S0 + Sf s + Sbs + Sus,

where

(2.2)S0 =
∫
d2x �Ψ i/∂Ψ

is the unperturbed action associated to a linearized free dispersion relation. The contribu-
tions of the different scattering processes will be written as

(2.3)Sf s = −g
2

2

∫
d2x d2y (�ΨγµΨ )(x) V(µ)(x, y) (�ΨγµΨ )(y)
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and

(2.4)Sbs + Sus = −g
′2

2

∫
d2x d2y (�ΨΓµΨ )(x)U(µ)(x, y)(�ΨΓµΨ )(y),

where the γ ′
µs are the usual two-dimensional Dirac matrices and Γ0 = 1, Γ1 = γ5. Please

keep in mind that no sum over repeated indices is implied when a subindex (µ) is involved.
Let us also mention that the coupling potentials V(µ) and U(µ) are assumed to depend on
the distance |x − y| and can be expressed in terms of Solyom’s “g-ology” [5] as

(2.5)V(0)(x, y)= 1
g2 (g2 + g4)(x, y),

(2.6)V(1)(x, y)= 1
g2 (g2 − g4)(x, y),

(2.7)U(0)(x, y)= 1
g′2 (g3 + g1)(x, y),

(2.8)U(1)(x, y)= 1
g′2 (g3 − g1)(x, y).

In the above equations g and g′ are just numerical constants that could be set equal to
one. We keep them to facilitate comparison of our results with those corresponding to the
usual Thirring model. Indeed, this case is obtained by choosing g′ = 0 and V(0)(x, y) =
V(1)(x, y)= δ2(x − y). On the other hand, the non-covariant limit g′ = 0, V(1)(x, y)= 0
gives one version ((g2 = g4) of the TL model [10].

The terms in the action containing g2 and g4 represent forward scattering events, in
which the associated momentum transfer is small. In the g2 processes the two branches (left
and right-moving particles) are coupled, whereas in the g4 processes all four participating
electrons belong to the same branch. On the other hand, g1 and g3 are related to
scattering diagrams with larger momentum transfers of the order of 2kF (bs) and 4kF
(us) respectively (this last contribution is important only if the band is half-filled). For
simplicity, throughout this paper we will consider spinless electrons. The extension of our
results to the spin-1/2 case with spin-flipping interactions, though not trivial, could be done
by following the lines of Ref. [8].

Let us now turn to the treatment of the partition function. At this point we recall that in
Ref. [7] we wrote the fs piece of the action in a localized way:

(2.9)Sf s = −g
2

2

∫
d2x JµKµ,

where Jµ is the usual fermionic current, and Kµ is a new current defined as

(2.10)Kµ(x)=
∫
d2y V(µ)(x, y)Jµ(y).

Using a functional delta and introducing auxiliary bosonic fields in the path-integral
representation of the partition function Z , we were able to write (see [7] for details):

Z =N
∫

D�Ψ DΨ DÃµDB̃µ
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(2.11)× exp
{
−
∫
d2x

[
�Ψ i/∂Ψ + ÃµB̃µ + g√

2
(ÃµJµ + B̃µKµ)

]}
.

If we define

(2.12)�Bµ(x)=
∫
d2y V(µ)(y, x)B̃µ(y),

(2.13)B̃µ(x)=
∫
d2y V−1

(µ)(y, x)
�Bµ(y),

with V −1
(µ) (y, x) satisfying

(2.14)
∫
d2y V −1

(µ) (y, x)V(µ)(z, y)= δ2(x − z),

and change auxiliary variables in the form

(2.15)Aµ = 1√
2
(Ãµ + �Bµ),

(2.16)Bµ = 1√
2
(Ãµ − �Bµ),

we obtain

Z =N
∫

D�Ψ DΨ DAµDBµe−S(A,B)−Sbs−Sus

(2.17)× exp
[
−
∫
d2x �Ψ (i/∂ − g/A)Ψ

]
,

where

(2.18)S(A,B)= 1
2

∫
d2x d2y V −1

(µ) (x, y)
[
Aµ(x)Aµ(y)−Bµ(x)Bµ(y)

]
.

The Jacobian associated with the change (Ã, B̃) → (A,B) is field-independent and can
then be absorbed in the normalization constant N . Moreover, we see that the B-field
is completely decoupled from both the A-field and the fermion field. Keeping this in
mind, it is instructive to try to recover the partition function corresponding to the usual
covariant Thirring model (V−1

(0) (y, x)= V −1
(1) (x, y)= δ2(x − y), and g′ = 0), starting from

(2.17). In doing so one readily discovers that Bµ describes a negative-metric state whose
contribution must be factorized and absorbed in N in order to get a sensible answer for Z .
This procedure parallels, in the path-integral framework, the operator approach of Klaiber
[9], which precludes the use of an indefinite-metric Hilbert space. Consequently, from now
on we shall only consider the A contribution.

At this stage we see that, when bs and us processes are disregarded, the procedure we
have just sketched allows us to express Z in terms of a fermionic determinant. Now we
will show that this goal can also be achieved when the larger momentum transfers are taken
into account. To this end we write:

(2.19)Sbs + Sus = −g
′2

2

∫
d2x LµMµ,
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where Lµ and Mµ are fermionic bilinears defined as

(2.20)Lµ(x)= �Ψ (x)ΓµΨ (x),
(2.21)Mµ(x)=

∫
d2y U(µ)(x, y)Lµ(y).

Thus it is evident that we can follow the same prescriptions as above, with Lµ and Mµ

playing the same roles as Jµ and Kµ, respectively. After the elimination of a new negative
metric state whose decoupled partition function is absorbed in the normalization factor, as
before, one obtains

(2.22)Z =N
∫

DAµDCµ det(i/∂ − g/A− g′ΓµCµ) exp
(−S[A] − S[C]),

where

S[Aµ] = 1
2

∫
d2x d2y Aµ(x)V

−1
(µ)Aµ(y),

(2.23)S[Cµ] = 1
2

∫
d2x d2y Cµ(x)U

−1
(µ)Cµ(y)

and

(2.24)
∫
d2y U−1

(µ)(y, x)U(µ)(z, y)= δ2(x − z).

Then we have been able to express Z in terms of a fermionic determinant. Let us stress,
however, that this determinant is a highly non-trivial one. Indeed, the term in g′ is not
only a massive-like term (in the sense that it is diagonal in the Dirac matrices space) but
it also depends on the auxiliary field Cµ(x). As shown in [11] one can combine a chiral
change in the fermionic path-integral measure with a formal expansion in g′ in order to
get a bosonic representation for the fermionic determinant. Let us start by performing the
following transformation:

(2.25)Ψ (x)= eg[γ5Φ(x)−iη(x)]χ(x),
(2.26)�Ψ (x)= χ̄(x) eg[γ5Φ(x)+iη(x)],
(2.27)D�Ψ DΨ = J [Φ,η]Dχ̄Dχ,

where Φ and η are scalar fields and J [Φ,η] is the Jacobian of the transformation. As it is
well known, the above transformation permits to decouple the field Aµ from the fermionic
fields if one writes

(2.28)Aµ(x)= ∂µη(x)+ εµν∂νΦ(x)

which can also be considered as a bosonic change of variables with trivial (field
independent) Jacobian. As a result we find

(2.29)det(i/∂ − g/A− g′ΓµCµ)= J [Φ,η] det
(
i/∂ − g′e2gγ5ΦΓµCµ

)
.
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After a suitable regularization the fermionic Jacobian reads [15]

J [Φ,η] = exp
g2

2π

(2.30)
×
∫

d2p

(2π)2
[−p2

1Φ(p)Φ(−p)+ p2
1η(p)η(−p)− 2p0p1Φ(p)η(−p)

]
.

The vacuum to vacuum functional is then expressed as

(2.31)Z =N ′
∫

DΦDηDCµ e−(S[Φ,η]+S[Cµ])J [Φ,η] det
(
i/∂ − g′e2gγ5ΦΓµCµ

)
,

where S[Φ,η] arises when one inserts (2.28) in S[Aµ] (see Eq. (2.23)):

(2.32)
S[Φ,η] =

∫
d2p

(2π)2
[
Φ(p)Φ(−p)A(p)+ η(p)η(−p)B(p)+Φ(p)η(−p)C(p)]

with

(2.33)A(p)= 1
2

[
p2

0V̂
−1
(1) (p)+ p2

1

(
V̂ −1
(0) (p)+

g2

π

)]
,

(2.34)B(p)= 1
2

[
p2

0V̂
−1
(0) (p)+ p2

1

(
V̂−1
(1) (p)−

g2

π

)]
,

(2.35)C(p)= p0p1

(
V̂ −1
(0) (p)− V̂ −1

(1) (p)+
g2

π

)
.

The fermionic determinant in the above expression can be analyzed in terms of a
formal perturbative expansion. Indeed, taking g′ as perturbative parameter, and using the
fermionic fields χ and χ̄ defined in (2.26) one can write

(2.36)ZF =
∞∑
n=0

g′n

n!

〈
n∏
j=1

∫
d2xj χ̄(xj )C(xj )χ(xj )

〉
0

,

where, for later convenience we have defined

(2.37)ZF = det
(
i/∂ − g′e2gγ5ΦΓµCµ

)
and

(2.38)C =
(
C+ 0
0 C−

)
with

(2.39)
{
C+ = (C0 +C1) e

2gΦ(x),

C− = (C0 −C1) e
−2gΦ(x).

By carefully analyzing each term in the series we found a selection rule quite similar
to the one obtained in the path-integral treatment of (1 + 1) massive fermions with local
[16,17] and non-local interactions [18]. Indeed, due to the fact that in (2.36) 〈 〉0 means
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v.e.v. with respect to free massless fermions, the v.e.v.’s corresponding to j = 2k + 1 are
zero. Thus, we obtain

ZF =
∞∑
k=0

(g′cρ)2k

(k!)2(2π)2k
∫ k∏

i=1
d2xi d

2yi

k∏
i=1

[
C0(xi)+C1(xi)

][
C0(yi)−C1(yi)

]
(2.40)× exp 2g

k∑
i=1

[
Φ(xi)−Φ(yi)

]∏k
i>j (cρ)

4|xi − xj |2|yi − yj |2∏k
i,j (cρ)

2|xi − yj |2
,

where ρ is a normal ordering parameter and c is related to Euler’s constant.
In order to obtain a bosonic description of the present problem we shall now propose

the following bosonic Lagrangian density

(2.41)LB = 1
2
(∂µϕ)

2 + α0

2β2
(
m+eiβϕ +m−e−iβϕ

)
with β , m+(x) and m−(x) to be determined. The quantity α0 is just a constant that
we include to facilitate comparison of our procedure with previous works on local
bosonization [16,17]. Please notice that for m+ = m− = 1 this model coincides with the
well-known sine-Gordon model that can be used to describe a neutral Coulomb gas. In this
context α0/β

2 is nothing but the corresponding fugacity [19]. We shall now consider the
partition function

(2.42)ZB =
∫

Dϕ e−
∫
d2xLB

and perform a formal expansion taking the fugacity as perturbative parameter. It is quite
straightforward to extend the analysis of each term, already performed for m+ =m− = 1,
to the present case in which these objects are neither equal nor necessarily constants. The
result is

(2.43)

ZB =
∞∑
l=1

1
(l!)2

(
α0

2β2

)2l ∫ (
l∏
i=1

d2xi d
2yi

)(
l∏
i=1

m+(xi) m−(yi)
)(

ρ

Λ

)2l β
2

4π

×
∏l
i>j [(cρ)2|xi − xj ||yi − yj |]β2/2π∏l

i,j [(cρ)|xi − yj |]β2/2π
.

Comparing this result with Eq. (2.40), we see that both series coincide if the following
identities hold:

(2.44)β = ±2
√
π,

α0

β2 = g′Λc
π

and

m+(xi)=
(
C0(xi)+C1(xi)

)
e2gΦ(xi),

(2.45)m−(yi)=
(
C0(yi)−C1(yi)

)
e−2gΦ(yi).

Thus we have found a bosonic representation for the fermionic determinant (2.40).
This is given by (2.42) together with the identities (2.44) and (2.45). Let us emphasize
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that Eqs. (2.44) are completely analogous to the bosonization formulae first obtained by
Coleman [16] whereas Eqs. (2.45) constitute a new result, specially connected to the
present problem.

3. Derivation of gap equations through self consistent harmonic approximation

Inserting (2.42) in (2.31) we can express the partition function of this system in terms
of five scalars: Φ , η, C0, C1 and ϕ. We are thus led to a completely bosonized action Sbos:

Sbos =
∫

d2p

(2π)2

[
Φ(p)Φ(−p)A(p)+ η(p)η(−p)B(p)

+Φ(p)η(−p)C(p)+ ϕ(p)ϕ(−p)p
2

2

]
+ 1

2

∫
d2x d2y Cµ(x)U

−1
(µ)(x, y)Cµ(y)

(3.1)+ g′Λc
π

∫
d2x

[
C(0)(x)f0(x)+ iC(1)(x)f1(x)

]
,

where

(3.2)f0(x)= cos
(
(
√

4π ϕ − 2igΦ)(x)
)
,

(3.3)f1(x)= sin
(
(
√

4πϕ − 2igΦ)(x)
)
.

Since the integrals in C0 and C1 are quadratic these fields are easily integrated out and
one gets

(3.4)Z =N
∫

DΦDηDϕ e−Seff[Φ,η,ϕ]

with

(3.5)Seff[Φ,η,ϕ] = S0 + Sint,

where

(3.6)

S0 =
∫

d2p

(2π)2

[
Φ(p)Φ(−p)A(p)+ η(p)η(−p)B(p)

+Φ(p)η(−p)C(p)+ ϕ(p)ϕ(−p)p
2

2

]
,

(3.7)

Sint = − (Λc)2

2π2

∫
d2x d2y g1(x, y) cos

[√
4π
(
ϕ(x)− ϕ(y)

)− 2ig
(
Φ(x)−Φ(y)

)]
− (Λc)2

2π2

∫
d2x d2y g3(x, y) cos

[√
4π
(
ϕ(x)+ ϕ(y)

)− 2ig
(
Φ(x)+Φ(y)

)]
.

It is now convenient to diagonalize the quadratic part of the effective action by
introducing the fields ζ , χ and ξ :
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(3.8)Φ = iζ

g̃
+ 2ig̃Bp2

∆+ 2Bg̃2p2 ξ,

(3.9)η= −iC
2Bg̃

ζ − ig̃Cp2

∆+ 2Bg̃2p2 ξ + 1
g̃
χ,

(3.10)ϕ = −ζ + ∆

∆+ 2Bg̃2p2 ξ,

where we have defined g̃2 = g2/π and ∆(p)= C(p)2 − 4A(p)B(p). We then obtain

(3.11)

S0 = 1
2

∫
d2p

(2π)2

[
ζ(p)

(
p2 + ∆

2Bg̃2

)
ζ(−p)+ χ(p)

2B
g̃2 χ(−p)

+ ξ(p)
p2∆

∆+ 2Bg̃2p2 ξ(−p)
]
,

(3.12)

Sint = − (Λc)
2

2π2

∫
d2x d2y g1(x, y) cos

√
4π
[
ξ(x)− ξ(y)

]
− (Λc)2

2π2

∫
d2x d2y g3(x, y) cos

√
4π
[
ξ(x)+ ξ(y)

]
.

One can see that the ζ and χ fields become completely decoupled from ξ . Moreover, it
becomes apparent that the ξ -dependent piece of the action Sint is the only one containing
relevant contributions (i.e., gapped modes)

S[ξ ] =
∫

d2p

(2π)2
ξ(p)

F (p)

2
ξ(−p)

− (Λc)2

2π2

∫
d2x d2y g1(x, y) cos

√
4π
[
ξ(x)− ξ(y)

]
(3.13)− (Λc)2

2π2

∫
d2x d2y g3(x, y) cos

√
4π
[
ξ(x)+ ξ(y)

]
with

(3.14)F(p)= 1
Kv

(
p2

0 + v2p2
1
)
,

(3.15)K =
√

1 + g4/π − g2/π

1 + g4/π + g2/π
,

(3.16)v =
√(

1 + g4

π
+ g2

π

)(
1 + g4

π
− g2

π

)
,

where we have expressed all formulae in terms of Solyom’s g coupling functions. In the
local case, a renormalizaton group (RG) analysis shows that the “stiffness constant”,K has
to be lower than 0.5 in order to have a relevant cosine interaction, i.e., to have a gap in the
spectrum.

Eqs. (3.11), (3.12) and (3.13) constitute our first non-trivial result. Even though this
action could be obtained by standard operational methods, as far as we know it has not
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been explicitly derived before. Unfortunately, even if we succeeded in simplifying the
original action, S[ξ ] is not yet soluble, except for the local case, where it is the well-
known integrable sine-Gordon theory. In order to analyze the physical content of our
model, we introduce a non-local version of the self-consistent harmonic approximation
[14]. Basically, this amounts to replacing the so-called true action (3.13) by a trial action
in which the cosine terms are approximated as

(3.17)− (Λc)
2

2π2 g1,3(x, y) cos
√

4π
[
ξ(x)± ξ(y)

]−→ Ω1,3(x, y)

2
ξ(x)ξ(y),

where the functions Ωi of the trial action can be variationally determined (see
Appendix A for details). We will consider two cases: pure backscattering (g1 �= 0, g3 = 0)
and pure umklapp scattering (g3 �= 0, g1 = 0). Once this is done, it is straightforward to ob-
tain the charge spectrum. Indeed, going to momentum space, and back to real frequencies,
p0 = iω, p1 = k, the following equations are obtained:

(3.18)KvΩi −ω2 + v2k2 = 0.

The gap equations satisfied by Ωi are

(3.19)Ω1,3(p)= 4Λ2c2

π

∫
d2x g1,3(x)e

−4π[I1(x)∓I1(0)](eipx ∓ 1
)
,

where

(3.20)I1(x)=
∫

d2p

(2π)2
e−ipx

F (p)+Ωi(p)
.

Eq. (3.19) is our main formal result. It gives, within the SCHA, a closed expression
for the gap as functional of any arbitrary strength of the interactions (the g′

i s). Let us
study, as examples, the cases where umklapp and backscattering are local interactions
(i.e., g1

3
(x)= g1

3
δ2(x)), but keeping arbitrary fs interactions. It is easy to see that the pure

backscattering process is gapless (Ω1 = 0) and that the umklapp interaction opens a gap
in the charge density spectrum (Ω3 = constant), as expected [12,13]. For this last case we
obtain

(3.21)Ω3 = 8Λ2c2

π
g3e

−8πI1(0).

As Ω3 is a constant, i.e., it does not depend on p we can calculate the propagator in
terms of Ω3, and the equation then reduces to an algebraic equation for Ω3. If we consider
also contact fs potentials (i.e., g2,4(x) = g2,4δ

2(x)), the integral I1(0) can be explicitly
performed. After a suitable regularization one obtains:

(3.22)Ω3 = 4Λ2

K

(
2c2K

π
g3

)1/(1−2K)
.

An equation completely analogous to (3.21) was found in [8] by working directly
with a local coupling associated to spin-flipping interactions in that case. This provides
a consistency check for our computation. Of course, having derived a general formula for
the gap, like (3.19), it is interesting to analyze the effect of a non-contact interaction. We
present this study in the next section.
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4. Gap of charge-density modes for a non-local umklapp coupling

The purpose of this section is to find a solution to Eq. (3.19) for a pure umklapp potential
of the form

(4.1)g3(p)= λ0 + ε

Λ2p
2
1

being ε � 1. It consists of the local potential plus a small non-local correction. We start by
writing the potential in coordinate space

(4.2)g3(x)= λ0δ
2(x)− ε

Λ2 ∂
2
1δ

2(x),

where ∂2
1 δ

2(x) is the second derivative of the delta function with respect to x1 only. By
replacing this function in (3.19) and integrating we obtain

(4.3)Ω(p)= 4Λ2c2

π

[
2λ0 + 8π

ε

Λ2 ∂
2
1 I1(0)

]
e−8πI1(0) + 4c2ε

π
e−8πI1(0)p2

1,

where we have dropped the subindex 3 in Ω(p). We observe that Ω retains the same
structure as g3(p), i.e., it is of the form Ω(p) = µ2 + gp2

1, where µ2 and g are two
parameters to be determined in terms of λ0 and ε. The fact that Ω preserves its simple
form allows to calculate the propagator, as occurs in the local case, and in consequence,
to transform the equation into an algebraic one, easier to deal with. Introducing the
adimensional quantity x = µ2Kv/4Λ2(v2 + Kgv), and considering the case ε � 1, we
get the following pair of equations to be solved for g and x:

(4.4)x = 2c2K

π
x2K[λ0 − εK(2x ln ex + 1)

]
,

(4.5)g = 4c2ε

π
x2K.

It is straightforward to obtain plots of λ0 as a function of x for fixed K and ε. These
are shown in Figs. 1 and 2 for K = 0.2 and K = 0.4 respectively and different values of ε.
We have taken g4 = 0 in both cases. We observe that increasing the value of K leads to a
bigger value for the gap (for fixed ε, x increases with K). On the other hand, for fixed K ,
and a given value of λ0, the gap grows as ε decreases.

Alternatively, we can obtain an approximate analytical solution to the equations by
employing a perturbative approach. Writing x = x0 +δx , where x0 = (2c2Kλ0/π)

1/(1−2K)

is the solution for the ε = 0 case, we find

(4.6)δx = −2εx0(2x0 ln ex0 + 1)
λ0(1 − 2K)

,

(4.7)g = 2εx0

Kλ0
.

The first equation gives the correction to the gap of charge-density modes due to non-
contact umklapp interactions. If one introduces a small non-local perturbation, it is enough
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Fig. 1. λ0 as a function of x for fixed ε and K = 0.2.

Fig. 2. λ0 as a function of x for fixed ε and K = 0.4.

to modify the value of the gap. The numerator in Eq. (4.6) is always negative and then, since
K < 0.5, this gives a gap which is decreasing with ε, a result consistent with the numerical
approach. The second equation gives the correction to the kinetic part of the spectrum. As
a last comment, we should mention that the computation of the gap can be also performed
by using the RG approach, following for instance, the lines of Ref. [20]. The corresponding
results are qualitatively consistent with ours, although a precise comparison is beyond the
scope of this work.
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5. Final result and next steps

In this paper we have presented a non-local and non-covariant extension of the Thirring
model which can be used to describe a 1d many-body system when not only forward but
also backward and umklapp scattering is considered. In this sense our results improve
previous formulations reported in [7] and [11]. We were able to write the vacuum to
vacuum functional of this model in terms of a non-trivial fermionic determinant. We
obtained a bosonic representation for this determinant which led us to an effective action
associated to the elementary collective excitations of the system. By employing the self-
consistent harmonic approximation we found a closed expression for the gap of the charge-
density spectrum as functional of arbitrary (not necessarily local) two-body potentials. This
equation is valid for purely backward (g1 �= 0, g3 = 0) or pure umklapp scattering (g3 �= 0,
g1 = 0). As an application of this formula we studied the effect of a non-local umklapp
potential of the form g3(p)= λ0 + (ε/Λ2)p2

1 for ε small. Besides its illustrative purpose,
the result obtained in this example is interesting in itself because most of the previous
investigations involving umklapp scattering do not consider non-local effects [21].
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Appendix A. Details of the SCHA method

We shall give an sketch of the SCHA method. One usually starts from a partition
function

(A.1)Ztrue =
∫

Dµe−Strue,

where Dµ is a generic integration measure. An elementary manipulation leads to

(A.2)Ztrue =
∫
Dµe−(Strue−Strial) e−Strial∫

Dµe−Strial

∫
Dµe−Strial =Ztrial

〈
e−(Strue−Strial)

〉
trial

for any trial action Strial. Now, by means of the property

(A.3)
〈
e−f

〉
� e−〈f 〉,

for f real, and taking natural logarithm in Eq. (A.2), we obtain Feynman’s inequality [22]

(A.4)lnZtrue � lnZtrial − 〈Strue − Strial 〉trial.

We shall study a very general class of true bosonic actions of non-local sine Gordon
type, given by

(A.5)Strue =
∫

d2p

(2π)2
ϕ(p)

F (p)

2
ϕ(p)−

∫
d2x d2y

α(x − y)

b2 cosb
ϕ(x)+ ϕ(y)

2
,
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where F(p) and α(x, y) are arbitrary functions. The usual local sine Gordon theory is
obtained by taking F(p) = p2 and α(x, y)= α0δ

(2)(x − y) whereas (A.5) reduces to our
model (3.13) without backscattering interactions (i.e., g1 = 0) by taking

(A.6)F(p)= 1
Kv

(
p2

0 + v2p2
1
)
,

(A.7)b2 = 16π,

(A.8)
α(x, y)

b2 = (Λc)2

2π2 g3(x, y).

The trial action we will consider is a quadratic one:

(A.9)Strial =
∫

d2p

(2π)2
ϕ(p)

F (p)

2
ϕ(p)−

∫
d2x d2y

Ω(x − y)

2
ϕ(x)ϕ(y),

where the function Ω can be determined by maximizing the right-hand side of Eq. (A.4).
In order to achieve this goal we first write

(A.10)lnZtrial = ln
∫

Dϕ exp
[
−1

2

∫
d2x ϕ(x)(Âϕ)(x)

]
(A.11)= ln(det Â)−1/2 + const

(A.12)= −1
2

tr ln Â+ const,

where the operator Â is defined, in Fourier space, by

(A.13)(Âϕ)(p)= [
F(p)+Ω(p)

]
ϕ(p)

being Ω(p) is the Fourier transform of Ω(z). It is then easy to get

(A.14)tr ln Â= V
∫

d2p

(2π)2
ln
[
F(p)+Ω(p)

]≡ VI0[Ω],
where V is the volume (infinite) of the whole space

∫
d2x . On the other hand, it is

straightforward to compute 〈Strue − Strial〉, by following, for instance, the steps explained
in Ref. [18]. The result is

(A.15)−〈Strue − Strial〉trial = V
∫
d2x

[
α(x)

b2 e−
1
4 b

2[I1(x)+I1(0)] + Ω(x)

2
I1(x)

]
,

where I1(x) is a functional of Ω given by the propagator of the trial action

(A.16)I1(x)=
∫

d2p

(2π)2
e−ipx

F (p)+Ω(p)

and we have made use of the translational invariance of α andΩ . Finally we can gather all
the terms, and write them as

lnZtrial − 〈Strue − Strial〉trial = V
2

∫
d2x

α(x)

b2 e−
1
4 b

2[I1(x)+I1(0)]

(A.17)

+ V
2

∫
d2p

(2π)2
Ω(−p)

F(p)+Ω(p)
− V

2
I0[Ω] + const,



528 V.I. Fernández et al. / Nuclear Physics B 636 [FS] (2002) 514–528

where we have turned the last term of Eq. (A.15) into Fourier space. Now extremizing
expression (A.17) with respect to Ω by functional derivation with respect to Ω(k), we
finally obtain the gap equation

(A.18)Ω(p)= 1
2

∫
d2x α(x)e−

1
4 b

2[I1(x)+I1(0)](e−ipx + 1
)
.

If instead of considering only umklapp interactions we consider only backscattering
interactions (g3 = 0) then we have to change ϕ(x)+ ϕ(y)→ ϕ(x)− ϕ(y) into the cosine
of Eq. (A.5), and the resulting gap equation is

(A.19)Ω(p)= 1
2

∫
d2x α(x)e−

1
4 ob

2[I1(x)−I1(0)](e−ipx − 1
)
.
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