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Abstract

Let C be the set of all possible quantum states. We study the convex subsets of C with atten-
tion focused on the lattice theoretical structure of these convex subsets and, as a result, find
a framework capable of unifying several aspects of quantum mechanics, including entangle-
ment and Jaynes’ Max-Ent principle. We also encounter links with entanglement witnesses,
which leads to a new separability criteria expressed in lattice language. We also provide an
extension of a separability criteria based on convex polytopes to the infinite dimensional case
and show that it reveals interesting facets concerning the geometrical structure of the convex
subsets. It is seen that the above mentioned framework is also capable of generalization to
any statistical theory via the so-called convex operational models’ approach. In particular,
we show how to extend the geometrical structure underlying entanglement to any statistical
model, an extension which may be useful for studying correlations in different generalizations
of quantum mechanics.
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1 Introduction

In this work we will tackle the entanglement phenomenon from a special viewpoint, that of
regarding quantum states as “probability measures” [see for example [1]], which leads us to
discuss convex sets of probability measures. Quantum probabilities are of a very different nature
than that of classical ones. After setting preliminary mathematical notions and notations in
section 2 (which may be optionally complemented with appendix A), we shortly review the
differences and definitions between classical and quantal probabilities in section 3. Preliminary
matters may be skipped by the reader familiarized with the quantum formalism in infinite
dimensions.
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The existence of probability models of a very different nature, of which the classical and the
quantum instances are just two particularly important examples of a wider family, was one
of the motivations for the study of the so called operational or convex approach (COM), one
of the protagonists of our present discourse. Refs. [2, 3, 4, 5, 6, 7] deal with the subject of
COMs, for which states (understood as probability measures) and their convex structure play a
key role, while other related quantities emerge in rather natural fashion. Note that there exist
generalizations of quantum mechanics, including non-linear versions, that are axiomatized using
the convex structure of the set of states (see [8], [9], and [10]). The approach treats in geometrical
fashion the statistical theory of systems, which includes quantum and classical mechanics (and
several other theories as well). In these generalized probabilistic models, generalized observables
are used. In the particular case of quantum theory, one encounters the important notion of
Positive Operator Valued Measures (POVM’s). We will review the COM approach as well as
POVM’s in section 4. In section 5 we will revisit the formal structure and associated definitions
of entanglement including the infinite dimensional case.
Lattices are other main character in our present discourse. They have been studied in the
context of quantum mechanics since the seminal paper of von Newmann [11] and characterize
the structure of the subspaces of the Hilbert space of a quantum system. The paper of reference
[11] has motivated several investigations in logics, philosophy [12], foundations of physics, and
algebraic logic. In the particular case of the foundations of quantum mechanics, several lines
of investigation have been developed. It is difficult to list all of them. We just cite here
[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. For a complete bibliography see for example [25],
[26], and [27].
Part of the study of composite quantum systems was developed in [28, 29, 30]. As we will show
in sections 6 and 7 of this work, the convex set of quantum states is endowed with canonical
lattice structures, which allow us to disclose a new structural feature of quantum mechanics
that, in particular, allows for an extension to the infinite dimensional case of the standpoint
developed in [31, 32]. The reader non familiarized with lattice theory may find it useful to take
glance at appendix B.
Our new lattice structures are not only mathematical curiosities. Instead, they are the key
factor for achieving a unifying viewpoint regarding several constructs linked to the geometrical
properties of the quantum set of states. As a first example of their power, we will use this ap-
proach to provide a generalization and reformulation of the celebrated Jaynes Max-Ent principle
[33, 34] to arbitrary COM’s in section 7.1 (see also [35] for more developments), thus displaying
an interesting convergence between lattice theory and COM approaches.
In section 8 we restrict ourselves to the finite dimensional case to study a particular reformulation
of entanglement witnesses in lattice theoretical terms, which provides new proofs of known
results. Surprisingly enough, these new proofs serve i) as the source of new abstract entanglement
criteria, which can be expressed in lattice “format” and ii) to study the volume of the space
of separable states, a theme to be tackled elsewhere. We added appendix C for refreshing
mathematical notions indispensable in this respect.
We return in section 9 to the infinite dimensional case to discuss the problem of characterizing
entanglement, both from the geometrical and algebraic viewpoints. Emphasis will be put on
maps that can be defined between the lattice of the system and its subsystems. We will extend
to infinite dimension a recently advanced, abstract entanglement criterium [36] and study some
consequences thereof. In particular, we will underline an interesting unifying characteristic of
entanglement that is known to hold for pure states and reads

A pure state is separable⇐⇒ it is a product state (⇐⇒ the entropy of its reduced states is
minimal)

It is also well known that no such a simple statement is valid for mixed states. Using both
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the lattice theoretical approach and our criteria we will show that it is possible to suitably
generalize the above mentioned assertion from pure states to arbitrary states, thus leaving the
pure instance as a particular case. In order to do so, we will introduce first the notion of
informational invariant (advanced in [36]). This concept

• is advantageously cast in purely geometrical terms and holds for the infinite dimensional
case as well, uncovering non trivial geometric and algebraic properties, and

• also provides us with a simple, unifying abstract framework to characterize separability
properties of arbitrary states (not only pure ones).

Furthermore, we will extend in section 10 some of our results to any probabilistic model via the
COM approach. In particular, we discuss how the geometrical structure found for the quantum
case in section 9 can be extended via the COM approach to any probabilistic model. Such
generalization is due to the purely geometrical nature of our criteria, and may be useful to
define entanglement for theories more general than that of quantum mechanics (for example,
semiclassical models or non-linear versions of quantum mechanics). Finally, in section 11 some
conclusions are drawn.

2 Preliminaries

For a Hilbert space H of dimension N > 2 the set of pure states forms a (2N − 2)-dimensional
manifold, of measure zero, in the (N2 − 2)−dimensional boundary ∂CN of the set CN of density
matrices. The set of mixed quantum states CN consists of Hermitian, positive matrices of size
N , normalized by the trace condition, that is

CN = {ρ : ρ = ρ†; ρ ≥ 0; tr(ρ) = 1; dim(ρ) = N}. (1)

It can be shown for finite dimensional bipartite states that there exist always a non-zero measure
µs in the neighborhood of separable states containing maximum uncertainty ones. µs tends to
zero as the dimension tends to infinity. Finally, for an infinitely dimensional Hilbert space almost
all states are entangled (i. e., separable states are never dense) [37, 38].

2.1 Notation

Let us fix the notation to be employed here. P(H) will denote the set of all closed subspaces
of a Hilbert space H (arbitrary dimension), which are in a one to one correspondence with the
projection operators. Because of this one to one link, one usually employs the notions of “closed
subspace” and “projector” in interchangeable fashion. An important construct is A, the set
of bounded Hermitian operators on H, while the bounded operators on H will be denoted by
B(H). The projective Hilbert spaceCP(H) of a complex Hilbert spaceH is the set of equivalence
classes of vectors v in H, with v 6= 0, given by v ∼ w when v = λw, with λ a non-zero scalar.
Here the equivalence classes for ∼ are also called projective rays. A trace class operator is a
compact one for which a finite trace may be defined (independently of the choice of basis). We
will appeal below to the set C containing all positive, hermitian, and trace-class (normalized to
unity) operators in B(H).
Let us remind the reader that a lattice L is a partially ordered set (also called a poset) in which
any two elements a and b have a unique supremum (the elements’ least upper bound “a ∨ b”;
called their join) and an infimum (greatest lower bound “a∧ b”; called their meet). Lattices can
also be characterized as algebraic structures satisfying certain axiomatic identities. Since the
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two definitions are equivalent, lattice theory draws on both order theory and universal algebra.
For additional details, see Appendix B.

Let H be a separable Hilbert space of arbitrary dimension representing a quantum system.
As stated above, the bounded operators on H will be denoted by B(H). There are many
topologies and relevant subsets of B(H). In the literature, A has denoted different subsets of
B(H). While mainly it denotes the Hermitian operators, in some works it denotes the Hilbert-
Schmidt operators [39]. In this work we will use the following notation

A = {T ∈ B(H) : T † = T}

Suppose that T is a compact operator such that
∑

i∈I

〈vi|Tvi〉 <∞ (2)

for all orthonormal basis {|vi〉}i∈I . Then, the map tr(·) defined as

tr(T ) =
∑

i∈I

〈vi|Tvi〉 (3)

is independent of the choice of basis. The set of Hilbert Schmidt operators will be denoted by
B2(H) and are defined by

B2 = {T ∈ B(H) : tr(T
2) <∞}.

The space B2 endowed with the inner product 〈T1, T2〉 = tr(T †
2T1) is a Hilbert space. For

T ∈ B(H) the absolute value of T is defined by |T | = (T †T )1/2. We can also consider the
subspace formed by the trace class operator, defined by

B1 = {T ∈ B(H) : |T |
1/2 ∈ B2(H)}.

It can be shown that the following statements are equivalent:

1. T ∈ B1.

2. T = AB for A,B ∈ B2(H).

3. |T | ∈ B1(H).

4. tr(|T |) <∞.

The space of trace class operators is a Banach space endowed with the norm ‖T‖ = tr(|T |).
Notice that in B2(H)∩A, the norm induced by the inner product is given by ‖T‖ = tr(T †T )1/2 =

tr(T 2)1/2 and it coincides with the ℓ2 norm of the eigenvalues while in B1(H) ∩ A the norm
coincides with the ℓ1 norm of the eigenvalues. Thus, B2 ⊂ B1 in A.
Coming back to the closed subspaces of H which are in a one to one correspondence with the
projection operators, an operator P ∈ B(H) is said to be a projector if it satisfies

P 2 = P (4)

and

P = P † (5)
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2.2 Elementary measurements and projection operators

A projection operator represents an elementary measurement given by a yes-no experiment, i.e.,
a test in which we get the answer “yes” or the answer “no”. If R is the real line, let B(R) be
the family of subsets of R such that

• 1 - The family is closed under set theoretical complements.

• 2 - The family is closed under denumerable unions.

• 3 - The family includes all open intervals.

The elements of B(R) will be called the Borel subsets of R [40]. A projection valued measure
(PVM) M , is a mapping

M : B(R)→ P(H) (6a)

such that

M(0) = 0 (6b)

M(R) = 1 (6c)

M(∪j(Bj)) =
∑

j

M(Bj), (6d)

for any disjoint family Bj. Also,

M(Bc) = 1−M(B) = (M(B))⊥ (6e)

All operators representing observables may be expressed in terms of projection operators (and so
by elementary measurements) via the spectral decomposition theorem, which asserts that the set
of spectral measurements may be put in a bijective correspondence with the set A of Hermitian
operators of H. A list of set-theory concepts used in this work can be found in Appendix A
Elementary (sharp) tests in quantum mechanics are represented by projection operators that
form the well known von Newmann’s lattice LvN , an orthomodular one (see Appendix B). The
Born-rule implies that probabilities in quantum mechanics are linked to measures over the von
Newmann’s lattice. Using Gleason’s theorem, it is possible to link in a bijective way density
matrixes and non-kolmogorovian probability measures (more on this below).

3 Quantum vs. classical probabilities

The reader is advised to consult the Appendixes regarding some mathematics concepts appealed
to below. It is a well known fact, since the 30’s, that a quantum system represented by a Hilbert
space H is associated to a lattice formed by all its closed subspaces
LvN (H) =< P(H), ∩, ⊕, ¬, 0, 1 >, where 0 is the empty set ∅, 1 the total space H, ∩ the
intersection, ⊕ the closure of the sum, and ¬(S) the orthogonal complement of a subspace S
[41]. This is the Hilbert lattice, named “Quantum Logic” by Birkhoff and von Neumann [11].
We will refer to this lattice as LvN , the ‘von Neumann lattice’. Thus, the set of elementary
yes-no tests has an orthomodular lattice structure, which is itself non-boolean, modular in the
finite dimensional case, and never modular in the infinite one. We will relate below elementary
tests to quantum probability spaces and study their lattice structure.
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Given a set Ω, let us consider a σ-algebra (see Appendixes) Σ of Ω. Then, a probability measure
will be given by a function µ such that

µ : Σ→ [0, 1] (7a)

which satisfies
µ(∅) = 0 (7b)

µ(Ac) = 1− µ(A), (7c)

where (. . .)c means set-theoretical-complement and for any pairwise disjoint denumerable family
{Ai}i∈I

µ(
⋃

i∈I

Ai) =
∑

i

µ(Ai) (7d)

where conditions (7) are the well known axioms of Kolmogorov.
In the formulation of both classical and quantum probabilities, states can be regarded as repre-
senting consistent probability assignments [42]. In the quantum mechanics instance this “states
as mappings” visualization is achieved via a function [41]

s : P(H)→ [0; 1] (8a)

such that:

s(0) = 0 (0 is the null subspace). (8b)

s(P⊥) = 1− s(P ), (8c)

and, for a denumerable and orthogonal family of projections

Pj , s(
∑

j

Pj) =
∑

j

s(Pj). (8d)

The above equation defines a probability, but in fact, not a classical one, because classical
probability axioms obey the Kolmogorov’s axioms of equation (7). The main difference comes
from the fact that the σ-algebra in (7) is boolean, while P(H) is not. Thus, quantum probabilities
are also called non-kolmogorovian (or non-boolean) probability measures. The crucial fact is
that, in the quantum case, we do not have a σ-algebra, but an orthomodular lattice of projections.
Most importantly, Gleason’s theorem [43, 44] asserts that if dim(H) ≥ 3, then:

The set of all measures of the form (8a) can be put into one to one correspondence with
the set C formed by all positive, hermitian and trace-class (normalized to unity) operators
in B(H)

More generally, consider a C∗-algebra A. The prototypical example of a such an algebra is
the algebra B(H) of bounded (equivalently continuous) linear operators defined on a complex
Hilbert space. In general, a state ϕ will be a positive linear functional of norm equal to unity.
If the algebra has a unit (as is the case for B(H)), states will be given by the intersection of the
closed affine hyperplane ϕ(1) = 1 and the set of positive linear forms on A of norm ≤ 1 (which
is compact in the topology of pointwise convergence) and then the concomitant extension of the
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set C will be a convex and compact space. If P ∈ P(H) the correspondence between ρ ∈ C and
its induced probability measure is given by

sρ(P ) = tr(ρP ) (9)

Equation (9) is essentially Born’s rule. Any ρ ∈ C may be written as

ρ =
∑

i

piPψi
(10)

where the Pψi
are one dimensional projection operators on the rays (subspaces of dimension

one) generated by the vectors ψi and
∑

i pi = 1 (pi ≥ 0). Thus, it is clear that C is a convex set.
If the sum in (10) is finite, then ρ is said to be of finite range. It is important to remark that in
the infinite dimensional case, the sum in (10) may be infinite in a non-trivial sense. C is then a
set formed of non-boolean probability measures. That C is a closed convex set can also be seen
by the fact that if we define the half-planes

Hx = {ρ ∈ A |x†ρx < 0} (11a)

H+
x = {ρ ∈ A |x†ρx ≥ 0} (11b)

then

C =
⋂

x∈H

H+
x ∩ {ρ | tr(ρ) = 1} (12)

If we consider now LC as the set of all convex subsets of C, that is

Definition 3.1. LC = {C ⊆ C | C is convex}

then any element of LC will be itself a “probability space”, in the sense that it is a set of non
boolean probability measures closed under convex combinations (not to be confused with the
usual mathematical notion of sample space). We will show that LC is endowed with a canonical
lattice structure in Section 7.
A general (pure) state can be written as (using Dirac’s notation):

ρ = |ψ〉〈ψ| (13)

We will denote the set of all pure states by

P (C) := {ρ ∈ C | ρ2 = ρ} (14)

This set is in correspondence with the rays of H via the association:

F : CP(H)→ C, [|ψ〉] 7→ |ψ〉〈ψ| (15)

where CP(H) is the projective space of H, and [|ψ〉] is the class defined by the vector |ψ〉
(|ϕ〉 ∼ |ψ〉 ←→ |ϕ〉 = λ|ψ〉, λ 6= 0). If M represents an observable, its mean value 〈M〉 is given
by

tr(ρM) = 〈M〉 (16)

Notice that the set of positive operators forms a cone, and that the set of trace class operators
(of trace one) forms an hyperplane. Thus, C is the intersection of a cone and an hyperplane
embedded in A. This structure (or geometrical convex setting) is susceptible of considerable
generalization (see [2, 3, 4] for an excellent overview, partly reproduced in this work for the sake
of completeness).
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4 Quantal effects and convex operational approach (COM)

In modelling probabilistic operational theories one associates to any probabilistic system a triplet
(X,Σ, p), where

1. Σ represents the set of states of the system,

2. X is the set of possible measurement outcomes, and

3. p : X × Σ 7→ [0, 1] assigns to each outcome x ∈ X and state s ∈ Σ a probability p(x, s) of
x to occur if the system is in the state s.

4. If we fix s we obtain the mapping s 7→ p(·, s) from Σ→ [0, 1]X .

Note that

• This again identifies all the states of Σ with maps.

• Considering their closed convex hull, we obtain the set Ω of possible probabilistic mixtures
(represented mathematically by convex combinations) of states in Σ.

• In this way one also obtains, for any outcome x ∈ X, an affine evaluation-functional
fx : Ω→ [0, 1], given by fx(α) = α(x) for all α ∈ Ω.

• More generally, any affine functional f : Ω → [0, 1] may be regarded as representing a
measurement outcome and thus use f(α) to represent the probability for that outcome in
state α.

For the special case of quantum mechanics, the set of all affine functionals so-defined are called
effects. They form an algebra (known as the effect algebra) and represent generalized measure-
ments (unsharp, as opposed to sharp measures defined by projection valued measures). The
specifical form of an effect in quantum mechanics is as follows. A generalized observable or
positive operator valued measure (POVM) [45, 46, 47] will be represented by a mapping

E : B(R)→ B(H) (17a)

such that

E(R) = 1 (17b)

E(B) ≥ 0, for any B ∈ B(R) (17c)

E(∪j(Bj)) =
∑

j

E(Bj), for any disjoint familly Bj (17d)

The first condition means that E is normalized to unity, the second one that E maps any Borel
set B to a positive operator, and the third one that E is σ-additive with respect to the weak
operator topology. In this way, a generalized POVM can be used to define a family of affine
functionals on the state space C (which corresponds to Ω in the general probabilistic setting) of
quantum mechanics as follows

E(B) : C → [0, 1] (18a)
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ρ 7→ tr(Eρ) (18b)

Positive operators E(B) which satisfy 0 ≤ E ≤ 1 are called effects (which form an effect algebra
[7, 48]). Let us denote by E(H) the set of all effects.

Indeed, a POVM is a measure whose values are non-negative self-adjoint operators on a Hilbert
space. It is the most general formulation of a measurement in the theory of quantum physics.

A rough analogy would consider that a POVM is to a projective measurement what a density
matrix is to a pure state. Density matrices can describe part of a larger system that is in a pure
state (purification of quantum state); analogously, POVMs on a physical system can describe
the effect of a projective measurement performed on a larger system. Another, slightly different
way to define them is as follows:
Let (X,M) be measurable space; i.e., M is a σ−algebra of subsets of X. A POVM is a function
F defined onM whose values are bounded non-negative self-adjoint operators on a Hilbert space
H such that F (X) = IH (identity) and for every i) ξ ∈ H and ii) projector P = |ψ〉〈ψ|; |ψ〉 ∈ H,
P → 〈F (P )ξ|ξ〉 is a non-negative countably additive measure on M . This definition should be
contrasted with that for the projection-valued measure, which is very similar, except that, in
the projection-valued measure, the F s are required to be projection operators.

4.1 Convex operational approach

Returning now to the general model of probability states we may, as explained in the Appendix,
consider the convex set Ω as the basis of a positive cone V+(Ω) of the linear space V (Ω). Thus,
every affine linear functional can be extended to a linear functional in V (Ω)∗ (the dual linear
space). It can be shown that there is a unique unity functional such that uΩ(α) = 1 for all α ∈ Ω
(in quantum mechanics, this unit functional is the trace function). The general operational or
convex approach may be viewed as the triplet (A,A♯, uA), where

1. A is a normed space endowed with

2. a strictly positive linear functional uA, and

3. A♯ is a weak-∗ dense subspace of A∗ ordered by a chosen regular cone A♯+ ⊆ A
∗
+ containing

uA.

4. Effects will be given by functionals f in A♯+ such that f ≤ uA.

As viewed from the COM’s standpoint, one of the characteristic features which distinguish
classical from quantum mechanics is the fact that in the classical instance any non-pure state has
a unique convex decomposition in pure states, while this is no longer true in the quantum case.
The forthcoming section reviews the principal features of the convex set of states and relates
them to entanglement. This will be useful for studying canonical maps defined between the
probability spaces of a composite system and those of its subsystems. Afterwards, in subsequent
sections, we will i) show that LC is endowed with a canonical lattice theoretical structure, ii) find
its main features, and iii) relate them to quantum entanglement and positive maps. Of course,
some of these results can easily be extended to the general setting of convex operational models.
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5 Entanglement and the convex set of states: an overview

Consider composite quantal systems S of subsystems S1 and S2, with associated separable
Hilbert spaces H1 and H2. The pure states are given by rays in the tensor product space
H = H1 ⊗H2. It is not true that any pure state of S factorizes after the interaction into pure
states of the subsystems, a situation very different to that of classical mechanics, where for state
spaces Γ1 and Γ2 we assign Γ = Γ1 × Γ2 for their composition. This is an absolutely central
issue.

Let us now briefly review the quantal relationship between the S−states and the states of the

subsystems. Consider for simplicity the bipartite case with systems S1 and S2. If {|x
(1)
i 〉}

and {|x
(2)
i 〉} are the corresponding orthonormal basis of H1 and H2, respectively, then the set

{|x
(1)
i 〉 ⊗ |x

(2)
j 〉} constitutes an orthonormal basis for H1 ⊗H2.

For observables of the form A1 ⊗ 12 and 11 ⊗ A2 (with 11 and 12 the identity operators in H1

and H2 respectively), then reduced state operators ρ1 and ρ2 can be defined for systems S1 and
S2 such that

tr(ρA1 ⊗ 12) = tr(ρ1A1) (19)

with an analogous equation for ρ2. This assignation of reduced states is done via partial traces
maps. It is of interest for us to study how to define these maps in detail. In order to do so and
given a state ρ ∈ C, consider the functional

Fρ : A(H1)⊗ 12 −→ R

A⊗ 12 7→ tr(ρA⊗ 1) (20)

Clearly Fρ induces a map

fρ : A(H1) −→ R

A 7→ tr(ρA⊗ 1) (21)

which specifies a state as defined in (8a) when restricted to projections in A(H1). Thus, using
Gleason’s theorem, there exists ρ1 such that fρ(A) = tr(ρ1A) (where now the trace is taken on
Hilbert space H1). We have thus shown that for any ρ ∈ C there exists ρ1 ∈ C1 such that for
any A1 ∈ A(H1) Equation (19) is satisfied.
This assignment is the one which allows to define the partial trace tr2(·) given by equation (22)
below. An analogous reasoning leads to tr1(·). Accordingly, we can consider the maps:

tri : C −→ Cj (22a)

ρ 7→ tri(ρ) = ρj (22b)

In [37, 38] it is shown that these maps are continuous and onto. Thus, partial traces defined in
equation (22) are continuous and onto, a fact that will be used in section 9.
Operators of the formA1⊗12 and 11⊗A2 represent magnitudes related to S1 and S2, respectively.
When S is in a product state |ϕ1〉 ⊗ |ϕ2〉, the mean value of the product operator A1 ⊗A2 will
be
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tr(|ϕ1〉 ⊗ |ϕ2〉〈ϕ1| ⊗ 〈ϕ2|A1 ⊗A2) = 〈A1〉〈A2〉 (23)

reproducing statistical independence. Separable states are defined (see [49]) as those states of C
which can be approximated by a succession of states written as a convex combination of product
states of the form

ρSep =
∑

i,j

λijρ
(1)
i ⊗ ρ

(2)
j (24)

where ρ
(1)
i ∈ C1 and ρ

(2)
j ∈ C2,

∑
i,j λij = 1 and λij ≥ 0. Thus, the set S(H) of separable states

is defined as the convex hull of all product states closed in the trace norm topology (i.e., the

trace norm topology given by ‖ρ‖tr = tr((ρ†ρ)
1

2 ). Accordingly,

Definition 5.1. S(H) := {ρ ∈ C | ρ is separable}

There exist very many non-separable states in C, called entangled ones [50]. They form a set we
will call E(H), i.e.,

Definition 5.2. E(H) = C\S(H)

Alike entangled states, separable states are reproducible by local classical devices (but this by no
means implies that they are classical). It is a fact that, equipped with the trace-norm distance,
S(H) is a complete separable metric space. Also that a sequence of quantum states converging
to a state in the weak operator topology converges to it as well in the trace norm. Stated in a
more technical form, a state in B(H1 ⊗ H2) is called separable if it is in the convex closure of
the set of all product states in S(H1 ⊗H2).
Estimating the volume of S(H) is of great interest (see –among others–[39], [51] and [52]). For
pure states we have at hand the superposition principle

Principle 5.3. Superposition Principle. If |ψ1〉 and |ψ1〉 are physical states, then α|ψ1〉+β|ψ1〉
(|α|2 + |β|2 = 1) will be a physical state too.

Additionally, when we include mixtures we have

Principle 5.4. Mixing Principle. If ρ and ρ′ are physical states, then αρ + βρ′ (α + β = 1,
α, β ≥ 0) will be a physical state too.

There exist many studies which concentrate on mixtures. For example, this is the case for
works on quantum decoherence [53, 54, 55], quantum information processing, or generaliza-
tions of quantum mechanics which emphasize its convex nature (not necessarily equivalent to
“Hilbertian” QM). The set of interest in such studies is C and not the lattice of projections.
Consequently, it seems adequate to consider in some detail the notion of structures, including
improper mixtures [31, 56, 57, 58] and pure states, acknowledging their important place in the
physical “discourse”, as anticipated in the Introduction, in the hope that such structures will
provide a natural framework for studying foundational issues.
A good question to ask is under which conditions a given state may be decomposed in terms
of other states, separable states being a particular case of decomposing a given state in terms
of product states. This is the subject of decomposition theory (see [59], chapter four). Given a
C∗-algebra A with identity 1, the set of states forms a convex compact space of the dual space
A∗ (compact in the weak∗ topology). Given a state ρ such that ρ ∈ K, with K a closed convex
set, one attempts to write an expression of the form
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ρ =

∫

K
dµ(ρ′)ρ′, (25)

where µ is a measure supported by the set of extremal points of K (see Appendix). Equation
(25) is referred to as the barycentric decomposition of ρ. The example of interest refers to the
C∗-algebra B(H), the relevant set of states being C, while K = S(H). In this specific instance,
and according to the above definition, it is possible to show that [60]

ρ =

∫

C1

∫

C2

ρH1
⊗ ρH2

ν(dρH1
dρH1

) (26)

and also that

ρ =

∫

P (C1)

∫

P (C2)
|ψ〉〈ψ| ⊗ |ϕ〉〈ϕ|ν(dψdϕ) (27)

Before concentrating attention on more general convex subsets of C, we will restrict ourselves in
next section to a special mathematical construct, closely linked to P(H).

6 The Lattice L

On H we find, among many, two particularly important constructs, namely, i) A, the set of
bounded and Hermitian operators together with ii) the set of (“merely”) bounded operators (they
map bounded sets to bounded sets), denoted by B(H). This set of bounded linear operators,
together with the addition and composition operations, the norm and the adjoin operation, is a
C*-algebra (see Appendix A). We begin now to present our new results.

Let us start by extending some developments and definitions of [31] to Hilbert spaces of arbitrary
(possibly infinite) dimension. Let us define G(A) as the lattice associated to the pair (A, tr)

G(A) := {S ⊂ A |S is a closed R-subspace}. (28)

It is well-known that G(A) is a modular, orthocomplemented, atomic and complete lattice (see
Appendix B). It is not distributive and hence not a Boolean algebra. Let L be the associated,
induced lattice in C:

L := {S ∩ C |S ∈ G(A)} (29)

for which we will define now canonical lattice operations.

6.1 Characterizing L

Note that there are many subspaces S
′
∈ G(A) such that S ∩ C = S

′
∩ C. In order to deal

with them and appropriately define the lattice induced in C by G(A), we need a subspace that
will represent the set S ∩ C. For each L ∈ L we will choose as this representative that subspace
possessing the minimum dimension

SL =
⋂
{S ∈ G(A) |S ∩ C = L } (30)

We need to characterize the subspace SL. To this end notice that SL satisfies
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SL ∩ C = L, (31)

(notice that SL may be infinite dimensional). Let consider the class [S] of elements satisfying
(31): [S] = L, with S ∈ G(A) being an element of the class.

We introduce some math-notation now. First, closure of a set will be indicated by an overbar
over the set’s name. Secondly, given a set M we will denote by < M >E the set of linear
combinations of M−elements with coefficients extracted from the set of scalars E. Then

S ∩ C ⊆ < S ∩ C >R ⊆ S ⇒ S ∩ C ∩ C ⊆ < S ∩ C >R ∩ C ⊆ S ∩ C ⇒ (32)

< S ∩ C > ∩ C = S ∩ C (33)

Accordingly, < S ∩ C > and S are in the same class L. Note that < S ∩ C > ⊆ S and if S equals
SL, we will also have SL ⊆ < SL ∩ C > (because SL is the intersection of all the elements in the
class). Consequently,

< SL ∩ C > = SL (34)

The above equation also implies that SL is the unique subspace with that property, because if
we choose S′ such that S′ ∩ C = S ∩ C, then

S = < S ∩ C > = < S′ ∩ C > = S′ (35)

Summing up, the representative of a class L is the unique R-subspace S ⊆ A such that

S = < S ∩ C >R (36)

and we have proved that it is equal to SL, that we call the good representative.

6.1.1 Math interlude

We need at this point to remind the reader of some lattice concepts (See appendix B). Let P be
a poset, partially ordered by the order relation “less or equal”. An element a ∈ P is called an
atom if it covers some minimal element of P. As a result, an atom is never minimal. A poset
P is called atomic if for every element p ∈ P (that is not minimal) an atom a exist such that
a ≤ p. For instance,
1. Let A be a set and P = 2A its power set. P is a poset ordered by the “inclusion” relation,
with a unique minimal element. Thus, all singleton subsets a of A are atoms in P (a set is a
singleton if and only if its cardinality is 1). Accordingly, in the set-theoretic construction of the
natural numbers, the number 1 is defined as the singleton {0}.
2. The set of positive integeres is partially ordered if we define a ≤ b to mean that b/a is a
positive integer. Then 1 is a minimal element and any prime number p is an atom.

Given a lattice L with underlying poset P, an element a ∈ L is called an atom (of L) if it is an
atom in P. A lattice is called an atomic lattice if its underlying poset is atomic. An atomistic
lattice is an atomic lattice such that each element that is not minimal is a join of atoms.

Finally (see Appendix B), we call modular a lattice that satisfies the following self-dual condition
(modular law) x ≤ b implies x∨ (a∧ b) = (x∨ a)∧ b, where ≤ is the partial order, and ∨ and ∧
(join and meet, respectively) are the operations of the lattice.
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6.2 Operations in L

Let us now define “∨”, “∧” and “¬” operations and a partial ordering relation “−→” (or equiv-
alently “≤”) in L as

1.
(S ∩ C) ∧ (T ∩ C)⇐⇒ (< S ∩ C > ∩< T ∩ C >) ∩ C (37)

2.
(S ∩ C) ∨ (T ∩ C)⇐⇒ (< S ∩ C >+< T ∩ C >) ∩ C (38)

3.
(S ∩ C) −→ (T ∩ C)⇐⇒ (S ∩ C) ⊆ (T ∩ C) (39)

4.
¬(S ∩ C)⇐⇒< S ∩ C >⊥ ∩C. (40)

Let us consider now some consequences of the above definitions. It is easy to see that (see
Appendix B):

Proposition 6.1. L is an atomic and complete lattice. If dim(H) <∞, L is a modular lattice.

L is not an orthocomplemented lattice, but it is easy to show that non-contradiction holds

L ∧ ¬L = 0 (41)

and also contraposition

L1 ≤ L2 =⇒ ¬L2 ≤ ¬L1 (42)

The following proposition is important because it links atoms and quantum states:

Proposition 6.2. There is a one to one correspondence between the states of the system and
the atoms of L.

Proof. Let ρ ∈ C be any state. Next, consider the subspace Sρ =< ρ >. Then, Qρ = Sρ ∩ C = ρ
is a singleton because ρ is the only trace one operator in Sρ, and thus an atom since it covers
the minimal element ρ ∈ C. This completes the bijective correspondence.

The reader is now adviced to peruse Appendix C and remember that a face of a convex set C is
the intersection of C with a supporting hyperplane of C. It is well known [50] that in the finite
dimensional case there is a lattice isomorphism between the complemented and complete lattice
of faces of the convex set C and LvN (see Appendix B for definitions). We also repeat that L
is a set of intersections, Which ones? Those between R−subspaces that belong to G(A) and C.
Let us put forward the following proposition

Proposition 6.3. Every face of C is an element of L.

Proof. If F is a face of C, then there exists a closed hyperplane HF ⊆ A such that HF ∩ C = F
and C stands on one side of the half-spaces defined by HF . If ĤF is the continuous linear
functional on A defined by the real sub-vector space HF (that is, the map that assigns a scalar
to each member of HF ), then there exists α ∈ R such that

HF = {x | ĤF (x) = α}, C ⊆ {x | ĤF (x) ≤ α}.
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Consider the continuous linear functional

L̂(x) := ĤF (x)− αtr(x). (43)

In the Banach space of trace class operators B1 we have the norm ‖T‖ = tr(|T |), then the linear

functional tr : B1 → R is continuous. Given that ĤF is continuous on A and B1 ⊆ A we have
that L̂ is continuous on B1. Its kernel, or null space (the set of all functions that the functional
maps to zero) will be a closed subspace of B1 (we call it S). Now notice that C ⊆ B1 and

S ∩ C = {x | ĤF (x) = αtr(x)} ∩ C = {x | ĤF (x) = αtr(x) and tr(x) = 1} ∩ C =

{x | ĤF (x) = α} ∩ C = HF ∩ C = F. (44)

We conclude that F ∈ L.

Using this result and the isomorphism between faces of the convex set and subspaces, we conclude
that (at least for the finite dimensional case)

Corollary 6.4. The complete lattice of faces of the convex set C is essentially a subposet of L.

The previous Corollary shows that L and LvN are closely connected. We have stated that any
convex subset of C can be considered as a probability space by itself, and certainly, the elements
of L are convex sets, because they are built as the intersection of a closed subspace of A and a
convex set (C). Thus, we have found not only that closed subspaces of H may be considered as
yes-no tests (via their one to one correspondence with projection operators), but also that they
may be considered as probability spaces (endowed with “mixing principle” mentioned above),
because of their one to one correspondence with the elements of L.

The crucial question now is: what is the relationship between their respective operations? If F1
and F2 are faces we have

(∧) F1, F2 ∈ LvN , then F1 ∧ F2 in LvN is the same as in L. Thus, the inclusion LvN ⊆ L
preserves the ∧-operation.

(∨) F1 ∨L F2 ≤ F1 ∨LvN
F2 and F1 ≤ F2 ⇒ F1 ∨L F2 = F1 ∨LvN

F2 = F2

(¬) ¬LF ≤ ¬LvN
F

Given two systems with Hilbert spaces H1 and H2, we can construct the lattices L1 and L2. We
can also built up L, the lattice associated to the product space H1 ⊗H2. We define

Ψ : L1 × L2 −→ L | (S1 ∩ C1, S2 ∩ C2) −→ S ∩ C (45)

where S = (< S1 ∩ C1 > ⊗ < S2 ∩ C2 >). In terms of good representatives, Ψ([S1], [S2]) =
[S1 ⊗ S2]. An equivalent definition (in the finite dimensional case) states that Ψ is the induced
morphism in the quotient lattices (See Appendix A) of the tensor map:

G(A1)×G(A2)→ G(A1 ⊗R A2) ∼= G(A) (46)

Given L1 ∈ L1 and L2 ∈ L2, we can define the following convex tensor product:
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Figure 1: The different maps between L1, L2, L1 × L2, and L. π1 and π2 are the canonical
projections.

Definition 6.5. L1⊗̃L2 := {
∑
λijρ

1
i ⊗ ρ

2
j | ρ

1
i ∈ L1, ρ

2
j ∈ L2,

∑
λij = 1 and λij ≥ 0}

This product is formed by all possible convex combinations of tensor products of elements of
L1 and elements of L2, and it is again a convex set. Let us compute C1⊗̃ C2. Remember that
C1 = [A1] ∈ L1 and C2 = [A2] ∈ L2:

C1⊗̃ C2 = {
∑

λijρ
1
i ⊗ ρ

2
j | ρ

1
i ∈ C1, ρ

2
j ∈ C2,

∑
λij = 1 and λij ≥ 0}. (47)

Thus, if S(H) is the set of all separable states, we have by definition

S(H) = C1⊗̃ C2 (48)

If the whole system is in a state ρ, using partial traces we can define states for the subsystems
ρ1 = tr1(ρ) and a similar definition for ρ2. Then, we can consider the maps

tri : C −→ Cj | ρ −→ tri(ρ) (49)

from which we can construct the induced projections:

τi : L −→ Li | S ∩ C −→ tri(< S ∩ C >) ∩ Ci = tri(< S ∩ C >) ∩ Ci (50)

In terms of good representatives τi([S]) = [tri(S)]. As a consequence, we can define the product
map

τ : L −→ L1 × L2 | L −→ (τ1(L), τ2(L)) (51)

The maps defined in this section are illustrated in Figure 6.2.

7 The Lattice of Convex Subsets

The elements of L are the intersections between closed (real) subspaces of A and C. Now we
drop the restriction and consider all possible probability subspaces of C, i.e., all of their possible
convex subsets. Because of linearity, partial trace operators preserve convexity and so they will
map probability spaces of the system into probability spaces of the subsystems, as desired. Let
us begin then by considering the set of all convex subsets of C (not only closed ones):

Definition 7.1. LC := {C ⊆ C |C is a convex subset of C}

In order to give LC a lattice structure, we introduce the following operations (where conv(A)
stands for convex hull of a given set A):

Definition 7.2. For all C,C1, C2 ∈ LC

∧ : C1 ∧ C2 := C1 ∩ C2
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∨ : C1 ∨ C2 := conv(C1, C2). It is again a convex set, and it is included in C (using
convexity).

¬ : ¬C := C⊥ ∩ C

−→ : C1 −→ C2 := C1 ⊆ C2

With the operations of definition 7.2, it is apparent that (LC ;−→) is a poset. If we set ∅ = 0
and C = 1, then, (LC ;−→;0; ∅ = 0) will be a bounded poset.
It is very easy to show that

Proposition 7.3. (LC ;−→;∧;∨) satisfies

(a) C1 ∧C1 = C1

(b) C1 ∧C2 = C2 ∧C1

(c) C1 ∨C2 = C2 ∨C1

(d) C1 ∧ (C2 ∧ C3) = (C1 ∧ C2) ∧ C3

(e) C1 ∨ (C2 ∨ C3) = (C1 ∨ C2) ∨ C3

(f) C1 ∧ (C1 ∨ C2) = C1

(g) C1 ∨ (C1 ∧ C2) = C1

Regarding the “¬” operation, if C1 ⊆ C2, then C
⊥
2 ⊆ C⊥

1 . Accordingly, C⊥
2 ∩ C ⊆ C⊥

1 ∩ C, and
hence

C1 −→ C2 =⇒ ¬C2 −→ ¬C1 (52)

Given that C ∩ (C⊥ ∩ C) = ∅, we also have:

C ∧ (¬C) = 0 (53)

Contraposition and non contradiction thus hold. But if we take the proposition C = { 1
N 1},

then an easy calculation yields ¬C = 0. Then, ¬(¬C) = 1, and thus ¬(¬C) 6= C in general.
Double negation does not hold. Consequently, LC is not an ortholattice. LC is a lattice which
includes all convex subsets of the quantum space of states. It includes L, and then all quantum
states (including all improper mixtures), as propositions (understood as elements of the lattice).
Compare with classical physics, where the lattice of propositions is formed by all measurable
subsets of Gibbs’ phase-space (the space of states).
As any convex subset of C is a probability space by itself, we can define on each of these subsets
a lattice structure in analogous way to that used for LC . In other words, we encounter an
inheritance of the same structure.
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7.1 Effects, mean values and maximum entropy principle

Let us discuss, as an example, the family of elements of LC that is associated to effects. Given
an effect E, consider the set of states

C(E,λ) := {ρ ∈ C | tr(ρE) = λ, λ ∈ [0, 1]}. (54)

It is easy to verify that CE is a convex set and, consequently, an element of LC . C(E,λ) represents
all the states for which the probability of having the effect E is equal to λ. Furthermore, there
exists S, an R-subspace of A, such that

C(E,λ) = S ∩ C, (55)

and thus, CE is also an element of L. The proof of (55) is as follows. Consider the linear
functional

F(E,λ)(ρ) := tr(Eρ)− λtr(ρ), (56)

As in the proof of Proposition 6.3, we will have that the set S = Ker(F(E,λ)) is a closed subspace
of B1. Then, an element ρ ∈ C(E,λ) will be given by an element of C of trace one, and thus
F(E,λ)(ρ) = tr(Eρ) − λ, plus the equality to λ requirement imply that ρ also belongs to S. We
have thus demonstrated Eq. (55). More generally, if we have the equation for the mean value
of an operator

〈R〉 = r, (57)

the operator may be considered as represented by the set of density matrices which satisfy the
above equality. The ensuing set is obtained as the intersection of the Kernel of the functional
FR(ρ) := tr(Rρ) − rtr(ρ) with C. Accordingly, each equation of the form (57) (understood as
an equation to be solved) can be represented as an element C ∈ L, and also as an element of
LC. Note that C is also a closed convex set because it is the intersection of the following closed
half-spaces

Hx = {ρ ∈ A |x†ρx = 0}, C =
⋂

x∈H

{ρ |x†ρx ≥ 0} ∩ {ρ | tr(ρ) = 1}.

With such materials at hand, we can now re-express the celebrated Jaynes’ maximum entropy
principle [33, 34] in lattice theoretical fashion. Jaynes assumes that for a quantum system one
knows the mean values

〈R1〉 = r1
〈R2〉 = r2

...

〈Rn〉 = rn, (58)

and we want to determine the most unbiased density matrix compatible with conditions (58).
Jaynes’ MaxEnt principle asserts that the solution to this problem is given by the density matrix
that maximizes entropy, given by

ρmax−ent = exp−λ01−λ1R1−···−λnRn , (59)
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where the λ’s are Lagrange multipliers satisfying

ri = −
∂

∂λi
lnZ, (60)

while the partition function reads

Z(λ1 · · ·λn) = tr[exp−λ1R1−···−λnRn ], (61)

and the normalization condition is

λ0 = lnZ. (62)

Our point here is that the set of conditions (58) can be expressed in an explicit lattice theoretical
form as follows. Using a similar procedure as in (57) we easily conclude that each of the equations
in (58) can be represented as a convex (and closed) sets CRi

. In this way we can now express
conditions (58) via the lattice theoretical expression

Cmax−ent :=
⋂

i

CRi
=

∧

i

CRi
. (63)

Now, Cmax−ent is also an element of LC (but not necessarily of L) and we must maximize
entropy in it. We have thus encountered a MaxEnt-lattice theoretical expression: given a set of
conditions represented generally by convex subsets Ci, one should maximize the entropy in the
set Cmax−ent =

∧
iCi.

7.2 The Relationship Between LvN , L and LC

Please, refer here to Appendix B.

Proposition 7.4. For finite dimension LvN ⊆ L ⊆ LC as posets.

Proof. We have already seen that LvN ⊆ L as sets. Moreover it is easy to see that if F1 ≤ F2 in
LvN then F1 ≤ F2 in L. This is so because both orders are set theoretical inclusions. Similarly,
if L1, L2 ∈ L, because intersection of convex sets yields a convex set (and closed subspaces are
convex sets also), L1, L2 ∈ LC , then we obtain set theoretical inclusion. And, again, because of
both orders are set theoretical inclusions, we obtain that they are included as posets.

Regarding the ∨ operation, let us compare ∨LvN
, ∨L and ∨LC

. If L1, L2 ∈ L, then they are
convex sets and so, L1, L2 ∈ LC . Thus we can compute

L1 ∨LC
L2 = conv(L1, L2). (64)

On the other hand (if S1 and S2 are good representatives for L1 and L2), then:

L1 ∨L L2 = (< S1 ∩ C >+< S2 ∩ C >) ∩ C. (65)

The direct sum of the subspaces < S1 ∩ C > and < S2 ∩ C > contains as a particular case all
convex combinations of elements of L1 and L2. We then conclude (including infinite dimensional
case)

L1 ∨LC
L2 ≤ L1 ∨L L2. (66)
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The faces of C can be considered as elements of LC because they are convex. If F1 and F2 are
faces we can also state (finite dimension)

F1 ∨LC
F2 ≤ F1 ∨L F2 ≤ F1 ∨LvN

F2. (67)

Intersection of convex sets is the same as intersection of elements of L and so we have (infinite
dimension)

L1 ∧LC
L2 = L1 ∧L L2, (68)

and similarly (finite dimension)

F1 ∧LvN
F2 = F1 ∧LC

F2 = F1 ∧L F2. (69)

What is the relationship between ¬LC
and ¬L? Suppose that L1 ∈ L, then they are convex sets

as well and L1 ∈ LC . We can now compute ¬LC
L1 and obtain

¬LC
L1 = L⊥

1 ∩ C. (70)

On the other hand, if L1 = S ∩ C, with S a good representative,

¬LL1 =< S ∩ C >⊥ ∩C. (71)

As L1 ⊆< S ∩ C >, then < S ∩ C >⊥⊆ L⊥
1 , and finally (infinite dimension)

¬LL1 ≤ ¬LC
L1. (72)

8 Identifying entanglement in the finite dimensional case

After introducing the new lattice theoretical frameworks, it is interesting to look back again to
the finite dimensional case, condition that will we assume through this section. In doing so, we
will find a separability criteria. We will include in this section proofs of various well established
facts because in doing so, we illuminate the lattice structure behind those facts which allow us
to deduce our novel separability criteria. In future works we will use these proofs to compute
effectively the volume of the space of separable states. Let S0(H) denote the space of product
states

S0(H) = {a⊗ b | a ∈ C1, b ∈ C2} ⊆ S(H) (73)

By definition, S(H) is the convex hull of S0(H). Using a well known fact about the theory of
convex sets, we know that S(H) is the intersection of all the closed half-hyperplanes containing
S0(H) [61, 11.5.1]. For any functional ℓ representing a half-plane and a real number m, we have

S0(H) ⊆ {ℓ ≥ m} ⇐⇒ ℓ(S0(H)) ⊆ [m,+∞) ⇐⇒ ℓ(S0(H)) has a minimum value m. (74)

Remark 8.1. We work with i) B(H) and ii) its isomorphic space B(H1)⊗B(H2). The compo-
sition for ρ1, ρ2 ∈ B(H) is ρ1ρ2, and for a⊗ b, c⊗ d ∈ B(H1)⊗ B(H2), is ac⊗ bd. The induced
trace in B(H1)⊗ B(H2) is tr(a⊗ b) = tr(a)tr(b). In B(H) we have a canonical inner product,

〈ρ1, ρ2〉 = tr(ρ1ρ
†
2)
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In B(H1)⊗ B(H2) we have the induced inner product,

〈a⊗ b, c⊗ d〉 = tr(ac†)tr(bd†)

In particular, in A(H1)⊗A(H2) one has

〈a⊗ b, c⊗ d〉 = tr(ac)tr(bd). (75)

This inner product gives to A(H) the structure of an R-vector space with an inner product.
Hence, any linear functional ℓ is associated to a vector ρ ∈ A(H) such that ℓ = 〈ρ,−〉.

It is important to notice here that any functional of the form ℓ = 〈ρ,−〉 defines by varyingm ∈ R
a family of elements of LC and L by considering the families of convex subsets {ℓ ≤ m} ∩ C and
{ℓ = m} ∩ C respectively. It is possible to show that

Proposition 8.2. The space of product states S0(H) is compact. In particular, every linear
functional of the form ℓρ on S0(H) has a maximum Mρ and a minimum mρ values.

Proof. It is well known that for every matrix in a ∈ C1 there exist a unitary matrix U ∈ U(H1)
such that UaU † is diagonal. In particular, if we take the subgroup

U(H1)× U(H2) →֒ U(H) = {U ∈ B(H) |UU
† = I}

we have that every product state is conjugate to a product of two diagonal matrixes

(U1, U2)(a1 ⊗ a2)(U
†
1 , U

†
2 ) = (U1a1U

†
1)⊗ (U2a2U

†
2) = d1 ⊗ d2.

Note that the subgroup U(H1)× U(H2) preserves the space of product states and the space of
separable states. Let us define the space of diagonal product states

D = {d1 ⊗ d2 ∈ S | d1 = diag(α1, . . . , αn), d2 = diag(β1, . . . , βm)}.

Note that D is isomorphic, as a topological space, to the product of simplexes △n×△m. Indeed,
we have the following continuous surjective map from a compact space to S0(H)

Γ : U(H1)× U(H2)×△
n ×△m −→ S0(H), (76)

Γ(U1, U2, (α1, . . . , αn), (β1, . . . , βm)) = U †
1diag(α1, . . . , αn)U1 ⊗ U

†
2diag(β1, . . . , βm)U2. (77)

It is also known that

Corollary 8.3. The space of separable states S(H) ⊆ A(H) is compact.

Proof. We remind the reader that Carathéodory’s theorem states that if a point x of Rd lies in
the convex hull of a set P , there is a subset P ′ of P consisting of d+1 (or fewer) points such that
x lies in the convex hull of P ′. Equivalently, x lies in an r−simplex with vertices in P , where
r ≤ d. The result is named for Constantin Carathéodory, who proved the theorem in 1911 for
the case when P is compact. In 1914, Ernst Steinitz expanded Carathéodory’s theorem for any
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sets P in Rd. Let N = dimRA(H). Then, it is seen by Carathéodory’s theorem [61, 17.1] that
the following continuous map is surjective,

△N+1 × (S0(H))
N+1 Γ

−→ S(H) (78)

Γ((λ0, . . . , λN ), (a0, . . . , aN )) =

N∑

i=0

λiai. (79)

Hence S(H) is a compact convex space.

Entanglement witnesses are useful to characterize entanglement [50, 62] and have became a
fundamental tool. They originate in geometry, being a consequence of the Hahn-Banach theorem
[50]. This theorem is a central tool in functional analysis. It allows the extension of bounded
linear functionals defined on a subspace of some vector space to the whole space, and it also
guarantees that there are “enough” continuous linear functionals defined on every normed vector
space to make the study of the dual space “interesting.” Another version of the HB theorem,
known also either i) as the HB-Banach separation theorem or ii) the separating hyperplane
theorem, has numerous uses in convex geometry, and interest us here. If ρ /∈ S(H), and because
S(H) is closed and convex, then there exists a plane (and so a functional) which separates ρ and
S(H). This means that ρ stands in one side of the plane and S(H) on the other. The existence
of such a plane is closely linked to the existence of an observableW (and this is the entanglement
witness) which satisfies that if ρ ∈ E(H), then tr(ρW ) < 0 and tr(σ) ≥ 0 for any σ ∈ S(H). It
is possible to show that for any entangled state there exists an entanglement witness. Also:

Proposition 8.4. Let ℓρ = 〈ρ,−〉 an R-linear functional with ρ ∈ A(H). Then

min
S(H)

ℓρ = min
S0(H)

ℓρ = min{〈ρ, vv† ⊗ ww†〉 | ‖v‖ = ‖w‖ = 1} =: mρ,

max
S(H)

ℓρ = max
S0(H)

ℓρ = max{〈ρ, vv† ⊗ ww†〉 | ‖v‖ = ‖w‖ = 1} =:Mρ.

Proof. Suppose that λ0a0 + . . .+ λsas ∈ S(H) is the maximum of ℓρ and consider the following
linear functional

(α0, . . . , αs) −→
s∑

i=0

αiℓρ(ai), (α0, . . . , αs) ∈ △
s+1.

We know that its maximum is at (λ0, . . . , λs) but let us appeal to some ideas from the theory
of faces discussed in [61, p.162,163]. We learn there that a linear functional over a convex set
△s+1, by definition, achieves its maximum over a face (F = △s+1 ∩ H) and given that every
face contains 0-dimensional faces we have that every linear functional achieves its maximum at
some 0-dimensional face. Recall that “a face of a face” is just a face of the convex set △s+1

and that the 0-dimensional faces of △s+1 are its vertexes. In conclusion, the linear functional
considered above achieves its maximum at a vertex. Then such maximum refers to a product
state (same for the minimum). For the second relationship invoked above we need still to show
that every separable state is a convex combination of products of pure states, but this is a well
established fact (given ρ separable, just express in diagonal forma the components of products
which appear on its decomposition).
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What is interesting regarding the above proposition is the fact that we can effectively compute
the numbers mρ and Mρ, as demonstrated in [63]. Also, we can show that

Remark 8.5. Over the convex set C it is easy to prove that the maximum and minimum of
the lineal functional ℓρ are the biggest and smallest eigenvalues of ρ. Given that S(H) ⊆ C(H)
we have that minS ℓρ ≥ λmin and maxS ℓρ ≤ λmax. In particular, for pure states we have
maxS ℓxx† ≤ 1 and minS ℓxx† ≥ 0.

Let us define

Definition 8.6. Let ei = (0, . . . , 0, 1, 0, . . . , 0) be a canonical column vector and let ckl be the

matrix with 1 in place kl, i.e. ckl = eke
†
l . Let x =

∑
λiei be a vector such that ‖x‖ = 1 then

x†ρx =
∑

kl

λkλle
†
kρel =

∑

kl

λkλltr(ρckl) = tr(ρ
∑

kl

λkλlckl) = tr(ρxx†).

Note that xx† is a pure state (positive and rank one matrix) and tr(xx†) = ‖x‖2 = 1. Let us
define the sphere in H

S1(H) = {x ∈ H | ‖x‖ = 1}.

Proposition 8.7. The space of states C is compact.

Proof. Let n = dimRH and N = dimRA(H). We can give here two proofs,

△N+1 × S1(H)
N+1 Γ1−→ C(H), △N+1 × U(H)n ×△n Γ2−→ C(H).

Γ1(a0, . . . , aN , x0, . . . , xN ) =
N∑

i=0

aixix
†
i .

Γ2(a0, . . . , aN , U1, . . . , Un, d1, . . . , dn) =
N∑

i=0

aiU
†
i diag(d1, . . . , dn)Ui.

Both are continuous surjective maps.

Now we are in condition to characterize S(H) in terms of special convex sets

Theorem 8.8.

C =
⋂

x∈S1(H)

{ℓxx† ≥ 0}, S(H) =
⋂

ρ∈A(H)

{mρ ≤ ℓρ ≤Mρ}.

In particular, if s ∈ S(H) then ‖s‖2 ≤Ms.

Proof. We only have to prove the second equality. If x ∈ A(H) and mρ ≤ ℓρ(x) ≤ Mρ for all
ρ ∈ A(H), then x ∈ S(H). Suppose that x 6∈ S(H). Then, there exists ℓ separating x and S(H).
Assume that there exist also d ∈ R such that

ℓ(x) > d, ℓ(s) ≤ d ∀s ∈ S(H).

Let M be the maximum of ℓ over S(H). Then M ≤ d. Note that ℓ is one of the {ℓρ} used in
the intersection operation above, so that we would have ℓ(x) ≤M ≤ d, which is a contradiction!
Accordingly,

ℓ(x) < d, ℓ(s) ≥ d ∀s ∈ S(H).

Now, let m be the minimum of ℓ over S. Then one would have d ≤ m, which is again a
contradiction!
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Remark that any set of the form {mρ ≤ ℓρ ≤Mρ} ∩ C is always convex (and thus an element of
LC). Consequently, the equality stated in the above theorem

S(H) =
⋂

ρ∈A(H)

{mρ ≤ ℓρ ≤Mρ} (80)

may be recast in lattice theoretical terms as

S(H) =
∧

ρ∈A(H)

{mρ ≤ ℓρ ≤Mρ} ∩ C (81)

The difference between equations (80) and (81) is both subtle and important: one of them is
expressed in lattice form. In the previous theorem we aimed to characterize the separable states
via a consideration of all the linear functionals. In practice we just want to know if a given state
is separable. For such query we will use a theorem on projections over convex sets [64, V.2].

Proposition 8.9. Let ρ ∈ C Then, there exists a linear functional ℓ and a real number M such
that

ρ 6∈ S(H) ⇐⇒ ℓ(ρ) ≥M.

Proof. If ρ 6∈ S(H) then the distance between ρ and S(H) is positive. Let s ∈ S(H) be its
“projection” in the sense that the overlaps

〈ρ− s, c〉 ≤ 〈ρ− s, s〉, ∀c ∈ S(H).

Let ℓ := 〈ρ− s, ·〉 and M := 〈ρ− s, s〉 = ℓ(s),

ℓ(ρ) = ℓ(ρ)−M +M = 〈ρ− s, ρ− s〉+M = ‖ρ− s‖2 +M >M.

Then ℓ separates ρ and S(H). If ρ ∈ S(H) then ℓ(ρ) = ℓ(s) =M .

The following definition and subsequent proposition will be useful for our separability criteria

Definition 8.10. If we identify x ∈ S1(H) with a matrix X ∈ Cn×m, Xij = xm(i−1)+j , we have

x†(v ⊗ w) = v†Xw.

Let {vi} ⊆ H1, {wi} ⊆ H2 and σ1 ≥ . . . ≥ σr > 0 be the singular value decomposition of X. It
is known that the maximum of the bilinear form v†Xw over S1(H1)× S1(H2) is σ1.

Proposition 8.11.

S(H) ⊆
⋂

x∈S1(H)

{ρ ∈ C(H) | 〈xx†, ρ〉 ≤ σ1(X)2} =
⋂

x∈S1(H)

{0 ≤ ℓxx† ≤ σ1(X)2}.

Proof. A general separable state is a convex combination of product states vv† ⊗ ww†,

〈xx†, vv† ⊗ ww†〉 = |〈x, v ⊗w〉|2 ≤ σ21 , 〈xx†, v1v
†
1 ⊗w1w

†
1〉 = σ21 =⇒ max

S(H)
ℓxx† = σ21 .

Note that σ21 = 1 if and only if xx† = v1v
†
1⊗w1w

†
1 ∈ S(H). Let ρ ∈ C(H) and assume that there

exist a state xx† such that 〈xx†, ρ〉 > σ1(x)
2. Then, ρ 6∈ S(H).
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The first inclusion of Proposition 8.11 can be written in the language of LC . This is so because,
for a fixed x ∈ S1, the set

Cx = {ρ ∈ C(H) | 〈xx†, ρ〉 ≤ σ1(X)2}, (82)

is convex. In order to better appreciate this fact, suppose that ρ1 ∈ Cx and ρ2 ∈ Cx. Then, we
have 〈xx†, ρ1〉 ≤ σ1(x)

2 and 〈xx†, ρ2〉 ≤ σ1(x)
2. Multiplying the first inequality by λ ∈ (0, 1)

and the second one by (1−λ), we easily find that 〈xx†, (λρ1+(1−λ)ρ2)〉 ≤ σ1(x)
2. This proves

that Cx is convex. Thus, for each x ∈ S1, Cx ∈ LC. Accordingly, we can state (using a lattice
theoretical language) that

Proposition 8.12. S(H) ≤
∧
x∈S1(H) Cx.

The above proposition shows that the set of separable states is included in the conjunction of a
collection of special elements of L(C). This leads to a new (partial) separability criteria, because
from Proposition 8.12 it rapidly follows that

Given the state ρ, if there exists x ∈ S1(H) such that ρ /∈ Cx, then ρ ∈ E(H).

The above discussion can be easily rephrased to prove the following theorem

Theorem 1. Use the Cholesky and the singular value decompositions to write ρ ∈ C(H) as a

sum ρ =
∑s

i=1 λixix
†
i , with x

†
ixj = 0,

ρ = LL† = (UΣV †)(UΣV †)† = UΣ2U † =⇒

〈xjx
†
j , ρ〉 = 〈xjx

†
j ,

s∑

i=1

λixix
†
i 〉 =

s∑

i=1

λi〈xjx
†
j, xix

†
i 〉 = λj.

If for some j, λj > σ1(xj)
2 then, ρ 6∈ S(H).

9 The characterization of entanglement using informational in-
variants

In this section we study the relationship between the lattice LC of a system S composed of
subsystems S1 and S2, and the lattices of its subsystems, LC1 and LC2 respectively. As in [31],
we do this by concocting a physical interpretation of the maps which can be defined between
them. Recall that we are working with spaces of arbitrary dimension.

9.1 Separable States (Going Up)

Let us define:

Definition 9.1. Given C1 ⊆ C1 and C2 ⊆ C2

C1 ⊗ C2 := {ρ1 ⊗ ρ2 | ρ1 ∈ C1, ρ2 ∈ C2} (83)

Then, we define the map:
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Definition 9.2.
Λ : LC1 × LC2 −→ LC

(C1, C2) −→ conv(C1 ⊗ C2)

where the bar denotes closure respect to norm.

In the rest of this work we will implicitly use the following proposition (see for example [65]):

Proposition 9.3. Let S be a subset of a linear space L. Then x ∈ conv(S) iff x is contained
in a finite dimensional simplex ∆ whose vertices belong to S.

From equation (48) and definition 6.5 it should be clear that

Λ(C1, C2) = S(H) (84)

Definition 6.5 also implies that for all C1 ⊆ C1 and C2 ⊆ C2:

Λ(C1, C2) = C1⊗̃C2 (85)

Proposition 9.4. Let ρ = ρ1 ⊗ ρ2, with ρ1 ∈ C1 and ρ2 ∈ C2. Then {ρ} = Λ({ρ1}, {ρ2}) with
{ρ1} ∈ LC1, {ρ2} ∈ LC2 and {ρ} ∈ C.

Proof. We already know that atoms are special elements of lattices. Thus,

Λ({ρ1}, {ρ2}) = conv({ρ1 ⊗ ρ2}) = {ρ1 ⊗ ρ2} = {ρ} (86)

Proposition 9.5. Let ρ ∈ S(H), the set of separable states. Then, there exists C ∈ LC, C1 ∈ LC1
and C2 ∈ LC2

such that ρ ∈ C = Λ(C1, C2).

Proof. Let {ρn}
∞
n=1 ⊆ S(H) be a sequence in the interior of S(H) such that ρn → ρ, then

ρn =
∑

i λiφ
n
i ⊗ ψ

n
i , with

∑
i λi = 1 and λi ≥ 0. Consider the convex sets:

C1 = conv({φni }i,n) ∈ LC1, C2 = conv({ψni }i,n) ∈ LC2, C = Λ(C1, C2) ∈ LC .

Clearly, φni ⊗ ψ
n
i ∈ C1 ⊗ C2, and then ρn ∈ C for all n ∈ N . Given that C is closed, we have

ρ ∈ C.

9.2 Projections Onto LC1 and LC2 (Going Down)

Let us now study the projections onto LC1 and LC2 . In the next proposition we will see that
they are well defined. Using the partial trace maps we can construct the induced projections:

τi : LC −→ LCi (87a)

C 7→ tri(C) (87b)

Then we can define the product map

τ : LC −→ LC1 × LC2 (88a)
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C 7→ (τ1(C), τ2(C)) (88b)

We use the same notation for τ and τi (though they have different domains) as in [31] and
section 6, and this should not introduce any difficulty. We can prove the following about the
image of τi.

Proposition 9.6. The maps τi preserve the convex structure, i.e., they map convex sets into
convex sets.

Proof. Let C ⊆ C be a convex set. Let C1 be the image of C under τ1 (a similar argument
holds for τ2). Let us show that C1 is convex. Let ρ1 and ρ′1 be elements of C1. Consider
σ1 = αρ1 + (1− α)ρ′1, with 0 ≤ α ≤ 1. Then, there exists ρ, ρ′ ∈ C such that:

σ1 = αtr1(ρ) + (1− α)tr1(ρ
′) = tr1(αρ+ (1− α)ρ′) (89)

where we have used the linearity of trace. Because of convexity of C, σ := αρ+ (1 − α)ρ′ ∈ C,
and so, σ1 = tr1(σ) ∈ C1.

Proposition 9.7. The functions τi are surjective and preserve the ∨-operation. They are not
injective.

Proof. Take the convex set C1 ∈ LC1 . Choose an arbitrary element of C2, say ρ2. Now consider
the following element of LC

C = C1 ⊗ ρ2 (90)

C is convex, and so belongs to LC , because if ρ⊗ ρ2, σ ⊗ ρ2 ∈ C, then any convex combination
αρ⊗ ρ2 + (1− α)σ ⊗ ρ2 = (αρ+ (1− α)σ)⊗ ρ2 ∈ C (where we have used the convexity of C1).
It is clear that τ1(C) = C1, because if ρ1 ∈ C1, then tr1(ρ1 ⊗ ρ2) = ρ1. So, τ1 is surjective. On
the other hand, the arbitrariness of ρ2 implies that it is not injective. An analogous argument
follows for τ2.
Let us see that τi preserves the ∨-operation. Let C and C ′ be convex subsets of C. We
must compute tr2(C ∨ C

′)) = tr2(conv(C,C
′)). We ought to show that this is the same as

conv(tr2(C), tr2(C
′)). Take x ∈ conv(tr2(C), tr2(C

′)). Then x = αtr2(ρ) + (1 − α)tr2(ρ
′),

with ρ ∈ C, ρ′ ∈ C ′ and 0 ≤ α ≤ 1. Using the linearity of trace, x = tr2(αρ + (1 − α)ρ′).
αρ+ (1− α)ρ′ ∈ conv(C,C ′), and so, x ∈ tr2(conv(C,C

′)). Hence we have

conv(tr2(C), tr2(C
′)) ⊆ tr2(conv(C,C

′)) (91)

In order to prove the other inclusion, take x ∈ tr2(conv(C,C
′)). Then,

x = tr2(αρ+ (1− α)ρ′) = αtr2(ρ) + (1− α)tr2(ρ
′) (92)

with ρ ∈ C1 and ρ′ ∈ C ′. Note that tr2(ρ) ∈ tr2(C) and tr2(ρ
′) ∈ tr2(C

′). This proves that

tr2(conv(C,C
′)) ⊆ conv(tr2(C), tr2(C

′))

Let us now consider the ∧-operation. If x ∈ τi(C ∧ C
′) = τi(C ∩ C

′) then x = τi(ρ) with
ρ ∈ C ∩C ′. But, if ρ ∈ C, then x = τi(ρ) ∈ tri(C). As ρ ∈ C ′ as well, a similar argument shows
that x = τi(ρ) ∈ tri(C

′). Then, x ∈ τi(C) ∩ τi(C
′) and
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Figure 2: The different maps between LC1 , LC2 , LC1 × LC2 , and LC

τi(C ∩ C
′) ⊆ τi(C) ∩ τi(C

′), (93)

which is tantamount to

τi(C ∧ C
′) ≤ τi(C) ∧ τi(C

′). (94)

These sets are not, in general, equal. The following example illustrates the assertion. Take
{ρ1 ⊗ ρ2} ∈ L and {ρ1 ⊗ ρ

′
2} ∈ L, with ρ

′ 6= ρ. It is clear that {ρ1 ⊗ ρ2} ∧ {ρ1 ⊗ ρ
′
2} = 0 and so,

τ1({ρ1 ⊗ ρ2} ∧ {ρ1 ⊗ ρ
′
2}) = 0. On the other hand, τ1({ρ1 ⊗ ρ2}) = {ρ1} = τ1({ρ1 ⊗ ρ

′
2}), and

then τ1({ρ1 ⊗ ρ2}) ∧ τ1({ρ1 ⊗ ρ
′
2}) = {ρ1}. A similar reasoning holds for the ¬-operation.

9.3 Geometrical Characterization of Entanglement

We have shown that it is possible to extend LvN in order to deal with statistical mixtures and
that L and LC are possible extensions. It would be interesting to search for a characterization
of entanglement within this framework. Let us see first what happens with the functions Λ ◦ τ
and τ ◦ Λ. We have:

Proposition 9.8. τ ◦ Λ(C1, C2) = (C1, C2) for every closed convex sets C1 ⊆ C1 and C2 ⊆ C2.

Proof.
τ1(Λ(C1, C2)) = τ1(conv(C1 ⊗ C2)) = tr1(conv(C1 ⊗ C2)) = C1 = C1

τ2(Λ(C1, C2)) = τ2(conv(C1 ⊗ C2)) = tr2(conv(C1 ⊗ C2)) = C2 = C2

Then, τ(Λ(C1, C2)) = (C1, C2).

Again, as in [31], if we take into account simple physical considerations, Λ ◦ τ is not the identity
function, because when we take partial traces we face the risk of losing information, that will
not be recovered when we multiply states. Thus we reach the same conclusion as before [31]:
“going down and then going up is not the same as going up and then going down”. We depict
w the pertinent maps in Figure 9.2. How is this stuff related to entanglement? If we restrict
Λ ◦ τ to the set of product states, then it does reduce itself to the identity function. Indeed, if
ρ = ρ1 ⊗ ρ2, then:

Λ ◦ τ({ρ}) = {ρ}. (95)

On the other hand, it should be clear that if ρ is an entangled state

Λ ◦ τ({ρ}) 6= {ρ}, (96)

because Λ ◦ τ({ρ}) = {tr2(ρ) ⊗ tr1(ρ)} 6= {ρ} for any entangled state. This property can be
regarded as a signpost for entanglement. There are mixed states which are not product states.
Thus, entangled states are not the only ones satisfying equation (96). What is the condition
satisfied for a general mixed state? The following proposition summarizes the preceding consid-
erations.
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Proposition 9.9. If ρ is a separable state, then there exists a convex set, Sρ ⊆ S(H) such that
ρ ∈ Sρ and Λ ◦ τ(Sρ) = Sρ. More generally, for a convex set C ⊆ S(H), there exists a convex
set SC ⊆ S(H) such that Λ ◦ τ(SC) = SC . For a product state, we can choose Sρ = {ρ}. If ρ
can be written as a finite convex sum of product states, then the convex set Sρ can be taken as a
polytope. On the other hand, for any C ∈ LC which has at least one non-separable state, there
is NO convex set S such that C ⊆ S and Λ ◦ τ(S) = S.

Proof. Product case. We have already seen above that if ρ is a product state, then Λ ◦ τ({ρ}) =
{ρ}, and so Sρ = {ρ}.
Finite combination case. If ρ can be written as a finite convex combination of product states,

then there exists ρAk ∈ C1, ρ
B
k ∈ C2 and αik ≥ 0,

∑N
k=1 α

i
k = 1 such that

ρ =
N∑

k=1

αkρ
A
k ⊗ ρ

B
k (97)

Define first
Sρ = conv({ρAk ⊗ ρ

B
l }) (98)

Sρ is the closed set of all convex combinations of products of the elements appearing in the
decomposition of ρ. It should be clear that ρ ∈ Sρ. Let us compute Λ ◦ τ(Sρ).

tr1(σ) =

N∑

k=1

(

N∑

l=1

λkl)ρ
A
k =

N∑

k=1

µkρ
A
k , µk :=

N∑

l=1

λkl. (99)

In an analogous way we may show that an element of τ2(Sρ) has the form
∑N

l=1 νlρ
A
l with

νl =
∑N

k=1 λkl. Note that
∑N

k=1 µk =
∑N

l=1 νl = 1. In order to compute Λ(τ1(Sρ), τ2(Sρ)) we
must construct the convex hull of the set

τ1(Sρ)⊗ τ2(Sρ) = {σ1 ⊗ σ2|σ1 ∈ τ1(Sρ), σ2 ∈ τ2(Sρ)} = {
N∑

k,l=1

µkνlρ
A
k ⊗ ρ

B
l }, (100)

and we conclude that

Λ ◦ τ(Sρ) = conv({
N∑

kl=1

µkνlρ
A
k ⊗ ρ

B
l }) = conv({ρAk ⊗ ρ

B
l }) = Sρ. (101)

It is apparent that Sρ is a polytope.

Limit point case. There is still another possibility. Namely if ρ cannot be written as in (97),

but there exists ρAik ∈ C1, ρ
B
ik ∈ C2 and αik ≥ 0,

∑Ni

k=1 αik = 1 such that ρi =
∑Ni

k=1 αikρ
A
ik ⊗ ρ

B
ik

converges to ρ as i goes to infinity. Consider the set of all possible products of states which
appear in the decomposition of the ρi, namely

S0 := {ρ
A
ik ⊗ ρ

B
i′l, for all i, i

′, k, l} (102)

and define the closure of its convex hull as

Sρ := conv(S0) (103)
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Remember that convex hull means only taking finite sums. It is clear that ρ ∈ Sρ and that Sρ
is convex by construction (the closure of a convex set is also convex). Let us see what happens
when we apply Λ ◦ τ to Sρ,

Λ(τ(Sρ)) = conv(τ1(Sρ)⊗ τ2(Sρ)) (104)

Any of the ρAik belong to τ1(Sρ) (the same for ρBi′k and τ2(Sρ)). Then, it is clear that S0 ⊆
conv(τ1(Sρ)⊗ τ2(Sρ)). As conv(τ1(Sρ)⊗ τ2(Sρ)) is convex and the closure of sets preserves the
inclusion, then we have Sρ ⊆ Λ ◦ τ(Sρ)) (look at Equation (103)). On the other hand, any
element ρ1 of τ1(Sρ) can be written as a finite sum ρ1 =

∑
αikρ

A
ik (

∑
αik = 1, αik ≥ 0) or as a

limit of such finite sums (we are using a property of partial traces tri: they are continuous linear
maps). The same happens for an element ρ2 ∈ τ2(Sρ) (taking the tensor product of density
operators produces a continuous map). Then, any element of τ1(Sρ) ⊗ τ2(Sρ) may be written
as a finite sum

∑
αikβi′lρ

A
ik ⊗ ρ

B
i′l or as a limit of such sums. This means that any element of

τ1(Sρ) ⊗ τ2(Sρ) is also an element of Sρ. As Sρ is convex and closed by construction, we will

have Λ ◦ τ(Sρ) = conv(τ1(Sρ)⊗ τ2(Sρ)) ⊆ Sρ, which proves that Λ ◦ τ(Sρ) = Sρ.

The space of separable states S(H) is a convex set. Let us see that it is invariant under Λ ◦ τ .
First of all, we know that S(H) is formed by the closure of all possible convex combinations of
products of the form ρ1 ⊗ ρ2, with ρ1 ∈ C1 and ρ2 ∈ C2. But each one of these tensor products,
Λ ◦ τ({ρ1⊗ ρ2}) = {ρ1⊗ ρ2}, belongs to Λ ◦ τ(S(H)). Given that Λ ◦ τ(S(H)) is a closed convex
set, we have Λ ◦ τ(S(H)) ⊇ S(H). On the other hand we know that the image of Λ ◦ τ is always
separable, so we can conclude that

Λ ◦ τ(S(H)) = S(H) (105)

Now, consider C ∈ LC such that there exists ρ ∈ C, with ρ nonseparable. Given that Λ ◦ τ(S) ⊆
S(H) for all S ∈ LC , it could never happen that there exists S ∈ LC such that C ⊆ S and
Λ ◦ τ(S) = S.

From the last proposition, we conclude that there exists an interesting property which the convex
subsets of separable states satisfy, while convex subsets which include non-separable states do
not. This “existence theorem” motivates the following definition for the proposition C ∈ LC:

Definition 9.10. C ∈ LC is a separable proposition if there exists SC ∈ LC such that Λ◦τ(SC) =
SC and C ⊆ SC . Otherwise, it is a non-separable or entangled proposition. The definition is
equivalent to the statement C ⊆ S(H).

Another conclusion of proposition 9.9 is that a density matrix ρ is separable iff there exists a
convex set Sρ such that ρ ∈ Sρ and Λ ◦ τ(Sρ) = Sρ. Thus, proposition 9.8 also provides an
entanglement criterium which includes the infinite dimensional case (see also [36]):

ρ ∈ S(H)⇐⇒ there exists a convex set Sρ with ρ ∈ Sρ such that Λ ◦ τ(Sρ) = Sρ. (106)
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9.4 An unifying generalization for the entanglement of mixed states

In the last section we have introduced a new separability criterium which is also valid for the
infinite dimensional case. Now we proceed to an important issue regarding pure states (see also
the discussions in [36]). It is a well known fact that pure states are separable, if and only if they
are product states. This means that |ψ〉〈ψ| will be separable if and only if there exist |ϕ1〉 and
|ϕ2〉 such that |ψ〉 = |ϕ1〉 ⊗ |ϕ2〉. This implies that the state |ψ〉〈ψ| is invariant under the map

Ω : C −→ C
ρ 7→ ρA ⊗ ρB, (107)

and this in turn means that

|ψ〉〈ψ| ∈ S(H)⇐⇒ Ω(|ψ〉〈ψ|) = |ψ〉〈ψ|. (108)

Such simple separability criterium for the pure case is unfortunately invalid for the mixed case.
In what follows we show that our separability criteria allows for an interesting unifying general-
ization.

First of all, notice that only product states exhibit the property of being invariant under Ω. Is
there any generalization of Ω and of the notion of product states? Let us look in more detail to
the invariance under Ω-property. In mathematical terms, suppose that a state ρ satisfies

Ω(ρ) = ρ. (109)

This is equivalent to stating that ρ can be fully recovered from its reduced states by using local
operations. It is easy to show that the function Λ ◦ τ satisfies

Λ ◦ τ(Λ ◦ τ(C)) = Λ ◦ τ(C), (110)

and this is equivalent to

(Λ ◦ τ)2 = Λ ◦ τ, (111)

a property that Ω also satisfies, i.e.

Ω2 = Ω, (112)

as may be easily checked out. It is trivially shown that, when restricted to “one point” convex
subsets of the form {ρ} (an arbitrary state), Λ ◦ τ coincides with Ω, that is

Λ ◦ τ({ρ}) = {ρA ⊗ ρB} = {Ω(ρ)}. (113)

Equations (111), (112) and (113) clearly suggest that Λ ◦ τ is a suitable generalization of Ω to
arbitrary convex subsets (a single state being a particular case of one point convex sets). The
separability criterium presented in section 9 provides the clue for generalizing product states to
convex subsets, i.e., the convex set generalization of a product state C will satisfy

Λ ◦ τ(C) = C, (114)

and this reduces to the the separability properties defined in section 9. The special subsets
of C that we are concerned with exhibit the following property: they can be fully recovered
via all possible tensor products and mixtures of its sets of reduced states. More specifically,
given a convex set C satisfying (114), it can be recovered from the sets of its reduced states,
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namely τ1(C) and τ2(C) via all possible tensor products and all possible convex mixtures. In
physical terms this means that they can be recovered using classical and local operations (just
adding systems via all possible tensor products and then considering all possible mixtures of
the resulting states). The content of this discussion is compactly encapsulated into equation
(114). Convex subsets with this property where termed Convex Invariant Subsets (CSS) in [36].
Now it should be clear that CSS are proper generalizations of product states to arbitrary convex
subsets.
We can now generalize equation (108) to arbitrary states as follows. Separability criterium 106
implies that a state ρ is separable iff it belongs to a CSS C such that Λ ◦ τ(C) = C. The
analogy with the pure-states case is clear if we effect the identification ρ −→ {ρ} (i.e., the state
considered as an element to the state considered as a particular case of convex subset).
We have thus shown that the map Λ ◦ τ is a suitable generalization of Ω. The sets invariant
under Ω are product states and the sets invariant under Λ ◦ τ are CSS, a suitable generalization
of product states. We may now generalize equation (108) to any state as follows:

ρ ∈ S(H)⇐⇒ ∃C (a CSS), Λ ◦ τ(C) = C, (115)

a neat extension of (108). For the finite dimensional case the analogy is stronger still: criterium
(108) can be rephrased using von Neumann’s entropy

S(ρ) = −tr(ρ ln(ρ)), (116)

as follows:

ρ ∈ S(H)⇐⇒ S(ρA) = 0 = S(ρB), (117)

where ρA and ρB are the reduced states of ρ. As products of pure states generate (in the convex
sense) all separable states, it is possible to show that the CSS-criterium may be, in particular,
chosen to be generated by products of pure states. von Neumann’s entropy reaches its minimum
value in such an instance. Summing up:

ρ ∈ S(H)⇐⇒ there exist C such that ρ ∈ C and Λ ◦ τ(C) = C ⇐⇒ (finite dimension) there
exist C such that ρ ∈ C, Λ ◦ τ(C) = C and inf{S(σ) |σ ∈ C} = 0.

The fact that the above structure may be found for arbitrary states is a clear conceptual simpli-
fication for the characterization of entanglement, providing a unifying framework which general-
izes (108) to arbitrary states. In the following section we outline how this geometrical structure
extends to arbitrary COMs, and thus to any statistical theory.

10 Entanglement and separability in arbitrary convexity models

In Section 3 we reviewed how to construct a general setting for convex operational models out
of which the quantum case was a particular example. In this section we study how to extend
our geometrical formulation of entanglement to arbitrary statistical models.

Given two convex operational models (A,A♯, uA) and (B,B♯, uB), a morphism between them
will be given by a positive linear map φ : A→ B such that the linear adjoint map φ∗ : B∗ → A∗

is positive with respect to the cones A♯
+ and B

♯
+.

A link between (or process from)) A - B will be represented by a morphism φ : A → B such
that, for every state α ∈ ΩA, uB(φ(α)) ≤ 1 (this is a normalization condition). uB(φ(α)) will
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represent the probability that the process represented by φ take place. For the special case of
quantum mechanics, we will show that the above processes preserve the convex structure of the
cone of positive self adjoint operators. Also, we demonstrate that when the processes preserve
trace (i.e., when they map density operators into density operators and thus represent quantum
evolutions), they will also preserve the lattice structure of LC .
In the preceding Section we saw how to characterize entanglement and separability using maps
between elements of LC and LCi . The interesting point here is that the most salient feature of
our lattices is their convex structure, and this will allow us to extend the notions of entanglement
and separability to any COM. This is done as follows. In [5] extensions of COM’s are studied (we
review here their definition of extension slightly modifying the reference’s notation). A COM
(C,C♯, uC) will be said to be an extension of (A,A♯, uA) if there exists a morphism φ : C→ A
which is surjective.
In order to look for a generalization of entanglement which captures the results of previous

Sections we must look at triads of COM’s (C,C♯, uC), (C1,C
♯
1, uC1

), and (C2,C
♯
2, uC2

), such

that there exist two morphisms φ1 and φ2 with (C,C♯, uC) an extension of (C1,C1
♯, uC1

)

and (C2,C2
♯, uC2

). It is clear that φ = (φ1, φ2) may be considered as the best candidate for a
generalization of τ . Now, if we want an analogue of Λ, we must demand additional requirements.
We are looking for a map Ψ with the following property. Ψ maps any pair of non-empty convex
subsets (C1, C2) of C1×C2 into a non-empty convex subset C of C with this particular property:
for any c ∈ C, we must have φ1(c) ∈ C1 and φ2(c) ∈ C2. Such property guarantees that for any
pair of states a1 and a2 there will always exist at least one state c ∈ C such that φ1(c) = a1
and φ2(c) = b1. Why? Because if C1 = {c1} and C2 = {c2}, then we must have φ1(c) = a1 and
φ2(c) = b2, which guarantees that for any states c1 and c2 there will always exist a state c for
which c1 and c2, respectively, are the reduced states relative to the maps φi. As the maps φi are
morphisms, using them it is possible to define canonically induced functions on convex subsets,
and them to map convex subsets of C into convex subsets of Ci (there is an analogy with the
earlier language involving τi’s and partial traces). With some abuse of notation we will keep
calling them φ′is, without undue harm.

Summing up:

Definition 10.1. A triad (C,C♯, uC), (C1,C
♯
1, uC1

), and (C2,C
♯
2, uC2

) will be called a triple
compound system if

1. There exist morphisms φ1 and φ2 such that (C,C♯, uC) is an extension of (C1,C
♯
1, uC1

)

and (C2,C
♯
2, uC2

).

2. There exists a map Ψ : P(C1) × P(C2) → P(C) which maps pair of non-empty convex
subsets (C1, C2) ∈ P(C1) × P(C2) into a nonempty convex subset C ∈ P(C), such that
for every c ∈ C, φ(c) = (φ1(c), φ2(c)) ∈ C1 × C2.

If the map Ψ of the triple compound system satisfies that for any c1 and c2, Ψ({c1}, {c2}) = {c}
for some c ∈ C, we will say that it is a strictly two-components triple compound system.

With this constructions at hand, let us restrict for the sake of simplicity to strictly two-
components triple compound systems and look for a generalization of entanglement and sep-
arability. It is clear now that the analogues of the maps Λ and τ are Ψ and φ, respectively.
Thus, it is natural now state

Definition 10.2. Given a strictly two-components triple compound system (C,C♯, uC), (C1,C
♯
1, uC1

),

and (C2,C
♯
2, uC2

), with an up-map Ψ and a down-map φ, then
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1. A state c ∈ C will be called non-product state if Ψ ◦ φ({c}) 6= {c}. Otherwise, it will be
called a product state.

2. For an invariant convex subset C one has C ∈ P(C), such that Ψ ◦ φ(C) = C

3. If there exist a largest (in the sense of the lattice order) invariant subset, we will denote it
by S(C).

4. A strictly two-components triple compound system for which there exists S(C) and is
strictly included in C, will be said to be an entanglement operational model.

5. In an entanglement operational model a state c which satisfies c /∈ S(C) will be said to be
entangled.

It is clear that using these constructions we can export the quantum entanglement structure to
a much wider class of COM’s, and for that reason, to many new statistical physical systems.
It should be clear also that quantum mechanics is the best example for entanglement, and
that all states in classical mechanics are separable. Remark that the properties of a strictly two-
components triple compound systems will depend, in a strong sense, on the choice of the functions
Ψ and φ. These should be selected as the canonical ones, i.e., the ones which are somehow natural
for the physics of the problem under study. Notice that nothing prevents us from make more
general choices for practical purposes. The physical criterium for the construction of ψ should
be that the simple addition of the systems involved should not generate new correlations. We
can also “postulate” a generalized separability criterium:

Definition 10.3.

A state c ∈ C in an entanglement operational model is said to be separable iff there exists
C ⊆ S(C) containing c such that Ψ ◦ φ(C) = C.

These constructions may be useful to develop and search for generalizations/corrections of quan-
tum mechanics and for the study of quantum entanglement in theories more general than quan-
tum mechanics. Our constructions are a valid alternative to others that one can find in the
literature. An interesting open problem would be that of finding the way in which we can
express the violation of Bell’s inequalities using this approach.
In this section we restricted ourselves to strictly two-components compound triples. An important
example of a two-components compound triple which is not strict is to look at a quantal three-
components systems out of which we only consider two subsystems. In that case, to any product
state of the first two subsystems we can add any other state of the third one, and the map Ψ
will yield a convex subset of more than one element.

11 Conclusions

In this work we studied different mathematical structures of the convex subsets of the quantum
set of states. We showed that these sets are endowed with a canonical lattice structure and ex-
tended previous results to the infinite dimensional case. This lattice structure reveals interesting
algebraic and geometrical properties of the quantum set of states.
We showed in Section 8 that the lattice structure is strongly linked to functionals and entangle-
ment witness. Thus, many of previous results might be translated into our language. At the end
of this Section we also provided a new (partial) entanglement criteria easily expressible in lattice
theoretical language. We also showed how this algebraic and geometrical convex set-viewpoint
can be used to reformulate the Max-Ent principle in a form extensible to any statistical theory,
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via the COM approach. In particular, it may be useful to include fussy measurements (POVM’s)
into the Max-Ent formalism.
We also extended a previous abstract separability criterium, strongly linked to the lattice struc-
ture of convex subsets, to the infinite dimensional case. Furthermore, we showed that this
geometrical setting can be exported to any arbitrary statistical model via the COM approach,
which may be useful to analyze the classicality of theories which generalize quantum mechanics,
and also for the study of semiclassical models.
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A Basic mathematical concepts used in the text

1. A function is surjective (onto) if every possible image is mapped to by at least one argu-
ment. In other words, every element in the codomain has non-empty preimage. Equiva-
lently, a function is surjective if its image is equal to its codomain. A surjective function
is a surjection.

2. A linear functional (also called a one-form or covector) is a linear map from a vector space to
its field of scalarsK. In general, if V is a vector space over a fieldK, then a linear functional
f is a function from V to K, which is linear. Linear functionals are particularly important
in quantum mechanics. Quantum mechanical systems are represented by Hilbert spaces,
which are anti-isomorphic to their own dual spaces. A state of a quantum mechanical
system can be identified with a linear functional.

3. Suppose that K is a field (for example, the real numbers) and V is a vector space over
K. If v1, . . . , vn are vectors and a1, . . . , an are scalars, then the linear combination of
those vectors with those scalars as coefficients is, of course,

∑n
i=1 ai vi. By restricting

the coefficients used in linear combinations, one can define the related concepts of affine
combination, conical combination, and convex combination, together with the associated
notions of sets closed under these operations. If

∑n
i=1 ai = 1, we have an affine combi-

nation, its span being an affine subspace while the model space is an hyperplane. If all
ai ≥ 0, we have instead a conical combination, a convex cone and a quadrant, respectively.
Finally, if all ai ≥ 0 plus

∑n
i=1 ai = 1, we have now a convex combination, a convex set

and a simplex, respectively.

4. By a σ−algebra one means a collection of sets that satisfy certain properties, used in the
definition of measures: it is the collection of sets over which a measure is defined. The
concept is important in probability theory, being there interpreted as the collection of
events which can be assigned probabilities. Such an algebra, over a set X, is a nonempty
collection S of subsets of X (including X itself) that is closed under complementation and
countable unions of its members. It is an algebra of sets, completed to include countably
infinite operations. The pair (X,S) is also a field of sets, called a measurable space.

5. A quotient space (also called an identification space) is, intuitively speaking, the result of
identifying certain points of a given space. The points to be identified are specified by an
equivalence relation. This is commonly done in order to construct new spaces from given
ones. Let (X, τX) be a topological space, and let R be an equivalence relation on X. The
quotient space Y = X/R is defined to be the set of equivalence classes of elements of X:

Y = {[x] : x ∈ X} = {{v ∈ X : vRx} : x ∈ X},
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equipped with the topology where the open sets are defined to be those sets of equivalence
classes whose unions are open sets in X. Equivalently, we can define them to be those
sets with an open pre-image under the quotient map which sends a point in X to the
equivalence class containing it.

6. Banach spaces are vector spaces V with a norm ||.|| such that every Cauchy sequence
(with respect to the metric d(x, y) = ||x − y|| in V ) has a limit in V (with respect to the
topology induced by that metric). As for general vector spaces, a Banach space over the
real numbers is called a real Banach space, and a Banach space over the complex numbers
is called a complex Banach space.

7. Algebras: general vector spaces do not possess a multiplication between vectors. A vector
space equipped with an additional bilinear operator defining the multiplication of two
vectors is an algebra over a field. Many algebras stem from functions on some geometrical
object: since functions with values in a field can be multiplied, these entities form algebras.

8. In functional analysis, a Banach algebra is an associative algebra A over the real or complex
numbers which at the same time is also a Banach space The algebra multiplication and
the Banach space norm are required to be related by the following inequality: ∀x, y ∈ A :
‖x y‖ ≤ ‖x‖ ‖y‖ (i.e., the norm of the product is less than or equal to the product of the
norms). This ensures that the multiplication operation is continuous. This property is
found in the real and complex numbers; for instance.

9. A C∗−algebra is a Banach algebra with an antiautomorphic involution ∗ which satisfies
(x∗)∗ = x (1); x∗y∗ = (yx)∗ (2); x∗ + y∗ = (x+ y)∗ (3); and (cx)∗ = c∗ x∗ (4), where c∗ is
the complex conjugate of c, and whose norm satisfies ||xx∗|| = ||x||2.

10. C∗-algebras are an important area of research in functional analysis. An outstanding ex-
ample is the complex algebra of linear operators on a complex Hilbert space with two
additional properties:
it is a topologically closed set in the norm topology of operators and
is closed under the operation of taking adjoints of operators.
It is generally believed that these algebras were first considered primarily for their use
in quantum mechanics to model algebras of physical observables, beginning with Werner
Heisenberg’s matrix mechanics and developed further by Pascual Jordan circa 1933. Af-
terwards, John von Neumann established a general framework for them which culminated
in papers on rings of operators, considered as a special class of C*-algebras known as von
Neumann algebras.

11. It is now generally accepted that the description of quantum mechanics in which all self-
adjoint operators represent observables is untenable. For this reason, observables are
identified to elements of an abstract C*-algebra A (that is one without a distinguished
representation as an algebra of operators) and states are positive linear functionals on A.
However, by using the GNS construction, we can recover Hilbert spaces which realize A as
a subalgebra of operators. Geometrically, a pure state on a C*-algebra A is a state which
is an extreme point of the set of all states on A. By properties of the GNS construction
these states correspond to irreducible representations of A. The states of the C*-algebra
of compact operators K(H) correspond exactly to the density operators and therefore
the pure states of K(H) are exactly the pure states in the sense of quantum mechanics.
The C*-algebraic formulation can be seen to include both classical and quantum systems.
When the system is classical, the algebra of observables become an abelian C*-algebra. In
that case the states become probability measures.
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12. In functional analysis, given a C*-algebra A, the Gelfand-Naimark-Segal (GNS) construc-
tion establishes a correspondence between cyclic *-representations of A and certain linear
functionals on A (called states). The correspondence is shown by an explicit construction
of the *-representation from the state.

13. A *-representation of a C*-algebra A on a Hilbert space H is a mapping π from A into
the algebra of bounded operators on H.

14. Point-wise convergence is one of various senses in which a sequence of functions can con-
verge to a particular function. Suppose {fn} is a sequence of functions sharing the same
domain and codomain. The sequence {fn} converges pointwise to f , often written as
limn→∞ fn = f point wise iff for every x in the domain one has limn→∞ fn(x) = f(x).

15. Every subset Q of a vector space is contained within a smallest convex set (called the
convex hull of Q), namely the intersection of all convex sets containing Q,

16. A set with a binary relation R on its elements that is reflexive (for all a in the set, aRa),
antisymmetric (if aRb and bRa, then a = b) and transitive (if aRb and bRc, then aRc) is
described as a partially ordered set or poset,

17. Let X be a space. Its dual space X∗ consists of all linear functions from X into the base
field K which are continuous with respect to the prevailing topology.

18. The weak topology on X is the coarsest topology (the topology with the fewest open sets)
such that each element of X∗ is a continuous function.

19. The predual of a space D is a space D′ whose dual space is D. For example, the predual
of the space of bounded operators B(H) is the space of trace class operators,

20. The ultraweak topology, also called the weak-* topology, on the set B(H) is the weak-
topology obtained from the trace class operators on H. In other words it is the weakest
topology such that all elements of the predual are continuous (when considered as functions
on H),

21. A partially-ordered group is a group (G,+) equipped with a partial order “⊢” that is
translation-invariant. That is, “⊢” has the property that, for all a, b, and g in G, if a ⊢ b
then a+ g ⊢ b+ g and g + a ⊢ g + b,

22. An element x of G is called positive element if 0 ⊢ x. The set of elements 0 ⊢ x is often
denoted with G+, and it is called the positive cone of G. So we have a ⊢ b if and only if
−a+ b ∈ G+.

23. For the general group G, the existence of a positive cone specifies an order on G. A group
G is a partially-ordered group if and only if there exists a subset J (which is G+) of G
such that: 0 ∈ J ; if a ∈ J and b ∈ J then a+ b ∈ J ; if a ∈ J then −x+ a+ x ∈ J for each
x of G; if a ∈ J and −a ∈ J then a ⊢ 0.

24. In linear algebra, a matrix decomposition is a factorization of a matrix into some canonical
form. There are many different matrix decompositions; each finds use among a particular
class of problems. The Cholesky decomposition is applicable to any square, symmetric,
positive definite matrix A in the form A = UT U , where U is upper triangular with positive
diagonal entries. The Cholesky decomposition is a special case of the symmetric LU
decomposition, with L = UT . The Cholesky decomposition is unique and also applicable
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for complex hermitian positive definite matrices. The singular value decomposition is
applicable to m times n matrix A in the fashion A = UDV †, where D is a nonnegative
diagonal matrix while U , V are unitary matrices, and V † denotes the conjugate transpose
of V (or simply the transpose, if V contains real numbers only). The diagonal elements of
D are called the singular values of A.

25. The orthogonal complement W⊥ of a subspace W of an inner product space V is the set
of all vectors in V that are orthogonal to every vector in W , i.e.,

W⊥ = {x ∈ V : 〈x, y〉 = 0 for all y ∈W} .

26. A topological space is called separable if it contains a countable dense subset. In other
words, there exists a sequence {xn}

∞
n=1 of elements of the space such that every nonempty

open subset of the space contains at least one element of the sequence.

27. A cover of a set X is a collection of sets whose union contains X as a subset.

28. A topological space X is called compact if each of its open covers has a finite subcover.
Otherwise it is called non-compact.

29. A relatively compact subspace (or relatively compact subset) Y of a topological space X
is a subset whose closure is compact.

30. T is a compact operator on Hilbert’s space if the image of each bounded set under T is
relatively compact.
Compact operators on Hilbert spaces are a direct extensions of matrices. In such spaces
they are the closure of finite-rank operators. As such, results from matrix theory can
sometimes be extended to compact operators using similar arguments. In contrast, the
study of general operators on infinite dimensional spaces often requires a genuinely different
approach. For example, the spectral theory of compact operators on Banach spaces takes
a form that is very similar to the Jordan canonical form of matrices. In the context of
Hilbert spaces, a square matrix is unitarily diagonalizable if and only if it is normal. A
corresponding result holds for normal compact operators on Hilbert spaces.

31. A simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary dimen-
sion. Specifically, an n−simplex is an n−dimensional polytope which is the convex hull of
its n+ 1 vertices. A 2-simplex is a triangle, a 3-simplex is a tetrahedron, and a 4-simplex
is a pentachoron. A single point may be considered a 0-simplex, and a line segment may
be considered a 1-simplex. A simplex may be defined as the smallest convex set containing
the given vertices.

B Lattices

A lattice L (also called a poset) is a partially ordered set (also called a poset) in which any
two elements a and b have a unique supremum (the elements’ least upper bound “a ∨ b”; called
their join) and an infimum (greatest lower bound “a ∧ b”; called their meet). Lattices can
also be characterized as algebraic structures satisfying certain axiomatic identities. Since the
two definitions are equivalent, lattice theory draws on both order (>, <) theory and universal
algebra. Semilattices include lattices, which in turn include Heyting and Boolean algebras.
These “lattice-like” structures all admit order-theoretic as well as algebraic descriptions.
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A bounded lattice has a greatest (or maximum) and least (or minimum) element, denoted 1 and
0 by convention (also called top and bottom, respectively). Any lattice can be converted into
a bounded lattice by adding a greatest and least element, and every non-empty finite lattice
is bounded. For any set A, the collection of all subsets of A (called the power set of A) can
be ordered via subset inclusion to obtain a lattice bounded by A itself and the null set. Set
intersection and union represent the operations meet and join, respectively.

A poset is called a complete lattice if all its subsets have both a join and a meet. In particular,
every complete lattice is a bounded lattice. While bounded lattice homomorphisms in general
preserve only finite joins and meets, complete lattice homomorphisms are required to preserve
arbitrary joins and meets.

Any quantum system represented by an N−dimensional Hilbert space H has associated a lattice
formed by all its convex subspaces LvN (H) =< P(H), ∩, ⊕, ¬, 0, 1 >, where 0 is the empty
set ∅, 1 is the total space H, ⊕ the closure of the sum, and ¬(S) is the orthogonal complement
of a subspace S [41]. This lattice was called “Quantum Logic” by Birkhoff and von Neumann.
One refers to this lattice as the von Neumann-lattice LvN (H)) [41].

Let L be a bounded lattice with greatest element 1 and least element 0. Two elements x and y of
the lattice are complements of each other if and only if: x

∨
y = 1 and x

∧
y = 0. In the case the

complement is unique, we write ¬x = y and equivalently, ¬y = x. A bounded lattice for which
every element has a complement is called a complemented lattice. The corresponding unitary
operation over the lattice, called complementation, introduces an analogue of logical negation
into lattice theory. The complement is not necessarily unique, nor does it have a special status
among all possible unitary operations over L.

Distributive lattices are lattices for which the operations of join and meet distribute over each
other. The prototypical examples of such structures are collections of sets for which the lattice
operations can be given by set union and intersection. Indeed, these lattices of sets describe the
scenerio completely. A complemented lattice that is also distributive is a Boolean algebra. For
a distributive lattice, the complement of x, when it exists, is unique.

The concept of lattice’s atom is of great physical importance. If L has a null element 0, then an
element x of L is an atom if 0 < x and there exists no element y of L such that 0 < y < x. One
says that L is:
i) Atomic, if for every nonzero element x of L, there exists an atom a of L such that a = x
ii) Atomistic, if every element of L is a supremum of atoms.

A modular lattice is one that satisfies the following self-dual condition (modular law) x ≤ b
implies x ∨ (a ∧ b) = (x ∨ a) ∧ b, where ≤ is the partial order, and ∨ and ∧ (join and meet,
respectively) are the operations of the lattice.

Modular lattices arise naturally in algebra and in many other areas of mathematics. For example,
the subspaces of a vector space (and more generally the submodules of a module over a ring) form
a modular lattice. Every distributive lattice is modular. In a not necessarily modular lattice,
there may still be elements b for which the modular law holds in connection with arbitrary
elements a and x (≤ b). Such an element is called a modular element. Even more generally, the
modular law may hold for a fixed pair (a, b). Such a pair is called a modular pair, and there are
various generalizations of modularity related to this notion and to semi-modularity.

For a, b ∈ L, to assert that a is orthogonal to b (a⊥b) implies a∧ b = 0. Equivalently, in “order”
terms, one says that a ≤ b⊥. Now, L is an orthocomplemented lattice if whenever a⊥b then
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b ≤ a⊥. ⊥ is a symmetric relation.

For any a ∈ L, define M(a) := {c ∈ L|c⊥a, and 1 = c ∨ a}. An element of M(a) is called an
orthogonal complement of a. We have a⊥ ∈ M(a), and any orthogonal complement of a is a
complement of a. If we replace the unity in M(a) by an arbitrary element b ≥ a, then we have
the set M(a, b) := {c ∈ L|c ∨ a and b = c ∨ a}. An element of M(a, b) is called an orthogonal
complement of a relative to b . Clearly, M(a) = M(a, 1). Also, for a ≤ cb , c ∈ M(a, b), iff
a ∈ M(c, b). As a result, we can define still another symmetric binary operator ⊕ on [0, b],
given by b = a ⊕ c iff c ∈ M(a, b). Note that b = b ⊕ 0. A final operation is the “difference”
b− a = b ∧ a. Some properties: (1) a− a = 0, a− 0 = a, 0− a = 0, a− 1 = 0 , and 1− a = a⊥;
(2) b− a = a− b; (3) if a ≤ b, then a ∧ (b− a) and a⊕ (b− a) ≤ b.

Definition: A lattice L is called an orthomodular lattice if i) L is orthocomplemented, and
(orthomodular law) ii) if x ≤ y, then y = x ⊕ (y − x). The orthomodular law can be recasted
as follows: if x ≤ y , then y = x ∨ (y ∧ x⊥). Equivalently, x ≤ y implies y = (y ∧ x) ∨ (y ∧
x⊥). Such relation is automatically true in an arbitrary distributive lattice, even without the
assumption that x ≤ y. For example, the lattice L(H) of closed subspaces of a Hilbert space
H is orthomodular. L(H) is modular iff H is finite dimensional. In addition, if we give the
set Pp(H) of (bounded) projection operators on H an ordering structure by defining P ≤ Q iff
P(H) ≤ Q(H), then Pp(H)is lattice isomorphic to L(H), and hence orthomodular [11].

C Faces of a convex set

We define here a convex set’s face in a real vector space of finite dimension. Let C be a convex
subset of Rn and let us introduce the auxiliary notions of oriented hyperplanes and supporting
hyperplanes. Given n,p ∈ R

n let us define the hyperplane H(n,p) via

H(n,p) = {x ∈ R
n : n · (x− p) = 0}.

If n = 0 it is equal to R
n and we call it degenerate. As long as H(n,p) is nondegenerate,

its removal disconnects R
n. The upper halfspace of Rn determined by H(n,p) is H(n,p)+ =

{x ∈ R
n : n · (x − p) ≥ 0}. A hyperplane H(n,p) is a supporting hyperplane for C if its upper

halfspace contains C, that is, if C ⊂ H(n,p)+.

Using this terminology, we can define a face of a convex set C to be the intersection of C with a
supporting hyperplane of C. Notice that we still get both the empty set and C itself as improper
faces of C. For the definition of a face in the infinite dimensional case we extend the definition
of a supporting hyperplane to a real Hilbert space H. Given n,p ∈ H, we say that H(n,p),

H(n,p) = {x ∈ H : 〈n,x− p〉 = 0},

is a supporting hyperplane if C ⊂ H(n,p)+. Note that H(n,p) is closed and using Riesz rep-
resentation theorem, for every closed hyperplaneH there exists n,p ∈ H such that H = H(n,p).

In the general case (in a Banach space) we say that F is a face of C if there exist a closed hy-
perplane H such that F = C ∩H. A closed hyperplane is given by a continuos lineal functional.

Remarks: Let C be a convex set. Then:
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• If F1 = C ∩H(n1,p1) and F2 = C ∩H(n2,p2) are faces of C intersecting at a point p then
H(n1 + n2,p) is a supporting hyperplane of C and F1 ∩ F2 = C ∩ H(n1 + n2,p). This
shows that the faces of C form a meet-semilattice.

• Since each proper face lies on the base of the upper halfspace of some supporting hyper-
plane, each such face must lie on the relative boundary of C.

An extreme point of a convex set C in a real vector space is a point in C which does not lie in
any open line segment joining two points of C. Intuitively, an extreme point is a ”corner” of C.
The Krein-Milman theorem states that if C is convex and compact in a locally convex space,
then C is the closed convex hull of its extreme points. In particular, such a set has extreme points.
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[41] M. Rédei, Quantum Logic in Algebraic Approach (Kluwer Academic Publishers, Dordrecht,
1998)

[42] A. Wilce, Quantum Logic and Probability Theory, The Stanford Encyclope-
dia of Philosophy (Spring 2009 Edition), Edward N. Zalta (ed.), URL =
http://plato.stanford.edu/archives/spr2009/entries/qt-quantlog/. Archive edition: Spring
2009.

[43] A. Gleason, J. Math. Mech. 6, 885-893 (1957)

[44] D. Buhagiar, E. Chetcuti and A. Dvurečenskij, Found. Phys. 39, 550-558 (2009)
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