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Abstract

The pair distribution function of the electron gas is calculated using a parameterized gener-

alization of quantum hypernetted chain approximation with the parameters being obtained by

optimizing the system energy with a genetic algorithm. The functions so obtained are compared

with Monte Carlo simulations performed by other authors in its variational and diffusion versions

showing a very good agreement especially with the diffusion Monte Carlo results.
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I. INTRODUCTION

The Sommerfeld electron gas model[1] has proved to be very useful in describing many of

the electronic properties of metallic solids. It represents the conduction electrons as a zero

temperature ensemble of point charged fermions moving against a continuous neutralizing

background that plays the role of the ionic lattice. In the simplest version of the model,

fermions are considered spinless and the background is just characterized by a dielectric

constant. If we have N fermions of mass m each one carrying a charge e, then the system

Hamiltonian reads

H =

(
~2

2m

) N∑
i=1

∇2
i +

∑
i<j

v (rij) . (1)

Here v (rij) is the pair potential given by

v (rij) =
e2

εrij
, (2)

where rij = |ri − rj| with ri the position of the ith-particle and ε denoting the dielectric

constant.

The equilibrium behavior of this system has been widely studied through quantal Monte

Carlo simulations[2],[3] and also from a variety of many-body theories[4]-[8]. Many of them

center on the pair distribution functions (PDF)[9]. If the we denote ψ (r1 , r2 , · · · , rN ) the

N -body wave function then the pair distribution function is given

ρ (r1 , r2 ) = ρ (r1 ) ρ (r2 ) g (r1 , r2 )

= N (N − 1)

∫
· · ·
∫
dr3 dr4 · · · drN |ψ (r1 , r2 , · · · , rN )|2∫

· · ·
∫
dr1 dr2 · · · drN |ψ (r1 , r2 , · · · , rN )|2

(3)

where the integrations are over the whole volume and

ρ (r1) = N

∫
· · ·
∫
dr2 dr3 · · · drN |ψ (r1 , r2 , · · · , rN )|2∫

· · ·
∫
dr1 dr2 · · · drN |ψ (r1 , r2 , · · · , rN )|2

(4)

is the one point distribution function. The function g (r1 , r2 ) is the pair correlation function

(PCF). For homogenous systems (as will be considered here) ρ (ri ) gives the electrons
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number density ρ (ri ) = ρ = N/V (V = system volume) and the PDF and PCF depend

only on the particles separation: ρ (r12) = ρ2g (r12) .

For the homogeneous electron gas in three and lower dimensions, the PDF as well its

Fourier transform, the static structure factor S (k), have been studied by several authors

using diverse analytical techniques[6] and also simulations methods. In 3D, we mention ran-

dom phase approximation (RPA) calculations[10], diagrammatic ladder approximations[11],

the local-field based method of Singwi, Tosi, Land and Sjölander (STLS)[12], calculations

with quantum hypernetted chain equations (QHNC)[13] and also techniques that use pa-

rameterized PDF, the parameters being determined from known independent theoretical or

simulation results[14]-[17]. From the side of Monte Carlo quantum simulations in both -the

variational and diffusion- versions, the work by Ortiz and Ballone[18] extends in several ways

previous results of Ceperley and Alder[2],[3].

Most of these approaches lean on the variational principle according to which the energy

of the ground state E0 is a lower bound for the Hamiltonian mean value as calculated using

any trial wave function ψT (r1 , r2 , · · · , rN ):

〈ψT |H |ψT 〉
〈ψT | ψT 〉

≥ E0. (5)

As trial function a factorized form

ψT (r1 , r2 , · · · , rN ) = F (r1 , r2 , · · · , rN )ψ0 (r1 , r2 , · · · , rN ) (6)

is frequently used. Here ψ0 (r1 , r2 , · · · , rN ) denotes the system wave function when the

interactions are turned off (v (rij) ≡ 0). It is an antisymmetric function under particles

permutations. We can write

ψ0 (r1 , r2 , · · · , rN ) =
∑
P

(−1)P P {φ1 (r1 ) , φ2 (r2 ) , · · · , φN (rN )} = det [φαi
(rj )] (7)

where P is the permutation operator that interchanges the particle positions, φαi
(rj ) is the

wave function of an isolated particle and det [φαi
(rj )] means the Slater determinant. The

symmetric factor F (r1 , r2 , · · · , rN ) accounts for the correlations among the particles when

the interactions are turned on. The N -body correlation factor can be factorized according
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to Jastrow[19]:

F (r1 , r2 , · · · , rN ) =
∏
i<j

f (ri , rj ) . (8)

In this work we consider the evaluation of the PDF for the homogeneous 3D electron gas

starting from a parameterized trial wave function of the form given by Eqs. (6-8) with the

parameters obtained by optimizing the system energy by means of a genetic algorithm.

Genetic algorithms[20]-[21] form part, together with evolutionary programming[22],[23],

game-playing strategies[24], genetic programming[25] and other related techniques, of a rel-

atively new class of optimization algorithms which are based on the Darwinian evolution

principle[26]. In particular, genetic algorithms tackle even complex problems with surprising

efficiency and robustness. In Physics they have been used in calculations that involve from

simple quantum systems[27] to astrophysical systems[28], running through lattice models

for spin glasses[29], molecules[30] and clusters[31]. More recently[32] we have developed a

genetic algorithm for the PDF of the one-dimensional electron gas in what, at our knowl-

edge, is the first application of this kind of algorithm to describe many-body systems in the

thermodynamic limit..

In general, a genetic algorithm is based on three main statements:

a) It is a process that works at the chromosomic level. Each individual is codified as a

set of chromosomes.

b) The process follows the Darwinian theory of evolution, say, the survival and reproduc-

tion of those individuals that best adapt in a changing environment.

c) The evolutionary process takes place at the reproduction stage. It is in this stage when

mutation and crossover occurs. As a result, the progeny chromosomes can differ from their

parents ones.

Starting from a guess initial population, a genetic algorithm basically generates consecu-

tive generations (offprints). These are formed by a set of chromosomes, or character (genes)

chains, which represent possible solutions to the problem under consideration. At each algo-

rithm step, a fitness function is applied to the whole set of chromosomes of the corresponding

generation in order to check the goodness of the codified solution. Then, according to their

fitting capacity, couples of chromosomes, to which the crossover operator will be applied, are

chosen. Also, at each step, a mutation operator is applied to a number of randomly chosen

chromosomes.
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The two most commonly used methods to randomly select the chromosomes are:

i) The roulette wheel algorithm. It consists in building a roulette, so that to each chro-

mosome corresponds a circular sector proportional to its fitness.

ii) The tournament method. After shuffling the population, their chromosomes are made

to compete among them in groups of a given size (generally in pairs). The winners will be

those chromosomes with highest fitness. If we consider a binary tournament, say the com-

petition is between pairs, the population must be shuffled twice. This technique guarantees

copies of the best individual among the parents of the next generation.

After this selection, we proceed with the sexual reproduction or crossing of the chosen

individuals. In this stage, the survivors exchange chromosomic material and the result-

ing chromosomes will codify the individuals of the next generation. The forms of sexual

reproduction most commonly used are:

i) With one crossing point. This point is randomly chosen on the chain length, and all

the chain portion between the crossing point and the chain end is exchanged.

ii) With two crossing points. The portion to be exchanged is in between two randomly

chosen points.

For the algorithm implementation, the crossover normally has an assigned percentage that

determines the frequency of its occurrence. This means that not all of the chromosomes will

exchange material but some of them will pass intact to the next generation. As a matter

of fact, there is a technique, named elitism, in which the fittest individual along several

generations does not cross with any of the other ones and keeps intact until an individual

fitter than itself appears.

Besides the selection and crossover, there is another operation, mutation, that produces a

change in one of the characters or genes of a randomly chosen chromosome. This operation

allows to introduce new chromosomic material into the population. As for the crossover,

the mutation is handled as a percentage that determines its occurrence frequency. This

percentage is, generally, not greater than 5%, quite below the crossover percentage.

Once the selected chromosomes have been crossed and muted, we need some substitution

method. Namely, we must choose, among those individuals, which ones will be substituted

for the new progeny. Two main substitution ways are usually considered. In one of them, all

modified parents are substituted for the generated new individuals. In this way an individual

does never coexist with its parents. In the other one, only the worse fitted individuals of the
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whole population are substituted, thus allowing the coexistence among parents and progeny.

Since the answer to our problem is almost always unknown, we must establish some

criterion to stop the algorithm. We can mention two such criteria: i) the algorithm is run

along a maximum number of generations; ii) the algorithm is ended when the population

stabilization has been reached, i.e. when all, or most of, the individuals have the same

fitness.

In Section III we will apply these ideas to determine the parameters appearing in the

expression for the 3D electron gas PDF that we propose in Section II.

II. PARAMETERIZED PDF

We assume that the trial wave function for the system of N -spinless electrons with

Hamiltonian given by Eqs.(1,2) has the form of Eq.(6) where we use for the ideal part

ψ0 (r1 , r2 , · · · , rN ) a parameterized generalization of an expression given by Lado[33] and

for the Jastrow correlation factor also a parameterized expression containing a random phase

approximation (RPA) pseudopotential[2],[34]. Specifically we propose

ψT (r1 , r2 , · · · , rN ) = exp

{
1

2

∑
i<j

[αw0 (rij)− βuRPA (rij)]

}
(9)

where α and β are the parameters to adjust.

In Eq.(9) the ideal gas effective potential w0 (r) is defined

w0 (r) = ln g0 (r)− 1

(2π)3 ρ

∫
dke−ik.r

[S0 (k)− 1]2

S0 (k)
. (10)

Here g0 (r) and S0 (k) are the ideal PCF and structure factor, respectively, whose expressions

are[35],[36]:

g0 (r) = 1− 9

2

[
sin (kF r)− kF r cos (kF r)

(kF r)
3

]2
(11)

and

S0 (k) =

{
1 k > 2kF

3
4
k
kF
− 1

16

(
k
kF

)3
k < 2kF

(12)

with kF the Fermi momentum kF = (3π2ρ∗)
1
3 where ρ∗ = ρa0 (a0 is the Bohr radius).
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The RPA pseudopotential, on the other hand, reads

2ρ∗uRPA (k) = − 1

S0 (k)
+

[
1

S0 (k)2
+

4mρ∗ṽ (k)

~2k2

]1/2
(13)

where ṽ (k) is the Fourier transform of the interparticle potential v (r).

It is worth mentioning that in the genetic algorithm me have develop for the 1D electron

gas in Ref.[32], instead of using the RPA pseudopotential in Eq.(9) we assume that u (r)

is an unknown function and the algorithm is designed to completely obtain it. Here, a

parameterized form for the pseudopotential is proposed a priori and the algorithm looks for

the optimal parameters.

In principle, to calculate PDF from Eq.(3) we have to integrate the square of the wave

function over 3N coordinates. To avoid this formidable task use is done of a modified form

of the hypernetted chain approximation (HNC) for which the PDF is written as a single

integral equation involving just a pair of particles. We write, ignoring all the elemental

diagrams[37],

g (r) = exp [αw0 (r)− βuRPA (r) +N (r)] (14)

N (r) = ρ

∫
[g (r′)− 1−N (r′)] [g (|r− r′|)− 1] dr (15)

where N (r) denotes the sum of nodal diagrams. Eq. (14) without the term with α in the

exponential has the form of the PCF for a system of bosons (see v.g. Eq.(40) in Ref. [37]

where the nodal diagrams are denoted D and the elementals diagrams E must be taken

zero). The term with α adds the ideal part that contains the proper symmetry for fermions.

Finally, in the variational approach which is implicit in Eq.(5), we need an expression for

the Hamiltonian mean value. Making use of Jackson-Feenberg identity[38] we obtain

E

N
=
ρ

2

∫
drg (r)

[
− ~2

4m
∇2 ln f 2 (r) + v (r)

]
. (16)

III. PARAMETERS OPTIMIZATION

Our problem is to solve for g (r) the integral equation given by Eqs.(14 and 15) with the

parameters α and β determined by demanding that the energy functional E = E {g (r)}
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given by Eq.(16) be minimum. To this end we use a genetic algorithm.

We proceed by first generating the initial population, which is formed by Np random

replicas of the two numbers string (that represents one population individual) γ(α), γ(β)

where γ(α) ∈ [0, 1] is a random real number (rounded to an established number n of decimals)

which is assigned to the parameter α. Given a string γ(α), γ(β), the encoding consists in

replacing the sequence of real numbers by a single natural number obtained by putting their

decimals parts one next to the other. Thus if γ(α) = 0.γ
(α)
1 γ

(α)
2 ...γ

(α)
n and γ(β) = 0.γ

(β)
1

γ
(β)
2 ...γ

(β)
n then we have the chain :

γ
(α)
1 γ

(α)
2 ...γ(α)n γ

(β)
1 γ

(β)
2 ...γ(β)n

and the population is the set

{(
γ
(α)
1 γ

(α)
2 ...γ(α)n γ

(β)
1 γ

(β)
2 ...γ(β)n

)
r

r = 1, 2, · · · , Np

}
In genetic terms, the encoding produces the chromosomic structure of the individuals

(replica string). The inverse process is called decoding and returns the parameters α and

β corresponding to each individual. In the decoding we allow the returned parameters be

multiplied by a constant factor η > 1 in order that the parameters can take values in an

interval wider than [0, 1]. We define the fitness of the rth individual as fr = e−Er where Er

is the energy calculated using Eq.(16) when g (r) is calculated from Eqs.(14 and 15) for the

parameters α and β obtained by decoding the chromosome structure of the rth individual

of the population. A solution is reached when fr ≈ 1 for some individual r in some of the

successive populations obtained in the evolution process.

The calculation proceeds by dividing the population of Np replicas into Np/2 couples.

The couples are randomly chosen by using the roulette wheel algorithm[20]. This is done

by defining the sums F =
∑Np

r=1fr and Sδ =
∑δ

r=1 fr (δ = 1, 2, ..., Np). Then, a random

number κ ∈ [0, F ] is generated and the unique index δ such that Sδ−1 ≤ κ ≤ Sδ is picked

up.

Once the first generation of replicas (parents) has been generated and divided into cou-

ples, the second generation (offspring) can be generated by applying the crossover operator

between the members of each one. At times , some of the members of the new replicas

generation can be changed by applying the mutation operator.
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TABLE I: Parameters α and β

rs α β

1 2.2227 1.6456

2 7.8707 14.865

3 9.6789 30.526

6 14.710 43.030

10 44.974 18.464

50 -6834.17 128.71

Given a couple of replicas, the crossover operator is defined by generating a new random

number c ∈ [0, 1] which is compared with a pre-established crossover probability p ∈ [0, 1].

If c ≤ p, the crossover operator acts by interchanging all the digits from the sth position to

the end of the replica between the members of the couple. Here s is a random integer such

that 1 ≤ s ≤ 2n. for example if the couple is

153280472...337

768325399...069

and s = 4, the new offspring couple will be

153225399...069

768380472...337.

To apply the mutation operator we first randomly select those offsprings that will mu-

tate. Then, for each of these offsprings, a gene (a digit) randomly chosen is changed by a

random integer number ` ∈ [0, 9] .The algorithm is stopped when a solution is reached for

the parameters α and β.

IV. RESULTS

As it is easily seen, the electron gas is completely determined by giving just its density ρ

or, as it is custom in many-body theory, the Wigner-Seitz radius rs defined rs = [3/4πρ]1/3.

Here we have applied the procedure described above, to an electron gas at metallic densities:

1 ≤ rs ≤ 10 and also at rs = 50. We use in our calculations Np = 150 and n = 5. The factor

η, in turn, is moved in each case to give reasonable values for the parameters α and β. In

Table I we show the parameters α and β obtained for the diverse values of rs considered.
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r
s
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s
=6
r
s
=10
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FIG. 1: The functions g (r) for the homogenous electron gas at rs=1,2,3,6,10 and 50 obtained in

this work.

Note the change in the parameters tendency at rs = 50. By the way, we were unable to

reach convergence for values of rs greater than this one.

Figs. 1 to 3 show the corresponding g (r)′s. In Fig. 1 we put all together the curves

we have obtained . We observe the characteristic features of the electron gas: when the

density increases (rs decreases) the behavior tends to that of an ideal paramagnetic gas of

fermions with contact value 1/2 and rapidly going to the asymptotic value 1. When the

density decreases the correlation functions become more structured showing, in particular,

a more pronounced Coulomb hole near contact.

In Figs. 2 and 3 comparison is done of our results with those obtained from variational

as well as diffusion Monte Carlo simulations performed by other authors[18],[13],[39]. A first

remark is the existing differences between variational and diffusion results particularly for

low values of rs. Also must be noticed the good agreement of the results of this work with

those obtained from diffusion Monte Carlo calculations.

It is worth mentioning that the time to obtain one of our curves by running the complete

algorithm with a Pentium IV is tipically of the order of 50 hours for the metallic densities.
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FIG. 2: The functions g(r) for the homogenous electron obtained in this work compared with

variational and diffusion Monte Carlo results. (a): rs=1; (b): rs=3.
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FIG. 3: The functions g(r) for the homogenous electron obtained in this work compared with

variational and diffusion Monte Carlo results. (a): rs=10; (b): rs=50.
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