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A thorough analysis is presented of the class of central fields of force that exhibit: (i) dimen-
sional transmutation and (ii) rotational invariance. Using dimensional regularization, the two-
dimensional delta-function potential and the D-dimensional inverse square potential are
studied. In particular, the following features are analyzed: the existence of a critical coupling,
the boundary condition at the origin, the relationship between the bound-state and scattering
sectors, and the similarities displayed by both potentials. It is found that, for rotationally sym-
metric scale-invariant potentials, there is a strong-coupling regime, for which quantum-
mechanical breaking of symmetry takes place, with the appearance of a unique bound state
as well as of a logarithmic energy dependence of the scattering with respect to the energy.
� 2001 Academic Press

I. INTRODUCTION

Dimensional transmutation [1] has become a standard concept for the analysis
of quantum field theories devoid of intrinsic dimensional parameters. In the first
paper in this series [2], we have shown that dimensional transmutation is a more
general phenomenon related to dimensional analysis and renormalization, and we
provided a general theory for its description in nonrelativistic quantum mechanics.
The main purpose of this paper is to apply the general theory developed in Ref. [2]
to an exhaustive analysis of examples that exhibit rotational invariance. Parentheti-
cally, as shown in Ref. [2], scale-invariant potentials��those that posses scale sym-
metry at the classical level and do not exhibit any explicit dimensional scale��are
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exactly described by homogeneous functions of degree &2; this class includes con-
tact potentials as well as ordinary potentials of the form 1�r2, with a possible
angular dependence. Thus, within the subset of such potentials with rotational
invariance, the following two problems stand out: the two-dimensional delta-func-
tion potential [3�6] and the inverse square potential [7�16]. In addition to solving
these potentials, we will expand the general framework presented in [2] in order
to encompass further understanding of the scattering sector��including a partial-
wave analysis��as well as a reexamination of the peculiar boundary conditions
satisfied by these potentials at the origin.

The plan of this paper is as follows. In Section II we discuss the two-dimensional
delta-function potential and compare the results with those earlier derived in
Ref. [2]. In Section III we summarize the known properties of the inverse square
potential (but generalizing them to D dimensions) and examine the issue of the
boundary condition at the origin; the conclusion of that section is that renormaliza-
tion is needed in the strong-coupling regime. In Section IV we provide the required
dimensional renormalization of the inverse square potential and find a complete
solution to the problem by means of a duality transformation. Section V sum-
marizes our main conclusions and outlines a strategy for answering additional ques-
tions. The appendices explicitly use the concept of rotational invariance and deal
with the D-dimensional central-force problem, the D-dimensional partial-wave
expansion, and the duality transformation.

We conclude the introduction with some comments about notation and back-
ground, with which we assume that the reader has some familiarity from Ref. [2].
In particular, in this paper, we will solve the Schro� dinger equation associated with

V(r)=&*W(r), (1.1)

for the two-dimensional delta-function potential

W(r)=$(2)(r) (1.2)

(Section II), and for the inverse square potential

W(r)=
1
r2 (1.3)

(Sections III and IV). The regularized solutions will be obtained with dimensional
continuation from D0 to D dimensions and will depend on the parameter
==D0&D; from these solutions, we will identify the energy generating function
5(=), by comparison with the master eigenvalue equation

*+=5(=) |E(=)| &=�2=1, (1.4)
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where * is the dimensionless coupling constant, E the energy, and + the renor-
malization scale that arises from the bare coupling *B=+=*. The ensuing analysis
of existence of bound states and related concepts will often refer to properties of the
energy generating function 5(=) and of the critical couplings

* (V)
n =[lim

= � 0
5n(=)]&1, (1.5)

as discussed in Ref. [2], even though the derived formulas can mostly be analyzed
on their own right and, for the most part, this paper is essentially self-contained.

II. TWO-DIMENSIONAL DELTA-FUNCTION POTENTIAL

The delta-function potential belongs to the class of pseudopotentials that arises
in the low-energy limit of effective quantum field theory [17]. As in Ref. [2], in this
section we will use dimensional regularization and will focus only on those features
that are associated with the dimensional transmutation of the two-dimensional
representative of this class, Eqs. (1.1) and (1.2).

The two-dimensional delta-function potential has been extensively studied in
the literature using a variety of regularization techniques: (i) momentum-cutoff
regularization [3, 4, 18], (ii) real-space short-distance regularization (using a cir-
cular-well potential) [19�22], (iii) Pauli�Villars regularization [23], (iv) dimen-
sional regularization [2, 23], and (v) method of self-adjoint extensions [4, 5]. As
expected, the final renormalized results are independent of the regularization
scheme, despite the dissimilar appearance of the regularized expressions. Even
though our treatment will be solely based on dimensional regularization, the estab-
lishment of a peculiar boundary condition at the origin shows a natural connection
with method (v), where the singular nature of the potential at the origin is replaced
by a boundary condition in order to preserve the self-adjoint character of the
Hamiltonian.

The dimensionally regularized Schro� dinger equation for the potential (1.2) can be
solved in a number of different ways. In Ref. [2] we solved it in momentum
space��a procedure that works due to the zero-range nature of this potential [3].
The same feature permits an effective solution in hyperspherical coordinates as if it
were a central potential (according to the framework developed in Appendix A). In
fact, the similarities between the two-dimensional delta-function and inverse square
potentials will become more transparent, by the use of hyperspherical coordinates
for both.

According to the dimensional-continuation prescription of Ref. [2], we Fourier
transform Eq. (1.2) in D0=2 dimensions, then perform a dimensional jump to D
dimensions in Fourier space, and finally return to position space in D dimensions,
with the obvious result

[&{2
r, D&*+=$ (D)(r)] 9(r)=E9(r). (2.1)

59DIMENSIONAL TRANSMUTATION, II



From the generalized angular-momentum analysis for central potentials of
Appendix A, it follows that the radial part of Eq. (2.1) in hyperspherical coordinates
reduces to the homogeneous form

_ d 2

dr2+E&
(l+&)2&1�4

r2 & ul (r)=0, (2.2)

for any r{0. In Eq. (2.2), as well as in our subsequent analysis, both for the two-
dimensional delta-function and inverse square potentials, the number D of dimen-
sions will usually appear in terms of the variable

&=D�2&1, (2.3)

which will thereby simplify the form of most formulas.
Equation (2.2) is indistinguishable from a free particle except for the stringent

boundary condition enforced by the delta-function singularity at the origin. We
now move on to analyze this boundary condition.

A. Boundary Condition at the Origin for the Two-Dimensional Delta-Function
Potential

Simple inspection of Eqs. (2.1) and (2.2) shows that the delta-function singularity
represents the only difference between them. Even though the correct equation is
(2.1), one can still safely use (2.2), provided that the singularity be replaced by an
appropriate boundary condition at the origin. This can be established by means of
the small-argument behavior of the wave function (neglecting the energy terms as
r � 0)

&{2
r, D 9(r) t

(r � 0) *+=9(0) $(D)(r), (2.4)

which can be evaluated by comparison with the identity

&{2
r, D _ r&(D&2)

(D&2) 0D&=$(D)(r). (2.5)

Equations (2.4) and (2.5) imply that the general form of 9(r) near the origin is

9(r) t
(r � 0) 9(0)

*+=

(D&2) 0D
r&(D&2)+9h(r), (2.6)

where 9h(r) is the general solution of the homogeneous equation. Moreover,
Eq. (2.6) can be made more explicit by means of

9h(r)= :
�

l=0

[C (+)
l rl+C (&)

l r&(l+2&)] YL(0(D)) (2.7)
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and

&{2
r, D[r&(l+2&)YL(0(D))] B {l$(D)(r), (2.8)

with {l being a certain linear combination of l th order derivatives; then, it follows
that C (&)

l =0 for all l, for otherwise C (&)
l would modify the inhomogeneous part of

Eq. (2.6). Then, resolving the wave function into individual angular momentum
components,

9(r)= :
�

l=0

Rl (r) YL(0(D)), (2.9)

we have the following set of boundary conditions. First, for l=0, the value of the
constant C (+)

0 corresponds to 9(0), as required by self-consistency of the value of
the wave function at the origin; then,

R0(r) t
(r � 0) R0(0) _*+&2&1 (&)

4?&+1 r&2&+1& . (2.10)

In addition, for l{0,

Rl (r) t
(r � 0) C (+)

l rl. (2.11)

Equations (2.10) and (2.11) are the required boundary conditions at the origin.
In particular, Eq. (2.10) implies that D<2 is the condition for regularity, while the
case D=2 is ``critical.''

B. Bound-State Sector for a Two-Dimensional Delta-Function Potential
The coupling * in Eq. (1.2) defines an ``attractive'' zero-range potential for *>0

and a ``repulsive'' one for *<0. By the form of the potential, this physical argument
implies that all states with E>0 are of the scattering type, while states with E<0
can only be bound and are impossible for *<0. In other words, there exists a
critical coupling

*(V)=0, (2.12)

which separates the theory into two regimes. Therefore, for a delta-function poten-
tial, the strong-coupling regime (*>*(V)=0) coincides with the set of attractive
potentials, while the weak-coupling regime (*<*(V)=0) amounts to repulsive
potentials.

Let us now consider the bound-state sector, with energy E=&}2<0, for an
attractive two-dimensional delta-function potential. The corresponding solution of
Eq. (2.2) is

ul (r)

- r
=[Il+&(}r), Kl+&(}r)] , (2.13)
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where the symbol [ , ] stands for linear combination, and Ip(z) and Kp(z) are the
modified Bessel functions of the first and second kinds, respectively [24].

Of course, the boundary conditions restrict the selection in Eq. (2.13). First, the
boundary condition at infinity leads to the rejection of the modified Bessel function
of the first kind, so that (from Eq. (A14))

Rl (r)=Alr&&K l+&(}r). (2.14)

Next, the boundary condition at the origin, Eqs. (2.10) and (2.11), can be
enforced at the level of Eq. (2.14) by considering the small-argument behavior of
the modified Bessel function of the second kind [24, 25],

Kp(z) t
(z � 0) 1

2 _1 ( p) \z
2+

&p

+1 (&p) \z
2+

p

& [1+O(z2)]. (2.15)

For l{0, Eq. (2.14) gives a singular term proportional to r&p, with p=l+&,
according to Eq. (2.15). Therefore, the boundary condition can only be satisfied for

l=0, (2.16)

so that the delta-function potential, being of zero range, can only sustain bound
states in the absence of a centrifugal barrier (s states). Then, for the radial wave
function with l=0,

R0(r) = A0 r&&K&(}r) (2.17)

t
(r � 0) A0

2 \}
2+

&

_1 (&&)+1 (&) \}r
2 +

&2&

& [1+O(r2)]. (2.18)

In conclusion, compatibility of Eqs. (2.10) and (2.18) requires that the following
two conditions be simultaneously met: (i) that

A0=2R0(0) \2
}+

&& 1
1 (&&)

, (2.19)

which just enforces the condition of finiteness at the origin and requires D<2 for
regularity; and (ii) that the bound-state energies E satisfy the eigenvalue condition

*+&2&

4? \ |E|
4? +

&

1 (&&)=1. (2.20)

Equations (2.18), (2.19), and (2.20) are in complete agreement with the results
obtained in Ref. [2], to which we refer the reader for additional comments.
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As there is no other quantum number in this problem, and l=0 is required, we
see that Eq. (2.17) represents the ground state of the regularized system. Parentheti-
cally, the proportionality constant A0 can be found by normalization by means of
the identity [26]

|
�

0
x[K&(x)]2 dx= 1

21(1+&) 1(1&&), (2.21)

so that

9(r)=
}

?(&+1)�2[1(1&&)]1�2

K&(}r)
r& . (2.22)

Equations (2.20) and (2.22) indeed reduce to the known expressions for D=1 [27].
Here, no attempt is made to draw any conclusions about the cases D>2, as they
require a separate regularization procedure.

As discussed in Ref. [2], Eq. (2.20) is equivalent to the master eigenvalue equa-
tion (1.4), with an energy generating function

5(=)=
1

4?
(4?)=�2 1 \ =

2+ , (2.23)

which, not having any discrete labels, produces just a ground state

E(gs)=&+2e g(0)
^ &+2, (2.24)

but no excited states. In Eq. (2.24), the symbol ^ refers to the freedom to make
the choice g(0)=0, which means no loss of generality, as both g(0) and + are totally
arbitrary [2]. Moreover, the critical coupling is *(V)=0, as anticipated earlier by
the argument leading to Eq. (2.12); more precisely, the coupling constant is
asymptotically critical according to the scheme

*(=)=2?= {1+
=
2

[ g(0)&(ln 4?&#)]= , (2.25)

where # is the Euler�Mascheroni constant.
Finally, the ground state wave function of the renormalized two-dimensional

delta-function potential can be obtained in the limit & � 0 of Eq. (2.22), and using
Eq. (2.24), with the result

9(gs)(r)=
+

- ?
K0(+r), (2.26)

which was derived by using a renormalized path integral in Ref. [18].
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C. Scattering Sector for a Two-Dimensional Delta-Function Potential
Scattering under the action of a two-dimensional delta-function potential will

also be analyzed by an explicit partial-wave resolution in hyperspherical coor-
dinates according to the theory of Appendix B. The first step is to solve Eq. (2.2),
which for the scattering sector, E=k2>0, admits the solution

ul (r)=- r [A (+)
l H (1)

l+&(kr)+A (&)
l H (2)

l+&(kr)], (2.27)

where the H (1, 2)
p (z) are Hankel functions, whose behavior near the origin implies

the asymptotic dependence

ul (r) t
(r � 0) - r

?i {[A (+)
l e&i?(l+&)&A (&)

l ei?(l+&)] 1(&&) \kr
2 +

l+&

+[A (+)
l &A (&)

l ] 1(&) \kr
2 +

&(l+&)

= . (2.28)

Equations (2.28) and (A14) yield

Rl (r) t
(r � 0) A(&)

?i
[S (D)

l (k) e&i?(l+&)&ei?(l+&)] 1(&&) \kr
2 +

l

_{1+
[S (D)

l (k)&1] 1(&)(2�k)2&

[S (D)
l (k) e&i?(l+&)&ei?(l+&)] 1(&&)

r&(2l+2&)= , (2.29)

where the scattering matrix elements S (D)
l (k) have been explicitly introduced by

means of Eq. (B12).
Equation (2.29) should be compared again with the boundary condition at the

origin. According to Eq. (2.8), for l{0, the boundary condition (2.11) cannot be
satisfied, unless

S (D)
l (k)| l{0=1; (2.30)

in particular, for the phase shifts,

$(D)
l (k)| l{0=0, (2.31)

with the conclusion that there is no scattering for l{0. On the other hand, for the
s wave, Eqs. (2.10) and (2.29) yield a scattering matrix element

S (D)
0 (k)=

1&*e i?&5(&2&)(E�+2)&

1&*e&i?&5(&2&)(E�+2)& , (2.32)

where

5(&2&)=
1(&&)
(4?)&+1 (2.33)
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is identical to the energy generating function, Eq. (2.23). Equation (2.32) provides
the phase shift $ (D)

0 (k) through Eq. (B7), whence

tan $(D)
0 (k)=tan ?& _1&

sec ?&
*(k�+)2& 5(&2&)&

&1

. (2.34)

We are now ready to derive the expressions for the two-dimensional delta-func-
tion potential. First, for *<0 (repulsive potential), * remains unrenormalized and
the limit ==&2& � 0 yields

S (D)
0 (k)|*<0=1, (2.35)

so that there is no scattering whatsoever for repulsive two-dimensional delta-func-
tion potentials. Instead, for *>0 (attractive potential), in the limit ==&2& � 0
these expressions should be renormalized by means of Eq. (2.25), whence

S (2)
0 (k)|*>0=

ln(E�+2)& g(0)+i?
ln(E�+2)& g(0)&i?

. (2.36)

Equation (2.36) can be further simplified with Eq. (2.24), leading to

S (2)
0 (k)=

ln(k2�|E(gs) | )+i?
ln(k2�|E(gs) | )&i?

, (2.37)

and [20, 21, 28, 29]

tan $ (2)
0 (k)=

?
ln(k2�|E(gs) | )

, (2.38)

where, from this point on, it will be understood that scattering is nontrivial only for
*>0. In particular, from Eqs. (2.30), (2.37), (B5), (B8), and (B9), the scattering
amplitude becomes

f (2)
k (0(2))=� 2

?k
S (2)

0 (k)&1
2i

=�2?
k _ln \ k2

E(gs)+&i?&
&1

. (2.39)

Equation (2.39) is identical to the corresponding expression derived in Ref. [2] and
coincides with the corresponding expressions derived in Refs. [19, 20, 22, 23, 28,
29].
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A number of consequences follow from Eqs. (2.37), (2.38), and (2.39):

1. The unique pole of the scattering matrix (2.37) corresponds to the unique
bound state.

2. The phase shifts can be alternatively renormalized using a floating scale +,
in the form

1
tan $(2)

0 (k)
=

1
tan $ (2)

0 (+)
+

1
?

ln \k
++

2

. (2.40)

3. Equation (2.39) yields a differential scattering cross section

d_(2)(k, 0(2))
d02

=
2?
k {_ln \ k2

E(gs)+&
2

+?2=
&1

. (2.41)

4. The total scattering cross section becomes

_2(k)=
4?2

k
[[ln(E�|E(gs) | )]2+?2]&1. (2.42)

5. All the relevant quantities are logarithmic with respect to the energy and
agree with the predictions of generalized dimensional analysis [2].

6. Equations (2.37), (2.38), (2.39), (2.41), and (2.42) relate the bound-state
and scattering sectors of the theory and confirm that the two-dimensional delta-
function potential is renormalizable.

III. INVERSE SQUARE POTENTIAL: INTRODUCTION

It is well known that the inverse square potential, V(r) B r&2, displays a number
of unusual features in its quantum-mechanical version. In a sense, it represents the
boundary between regular and singular power-law potentials (Appendix C). As we
will see in this section, its marginally singular nature can be traced back to its inter-
play with the centrifugal barrier and produces two regimes separated by a critical
coupling. These features have become part of the standard background on central
potentials in quantum mechanics [7, 9, 10]. The difficulties encountered in the
strong-coupling regime correspond to the classical picture of the ``fall of the particle
to the center'' [10]. It should be pointed out that this problem is relevant in
polymer physics [30], as well as in molecular physics, where it appears in a
modified form as a dipole potential [31, 32].

In this section, our goal is to review the origin of this singular behavior and pave
the way for the regularization and renormalization of the theory, which we will
implement in Section IV.
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A. Exact Solution for the Unregularized Inverse Square Potential

Stationary eigenstates of energy and orbital angular momentum of the
unregularized inverse square potential are of the factorized form (A4), with an effec-
tive radial function (A14) that satisfies the D0 -dimensional radial Schro� dinger
equation (Eqs. (A11)�(A17)),

_ d 2

dr2+E&
(l+&0)2&*&1�4

r2 & ul (r)=0, (3.1)

where &0=D0 �2&1 and *>0 corresponds to an attractive potential. Then solu-
tions to Eq. (3.1) are of the form

ul (r)=- r Zsl (- E r), (3.2)

where Zsl (z) represents an appropriate linear combination of Bessel functions of
order

sl=- * (V)
l &*, (3.3)

with

*(V)
l =(l+&0)2. (3.4)

It is immediately apparent that the inverse square potential in Eq. (3.1) has the
same dependence on the radial variable as the centrifugal potential, so that its effect
is solely to modify the strength of the centrifugal barrier; correspondingly, the
solution (3.2) is essentially a free-particle wave function where the replacement

(l+&0) � sl (3.5)

has been made. The parameter * (V)
l in Eq. (3.4) plays the role of a critical coupling,

i.e., the nature of the solutions changes abruptly around the value *=* (V)
l , for any

state with angular momentum l. Thus, * (V)
l acts as the boundary between two

regimes: (i) weak coupling, characterized by *<* (V)
l , for which the order sl is real;

and (ii) strong coupling, characterized by *>* (V)
l , for which the order s l=i3 l is

imaginary, with

3l=- *&*(V)
l . (3.6)

The character of the solutions also depends on the other relevant parameter in
Eq. (3.1), namely, the energy E, in such a way that: (i) scattering states are only
possible if E=k2>0, with the argument of the Bessel functions in Eq. (3.2) being
kr (real); while (ii) bound states are only possible if E=&}2<0, with the argu-
ment of the Bessel functions in Eq. (3.2) being kr=i}r (imaginary). In conclusion,
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the solutions (3.2) fall into the following four families, according to the nature of
the two relevant variables sl and E:

1. Bound-state sector of the weak-coupling regime, with

ul (r)

- r
=[Isl (}r), Ksl (}r)]; (3.7)

2. Scattering sector of the weak-coupling regime, with

ul (r)

- r
=[H (1)

sl
(kr), H (2)

sl
(kr)]; (3.8)

3. Bound-state sector of the strong-coupling regime, with

ul (r)

- r
=[Ii3l (}r), Ki3l (}r)]; (3.9)

4. Scattering sector of the strong-coupling regime, with

ul (r)

- r
=[H (1)

i3l
(kr), H (2)

i3l
(kr)]; (3.10)

where the [ , ] stands again for linear combination. In Eqs. (3.7)�(3.10) we use the
standard notation H (1, 2)

sl
(z) for the Hankel functions, and Isl (z) and Ksl (z) for the

modified Bessel functions of the first and second kinds, respectively [24].
Let us first look at the weak-coupling regime. For bound states, the requirement

that the solution be finite at infinity implies the rejection of the component Isl (}r)
in Eq. (3.7), whereas the boundary condition at the origin, Eq. (A21), leads to the
elimination of the component Ksl (}r). In other words, there exist no bound states
for a weak coupling. Physically, this state of affairs is reminiscent of the non-
existence of bound states for a repulsive potential; in fact, the combination of the
potential itself and the centrifugal potential is effectively ``repulsive'' when *<* (V)

l .
On the other hand, such a potential can produce nontrivial scattering, which,
according to Eq. (3.8), is described by the solution

ul (r) = - r [A� (+)
l H (1)

sl (kr)+A� (&)
l H (2)

sl
(kr)]

t
(r � �)

- r _A� (+)
l H (1)

l+&0 \kr+(l+&0&sl)
?
2+

+A� (&)
l H (2)

l+&0 \kr+(l+&0&sl)
?
2+& , (3.11)
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where A� (+)
l =A� (&)

l and the asymptotic behavior determines the energy-independent
phase shifts

$(D0)=[(l+&0)&- (l+&0)2&*]
?
2

. (3.12)

Equation (3.12) manifestly displays the scale invariance of the theory, generalizing
the well-known three-dimensional results [7, 33]. Notice that the scattering matrix
S (D0)

l =exp[2i$ (D0)
l ] has no poles, which is in agreement with the absence of bound

states. Parenthetically, our conclusions relied on the choice of the boundary condi-
tion (A21) at the origin; the validity of this procedure for the inverse square poten-
tial will be proved in the next section.

Let us now consider the strong-coupling regime. For bound states, the require-
ment that the solution be finite at infinity implies again the rejection of the compo-
nent Ii3l (}r) in Eq. (3.9). However, the boundary condition at the origin, Eq. (A21),
can neither eliminate the component Ksl (}r) nor restrict the possible values of the
energy. In effect, from Eq. (2.15) and elementary properties of the gamma function
[24], the small-argument behavior of the modified Bessel function of the second
kind and imaginary index is

Ki3l (}r) t
(r � 0)

&� ?
3 l sinh(?3 l)

sin _3l ln \}r
2 +&$3l& [1+O(r2)], (3.13)

where

$3l=I[ln 1(1+i3l)] (3.14)

is the phase of 1(1+i3l ). Then if Eq. (3.13) were a bound-state wave function, it
would display an oscillatory behavior with an ever increasing frequency as r � 0. In
particular, starting with any finite value of r, the function defined by Eq. (3.13) has
an infinite number of zeros, at the points rn=2 exp[($3l&n?)�3l]�} (with n
integer), whence it represents a state lying above infinitely many bound states. In
other words, the boundary condition has become ineffective as a screening tool, a
situation that we may describe as a ``loss'' of the boundary condition, and which
permits the existence of a continuum of bound states extending from E=&� to
E=0, in agreement with the conclusions of Ref. [2]. In particular, the potential has
no ground state, so that the Hamiltonian is no longer bounded from below and has
lost its self-adjoint character [34]. After due reflection, this situation makes sense:
the potential has overcome the centrifugal barrier, a phenomenon that corresponds
to the classical ``fall of the particle to the center'' [10]. With regard to the scattering
in this strong-coupling regime, due to the loss of the boundary condition, it is
impossible to determine the phase of the wave function or relative values of the
coefficients in Eq. (3.10); in other words, the scattering parameters are ill-defined.
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In summary, for *<* (V)
l , the inverse square potential is incapable of producing

bound states but it scatters in a manifestly scale-invariant way; while for *>* (V)
l ,

it destroys the discrete character of the bound-state spectrum, the uniqueness of the
scattering solutions, and the self-adjoint nature of the Hamiltonian. Here we
recognize some of the familiar features of unregularized transmuting potentials.

The failure of the inverse square potential to provide a discriminating boundary
condition at the origin for the strong-coupling regime is now seen as the source of
the singular behavior required by dimensional transmutation. In some sense, the
key to our regularization procedure will be the restoration of a sensible boundary
condition for r=0.

B. Loss of the Boundary Condition at the Origin for the Inverse Square Potential

Let us now reexamine the boundary condition at the origin, which seems to be
the most important ingredient in the analysis of Subsection III.A. For the inverse
square potential, the standard argument leading to Eq. (A21) should be modified
with the replacement (3.5), so that

Rl (r)=
ul (r)

r(D0&1)�2 t
(r � 0)

[r:+, l, r:&, l], (3.15)

where

:\, l=&&0\s l (3.16)

are the exponents arising from the associated indicial equation, with s l given by
Eq. (3.3). Obviously, Eq. (3.16) is the small-argument limit of Eqs. (3.7)�(3.10).
However, the power-law functions (3.15) are no longer solutions of Laplace's equa-
tion, so that the rejection of the second solution, in the analysis leading to
Eq. (A21), is not justified. In order to clarify this issue it proves convenient to con-
sider a truncated potential [10]

Va(r)={&*�a2

&*�r2

for r<a
for r�a,

(3.17)

which clearly satisfies V(r)=lima � 0 Va(r). The truncated potential permits the use
of regular boundary conditions for finite a, as a means of deducing the limiting
behavior when a � 0. The solution in the presence of the truncated potential (3.17),
for r sufficiently small, is

Rl (r) t
(r � 0, a � 0) {C (+)

l r:+, l+C (&)
l r:&, l

Blrl

for r>a
for r<a,

(3.18)
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where the exponents :\, l are given by Eq. (3.16). Continuity of the logarithmic
derivative for r=a, in the limit a � 0, provides the condition

0l (a)=
C (+)

l

C (&)
l

=&
- * (V)

l +- * (V)
l &*

- * (V)
l &- * (V)

l &*
a&2 - *l

(V)&*. (3.19)

For the weak-coupling regime, *<* (V)
l , the ratio (3.19) goes to infinity as a � 0,

and the boundary condition becomes

Rl (r) t
(r � 0) C (+)

l r:+, l, (3.20)

so that

ul (r) t
(r � 0) C (+)

l - r rsl. (3.21)

In other words, the choice is made in favor of the least divergent solution; then
Eq. (3.21) implies that the boundary condition for the function ul (r) is (A21), just
as for regular potentials. This confirms, a posteriori, that (A21) is a valid condition
to apply in the weak-coupling case, as was assumed in the analysis of Subsec-
tion III.A, which led to the proper selection of Bessel functions in Eqs. (3.7) and
(3.8).

However, for the strong-coupling regime, *>* (V)
l , the exponents :\ are complex

conjugate values and both solutions have the same behavior. Then, no criterion can
be given to discriminate the ``good'' from the ``bad'' solutions, so that the boundary
condition at the origin is ``lost.'' Correspondingly, the ratio of Eq. (3.19) has no
definite limit for a � 0, displaying the same oscillatory behavior found in Subsec-
tion III.A, i.e.,

0l (a) B exp(&2i3l ln a). (3.22)

Then, as a � 0, the general solution reduces to the oscillatory form (3.13). Notice
that Eq. (A21) is still satisfied, but it is not a boundary condition, as it has lost its
discriminating power: both solutions are now allowed (cf. Eq. (3.15)).

In short, focusing on the behavior near the origin exclusively, we have clarified
the meaning of the loss of boundary condition and rediscovered the basic features
that had already been predicted in Subsection III.A.

IV. INVERSE SQUARE POTENTIAL: RENORMALIZATION

In the first detailed treatment of the inverse square potential, Ref. [8], it was
proposed that an additional orthogonality constraint be imposed on the eigenfunc-
tions (3.9) in the strong-coupling regime. Effectively, this procedure restores the dis-
crete nature of the spectrum��a direct application of Eq. (3.13) gives the energies
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En$l �Enl=e2?(n$&n)�3l. Nonetheless, the allowed bound-state levels still extend to
&�, i.e., the Hamiltonian remains unbounded from below. Subsequently, a
number of different regularization techniques were introduced [11�13] by properly
adding regularization parameters of various kinds. It was soon realized that the
strong-coupling Hamiltonian of the inverse square potential fails to be self-adjoint,
despite it being a symmetric operator; as its deficiency indices [34] are (1, 1), its
solutions can be regularized with a single parameter in the form of self-adjoint
extensions [14]. Alternative attempts simply abandoned self-adjointness in favor of
other requirements or interpretations; for example, in Ref. [15], the picture of the
``fall of the particle to the center'' is explicitly implemented by a non-Hermitian
condition.

In our approach, we will follow the traditional path of enforcing the self-adjoint
nature of the Hamiltonian��this time using field-theoretic methods. Recently, a
renormalized solution was presented along these lines [16], which replaced the
orthogonality criterion of Ref. [8] by a regular boundary condition at a cutoff
point near the origin. However, this proposal was just limited to the one-dimen-
sional case and only relied on real-space cutoff regularization. A second step along
this path was the formulation of the D-dimensional generalization of the cutoff-
regularization approach [35]. In this section, we extend the results of Refs.
[16, 35] using dimensional regularization and emphasize those features associated
with dimensional transmutation.

A. Dimensional Regularization of the Inverse Square Potential

Dimensional regularization of the inverse square potential is done as follows.
As discussed in Ref. [2], dimensional analysis implies that the D-dimensional
regularization of the inverse square potential (Eqs. (1.1) and (1.3)) is of the
homogeneous form

W (D)(r) B r&(2&=). (4.1)

We would like no to confirm this prediction and find the proportionality coefficient
J(=). First, we should find the momentum-space expression by means of a
D0 -dimensional Fourier transform,

W� (k)=F(D0)[W(r)]=| d D0r e&ik } r 1
r2 , (4.2)

which we can be computed by means of Bochner's theorem [36], i.e.,

W� (k)=
(2?)D0�2

kD0�2&1 |
�

0
dr rD0�2&2JD0�2&1(kr). (4.3)
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Applying the identity [26]

|
�

0
x:J;(az) dz=2:a&:&1 1(1�2+;�2+:�2)

1(1�2+;�2&:�2)
, (4.4)

which is valid for &Re(;)&1<Re(:)<1�2, the required transform is found to be

W� (k)=
(4?)D0�2

4kD0&2 1(D0 �2&1). (4.5)

Equation (4.5) seems to be restricted to 2<Re(D0)<5; however, the right-hand
side is a meromorphic function with poles at D0=2, 0, &2, ... and is the desired
analytic continuation of the integral. As we will see next, when the inverse Fourier
transform is applied, the final analytically continued expression will have no such
restriction. In effect, applying the dimensional-continuation prescription of Ref. [2]
to W (2)(r)=1�r2, we get

W (D)(rD)=|
d DkD

(2?)D eikD } rD[W� (kD0
)]kD0 � kD ,

=
(4?)D0�2

4
1(D0 �2&1) |

d DkD

(2?)D eikD } rD[k&D0+2
D0

]kD0 � kD

=
(2?)=�2

rD�2&1 2D0�2&21(D0 �2&1) |
�

0
dk kD�2&D0+2JD�2&1(kr), (4.6)

which, by means of Eq. (4.4), amounts to

W (D0&=)(r)=?=�21 \1&
=
2+ r&(2&=). (4.7)

Even though the last integration is restricted to 3&D0<Re(D0&D)<2, analytic
continuation of the right-hand of Eq. (4.7) allows us to extend its validity for
arbitrary values of ={&2, &4, ... (notice that the previous restriction has been
lifted); this is perfectly fine anyway, because all that is needed is the limit ==0+.

Then, for the dimensionally regularized problem, using the notation

J(=)=?=�21 \1&
=
2+ , (4.8)

we have the D-dimensional Schro� dinger equation

_{2
D+E+

*+=J(=)
r2&= & 9(r)=0, (4.9)
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which, for the state of angular momentum l, reads

{ d 2

dr2+E+
*+=J(=)

r2&= &
[l+D(=)�2&1]2&1�4

r2 = ul (r)=0. (4.10)

We are now ready to solve Eq. (4.10). As it stands, it does not look familiar when
= is not an integer. However, it can be conveniently transformed into an asymptoti-
cally soluble problem by means of a duality transformation [37], whose properties
we study in Appendix C. For the particular case at hand, applying the transforma-
tion (cf. (C22))

{ |E| 1�2 r=z2�=

|E| &D�4 u(r)=w(z) z1�=&1�2,
(4.11)

the dual of Eq. (4.10) becomes Eq. (C26), which we write in the condensed form

{ d 2

dz2+'~ &V� =(z)&
[ pl (=)]2&1�4

z2 = wl, =(z)=0, (4.12)

with a dual dimensionless energy

'~ =
4*+=J(=)

=2 |E|&=�2, (4.13)

a dual potential energy term,

V� =(z)=&_
4
=2 z4�=&2, (4.14)

and a dual angular momentum variable

pl (=)=
2
= _l+

D(=)
2

&1& . (4.15)

In our subsequent analysis, we will often rewrite Eq. (4.15) in the form

p= pl (=)=
2
=

(* (V)
l )1�2&1=

2
=

(* (V)
l )1�2 _1&

=
2

(* (V)
l )&1�2& , (4.16)

in terms of the critical coupling (3.4). Equation (4.16) provides an alternative
expansion parameter p, such that, as = � 0, p � �. It should be noticed in passing
that Eq. (4.13) already provides the functional form (1.4) required for any possible
eigenvalue equation of the inverse square potential, with

5(=)=
4J(=)

=2 '~ &1. (4.17)
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As usual, as the problem is now regularized, Eq. (4.12) should be solved with the
regular boundary condition at the origin, Eq. (A21), so that

wl, =(0)=0. (4.18)

Even though the solutions to Eq. (4.12) cannot be expressed in terms of any
standard special functions for arbitrary =>0, it is still possible to write their
asymptotic form with respect to = � 0, in terms of Bessel functions, as we show
below. The key to this asymptotic analysis lies in the singular limiting form of the
transformed potential (4.14), namely,

lim
= � 0

V� =(z)={0
&_�

for z<1
for z>1;

(4.19)

in particular, for E<0 (i.e., _=&1), V� =(z) behaves as an infinite hyperspherical
potential well. Because of the singular nature of the limit (4.19), an asymptotically
exact hierarchy emerges, whereby Eq. (4.12) is split into two distinct differential
equations: the first one, without the term V� =(z), for the interior region z<z2 r1,

{ d 2

dz2+'~ &
[ pl (=)]2&1�4

z2 = w (<)
l, = (z)=0; (4.20)

and the second one, without the terms proportional to 1�z2, for the exterior region
z>z2 r1,

_ d 2

dz2&V� =(z)& w (>)
l, = (z)=0. (4.21)

Equation (4.20) is a Bessel differential equation of order p= pl (=), whose regular
solutions that satisfy the boundary condition (4.18) are of the form

w(<)
l, = (z)=Bl - z Jp('~ 1�2z). (4.22)

On the other hand, Eq. (4.21) can be taken to a standard Bessel form by another
duality transformation; it is easy to verify that

w(>)
l, = (z)=- z C=�4(- _ z2�=), (4.23)

where C=�4 stands for a linear combination of ordinary Bessel functions of order =�4;
in fact, more explicitly,

w (>)
l, = (z)={Al - z K=�4(z2�=)

- z [A� (+)
l H (1)

=�4(z2�=)+A� (&)
l H (2)

=�4(z2�=)]
for _=&1
for _=1,

(4.24)
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where the first line includes a modified Bessel function of the second kind, whereas
the second line includes a linear combination of Hankel functions. Their physical
meaning becomes transparent when transformed back from the dual to the original
space, in which

ul (r) t
(r � �, = � 0) {Al - r K0(}r)

- r [A� (+)
l H (1)

0 (kr)+A� (&)
l H (2)

0 (kr)]
for E=&}2<0
for E=k2>0.

(4.25)

Equation (4.25) represents the asymptotic behavior of the wave function, when r is
large, for the bound-state (E<0) and scattering (E>0) sectors of the inverse
square potential. Of course, the asymptotic behavior of Eq. (4.25) justifies a
posteriori the choice of Bessel functions in Eq. (4.24).

The boundary point z2 separating the two regimes described by Eqs. (4.20) and
(4.21) is infinitesimally close to z=1, but further precision is required. In effect, the
critical separation takes place at the point z2 where

}'~ &[ p l (=)]2&1�4
z2

2 }=|V� =(z2)|, (4.26)

because, away from it, the term V� =(z2) will abruptly become negligible for
z<z2 and will overwhelmingly dominate over the other terms for z>z2 . From
Eqs. (4.13)�(4.16), it follows that the condition (4.26) amounts to

p2 \ *
* (V)

l

&1+_1+O \1
p+&=

p2

* (V)
l

z4�=
2 _1+O \1

p+& , (4.27)

so that

z2=3 =�2
l , (4.28)

where 3l is given by Eq. (3.6). With the value of z2 so determined, the solutions to
Eqs. (4.20) and (4.21) should be matched at z=z2 through the logarithmic
derivative

L(3l)=z
d ln(w�- z)

dz } z=z2

. (4.29)

For the interior solution (4.22), the logarithmic derivative takes the form

L(<)(3l)= y
d ln Jp( y)

dy } y='~ 1�2z2

, (4.30)

whereas, for the exterior solution (4.22), it becomes

L(>)(3l)=
2
=

3l
d ln C=�4(3 l)

d3l
. (4.31)
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Having developed the general framework for the analysis of the inverse square
potential in terms of its dual problem, we now turn to the distinct details of the
bound-state and scattering sectors.

B. Bound-State Sector for the Inverse Square Potential
The bound states of the inverse square potential (if any) should be characterized

by the energy condition E<0, which essentially converts the dual potential into an
infinite hyperspherical well in the limit = � 0+, as displayed by Eq. (4.19). This
suggests that, as a first approximation, the boundary condition at z2 may be
replaced by

w (<)
l, = (1)r0, (4.32)

whence Eq. (4.22) immediately gives the spectrum through the condition

Jp('~ 1�2)r0, (4.33)

from which the corresponding eigenvalues are

'~ nr r( jp, nr)
2, (4.34)

where jp, nr is the nr th zero of the Bessel function of order p. Therefore, from
Eq. (4.13), the regularized eigenvalue condition becomes

* _4J(=)( jp, nr)
&2

=2 &\ |E|
+2 +

&=�2

r1, (4.35)

where nr is now confirmed as the radial quantum number��the ordinal number for
the stationary radial wave functions. Equation (4.35) is of the form of the master
eigenvalue Eq. (1.4), with an energy generating function

5nrl (=)r
4J(=)

=2 ( jp, nr)
&2. (4.36)

Even though the remarks of the previous paragraph are essentially correct, for a full
comparison with the scattering sector of the theory, it is necessary to evaluate the
logarithmic derivatives (4.30) and (4.31), which will give extra terms in the energy
expressions. Therefore, we need to first analyze the asymptotic behavior of the inte-
rior solution (4.22) with respect to p � �, and then find the proper values of the
logarithmic derivatives.

The limit = � 0 of Eq. (4.22) relies on well-known properties of the Bessel
functions of large order [24]. We will start with Debye's asymptotic expansion,

Jp( p sec ;) t
( p � �) � 2

?p tan ; {cos _p tan ;& p;&
?
4&+O( p&1)= , (4.37)
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where the argument will become

y= p sec ;='~ 1�2z2 . (4.38)

For our analysis, a few relations between these variables are in order; in particular,

y= p � *
* (V)

l

[1+O(=)]= p �1+
32

l

* (V)
l

[1+O(=)], (4.39)

and

tan ;=- ( y�p)2&1=
3l

(* (V)
l )1�2 . (4.40)

Then the logarithmic derivative (4.30) becomes

L(<)(3l)=&p
3l

(* (V)
l )1�2 tan {p _ 3l

(* (V)
l )1�2&tan &1 \ 3l

(* (V)
l )1�2+&&

?
4=+O(1).

(4.41)

Equation (4.41) displays an anomalous behavior as p � � in that the tangent
function will oscillate wildly from &� to �, thus rendering the regularized
problem ill-defined. The cure for this behavior is afforded by the renormalization of
the coupling constant *=*(=), which implies a corresponding renormalization of
3l=3l (=) (from Eq. (3.6)), in such a way that 3l � 0 as = � 0. Then this amounts
to the realization of the limiting critical coupling * � * (V)

l +0+. A more careful
analysis of this limiting behavior is afforded by

F=tan ;&;=
;3

3
+O(;5)=

33
l

3(* (V)
l )3�2+O(35

l ), (4.42)

so that the finiteness of the argument of the tangent implies that p33
l should be

finite; then

3l=O( p&1�3) (4.43)

and

y= p+ p1�3x, (4.44)

where x is a finite variable.
On the other hand, using the small-argument behavior of the modified Bessel

function of the second kind [24], Eq. (2.15), it follows that

K=�4(z2�=) t
(z � 0) _2

= \
1

- z
&- z+&

1
2

(#&ln 2) \ 1

- z
+- z+& [1+O(=2, z4�=)], (4.45)
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so that, from Eqs. (4.28), (4.31), and (4.43), the logarithmic derivative becomes

L(>)(3l)=
2
=

(ln 3 l&c)&1 [1+O(=2�3)], (4.46)

where

c=ln 2&#. (4.47)

Equation (4.46) implies that, as = � 0,

w(>)(z2)

- z2

t
(= � 0) =

2
(ln 3l&c)

d
dz _

w(>)(z)

- z &} z=z2

, (4.48)

so that continuity of the wave function implies that Eq. (4.32) is indeed correct to
zeroth order.

The interior logarithmic derivative can now be evaluated from the asymptotic
expansion [24]

Jp( p+ p1�3x) t
( p � �) 21�3

p1�3 Ai (&21�3x)+O( p&1), (4.49)

where Ai is the Airy function of the first kind [24]. The zeroth order approxima-
tion to the logarithmic derivative amounts to w(1)=0 or L(<)=�, so that the
value of x, to this order, is provided by the zeros of the Airy function,

Ai(&21�3x (0)
nr

)=0. (4.50)

More precisely, if anr is the nr th negative zero of Ai, then

Cnr=x (0)
nr

=2&1�3anr , (4.51)

where we have identified the leading contribution in the asymptotic formula for the
zeros of the Bessel function of large order [38],

jp, nr= p+Cnr p1�3+O( p&2�3); (4.52)

for example, C1=1.8558, C2=3.2447, etc. It should be pointed out that, from the
asymptotic form of the Airy functions, which amounts to a WKB integration of
Eq. (4.20), an approximate��but extremely accurate��formula can be derived for
these coefficients, namely [35],

Cnr r
(3?)2�3

2 \nr&
1
4+

2�3

. (4.53)

79DIMENSIONAL TRANSMUTATION, II



Then, for the next order,

xnr=Cnr+$nr , (4.54)

with $nr<<Cnr , one can expand the Airy function in a Taylor series in the
neighborhood of x (0)

nr
, so that Eq. (4.30) becomes

L(<)(3l)=&21�3p2�3 Ai $(&21�3x)
Ai(&21�3x)

[1+O( p&2�3)]

=
p2�3

$nr

[1+O($nr , p&2�3)]. (4.55)

The equality of the logarithmic derivatives, Eqs. (4.46) and (4.55), gives

$nr= p&1�3(* (V)
l )1�2 [&c+ln 3l][1+O(=1�3)], (4.56)

whence

ynr= p[1+Cnr p&2�3+(* (V)
l )1�2 [&c+ln 3l] p&1+O( p&4�3)]. (4.57)

Therefore, from Eqs. (4.28) and (4.38), the correct replacement for Eq. (4.34) is

'~ nr=\ y
z2+

2

= p2[1+2Cnr p&2�3&2(* (V)
l )1�2 cp&1+O( p&4�3)]. (4.58)

Finally, from Eq. (4.8), the expansion of J(=) about ==0+ is

J(=)=1+
=
2

(#+ln ?)+O(=2), (4.59)

which combined with Eqs. (4.16) and (4.58), gives the asymptotically exact expres-
sion for the eigenvalue function of Eqs. (1.4) and (4.17), namely,

5nrl (=)=
1

* (V)
l

[1&2p&2�3Cnr+ p&1(* (V)
l )1�2

_[ln 4?&#+2(* (V)
l )&1�2]+O( p&4�3)] (4.60)

=
1

* (V)
l {1&21�3Cnr(* (V)

l )&1�3 =2�3

+
=
2

[ln 4?&#+2(* (V)
l )&1�2]+O(=4�3)= , (4.61)
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which is of the form [2]

5n(=)=[Ln(=)]&1 _1+
=
2

Gn(=)& , (4.62)

with a constant critical coupling function

Lnrl=* (V)
l =\l+

D0

2
&1+

2

(4.63)

(independent of nr), and with

Gnrl (=)=&24�3Cnr(*
(V)
l )&1�3 =&1�3+[ln 4?&#+2(* (V)

l )&1�2]+O(=1�3). (4.64)

From Eq. (4.64), we see that

G(gs)(=)=&24�3C1(* (V)
(gs))

&1�3 =&1�3+[ln 4?&#+2(* (V)
(gs))

&1�2]+O(=1�3), (4.65)

where

* (V)
(gs)=* (V)

0 =&2
0=(D0 �2&1)2 (4.66)

is the ``principal coupling constant,'' i.e., the critical coupling for the ground state
(l=0).

Equations (1.4) and (4.62)�(4.64) provide the regularized energies

|Enrl |=+2 \ *
* (V)

l +
2�=

exp[Gnrl (=)]

=+2 \ *
* (V)

l +
2�=

exp[&24�3Cnr(*
(V)
l )&1�3 =&1�3+[ln 4?&#+2(* (V)

l )&1�2]].

(4.67)

Ground-state renormalization can be implemented from Eq. (4.67), by means of the
regularized coupling [2]

*(=)=[5(gs)(=)]&1 _1+
=
2

g(0)+o(=)& , (4.68)

which now becomes

*(=)=* (V)
(gs) {1+21�3(* (V)

(gs))
&1�3 =2�3C1

+
=
2

[ g(0)&(ln 4?&#)&2(* (V)
(gs))

&1�2]=+o(=), (4.69)

81DIMENSIONAL TRANSMUTATION, II



with an arbitrary finite part g(0), so that, for the ground state,

E(gs)=&+2 exp[ g(0)] ^ &+2 (4.70)

(cf. Eq. (2.24)), while for any regularized bound state

|Enr l |=+2 \*(gs)

* (V)
l +

2�=

exp[&24�3[Cnr (*(V)
l )&1�3&C1(* (V)

(gs))
&1�3] =&1�3

+g(0)+2[(* (V)
l )&1�2&(* (V)

(gs))
&1�2]]. (4.71)

Equation (4.69) explicitly shows that

*(=) ww�(= � 0) * (V)
(gs)+0+; (4.72)

in other words, when the system is renormalized, the coupling becomes critically
strong with respect to the ground state (which, as we will see below, has l=0).

Equations (4.61)�(4.72) are easily interpreted. As expected, the critical coupling
defined by Eq. (3.4) from the unregularized theory becomes the critical coupling for
the regularized theory, Eq. (4.63), with respect to dimensional transmutation. We
already know, from the criteria of the general theory of dimensional transmutation
[2], that Eq. (4.61) implies the existence of a ground state alone. However, we will
now illustrate the general arguments for this particular problem.

The value of the critical coupling depends on the angular momentum quantum
number l but is independent of the radial quantum number nr . This, combined with
the form of Gnrl (=) in Eq. (4.64), imposes very stringent conditions on the existence
of bound states, as we shall see next.

The dependence of * (V)
l with respect to l requires that only l=0 states (if any) be

allowed, as implied by the following argument. First, only a finite number of states
can exist with different angular momentum numbers l. In effect, let us assume the
existence of a given state with angular momentum l0 ; as the coupling is critically
strong, then *=(l0+&0)2, so that the potential is ``weak'' and has no bound states
for all l>l0��for weak coupling, the unregularized theory suffices. In other words,
the only allowed states are those with 0�l�l0 . Let us now see that l0 {0 would
lead to a contradiction; in effect, if l0>0, then a state with l<l0 would potentially
exist as it would correspond to the strong regime; however, as l{l0 , the coupling
would not be critical with respect to l, rendering the theory ill-defined. In other
words, if the ground state exists, it should have l=0 (as expected) and all states
with l>0 are forbidden.

Therefore, the ground state is characterized by the quantum numbers

(gs)#(nr=1, l=0), (4.73)

and only hypothetical states with l=0 survive the renormalization process as
bound states.
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The next question is whether states with l=0 but nr {0 can survive renormaliza-
tion. Of course, the ratio of Eqs. (4.70) and (4.71) provides the answer: starting
with the ground-state energy, any other such state would have an energy over-
whelmingly suppressed by an exponential factor,

} Enr0

E(gs) }=exp[&24�3(Cnr&C1)(* (V)
(gs))

&1�3 =&1�3] wwww�(= � 0, nr>1) 0. (4.74)

Furthermore, for these states, the wave function (4.25) has an ill-defined limit, so
that they cease to exist when = � 0. In short, the singular nature of the potential is
responsible for the destruction of all candidates for a renormalized bound state,
except for the limit of the ground state of the regularized theory��which, upon
renormalization, becomes the ground state of the system and acquires the finite
energy value (4.70).

Finally, the ground-state wave function can also be explicitly derived. From Eqs.
(4.25), (4.70), and (A14), it follows that the ground state wave function is given by

9(gs)(r)=�1(&+1) \+2

? +
&+1 K0(+r)

(+r)& , (4.75)

which is similar to that of the two-dimensional delta-function potential, with which
it coincides when D0=2.

C. Scattering Sector for the Inverse Square Potential

For the scattering sector of the theory we will match the interior and exterior
solutions by means of the parameter

|(3l)=
=
2

L(3l)=3l
d ln C=�4(3l)

d3l
. (4.76)

In particular, the exterior scattering problem is described by the second line in
Eqs. (4.24) and (4.25), so that Eq. (4.31) can now be rewritten as

|(>)(3l)=3l
d ln C=�4(3l)

d3l
, (4.77)

which is explicitly given by

|(>)(3 l)=
A� (+)

l 3l H (1)
=�4$(3l)+A� (&)

l 3 lH (2)
=�4$(3l)

A� (+)
l H (1)

=�4(3l)+A� (&)
l H (2)

=�4(3l)
. (4.78)
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Equation (4.78) can be evaluated from the small-argument behavior of the Hankel
functions [24],

H (1, 2)
p (z) t

(z � 0)
\

e�ip?�2

?i _e�ip?�21(&p) \z
2+

p

+e\ip?�21( p) \z
2+

&p

& [1+O(z2)],

(4.79)

so that

|l=|(>)(3l)=
2i
?

A� (+)
l &A� (&)

l

(1+iQl) A� (+)
l +(1&iQl) A� (&)

l

, (4.80)

where

Ql=
2
?

(&c+ln 3 l), (4.81)

with c defined in Eq. (4.47). Then the scattering matrix can be derived from the
asymptotic expansion of the Hankel functions as r � �, which according to
Eq. (4.25) is of the form

u(r) t
(r � �, = � 0)

- r _A (+)
l H (1)

l+&0 \kr+(l+&0)
?
2+

+A (&)
l H (2)

l+&0
(kr) \kr+(l+&0)

?
2+& , (4.82)

where the coefficients for the s wave (l=0) are related via

A (\)
0 =A� (\)

0 e\i(D0&2) ?�4; (4.83)

then the s-wave scattering matrix elements��from Eqs. (4.80), (4.83), and (B12)
��are given by

S (D0)
0 (k)=e i&0?S� (D0)

0 (k), (4.84)

with S� (D0)
0 (k)=A� (+)

0 �A� (&)
0 of the form

S� (D0)
0 (k)=&

1+i(2|&1
(gs) �?&Q(gs))

1&i(2|&1
(gs) �?&Q(gs))

, (4.85)

and where |(gs)=|0 and Q(gs)=Q0 .
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In order to obtain an explicit expression for the scattering matrix in terms of the
energy, we need to evaluate the coefficient |(gs) in Eq. (4.85). This program can be
implemented through the expansion of the dual energy '~ , defined in Eq. (4.13),
which should now be derived again for the scattering sector of the theory. With that
purpose in mind, making use of Eqs. (4.8), (4.16), and

} E
+2 }

&=�2

=1&
=
2

ln } E
+2 }+O(=2), (4.86)

the required expression becomes (for l=0)

'~ = p2 *
* (V)

(gs) {1+(* (V)
(gs))

1�2 _ln ?+#+2(* (V)
(gs))

&1�2&ln } E
+2 }& p&1+O( p&2)= .

(4.87)

In addition, we have already renormalized the bound-state sector of the theory,
with the result that the coupling constant should behave as dictated by Eq. (4.69),
whence

'~ 1�2= p {1+C1 p&2�3+
=
4 _&2c+ g (0)&ln } E

+2 }&+o(=)= , (4.88)

from which it follows that the variable y='~ 1�2z2 , defined by Eq. (4.38), is of the
form (4.44), with

x=C1+_(&c+ln 3(gs))&
1
2

ln } E
E(gs) }& (* (V)

(gs))
1�2 p&1�3, (4.89)

and c defined in Eq. (4.47). Then the logarithmic derivative (4.30) can be derived
for the scattering sector using an argument similar to the one employed in
Eq. (4.55), i.e., with $=x&C1 ,

L(<)(3l)=&21�3p2�3 Ai $(&21�3x)
Ai(&21�3x)

[1+O( p&2�3)]

=
p2�3

x&C1

[1+O( p&2�3)]. (4.90)

As a consequence, we conclude that the parameter defined in Eq. (4.76) becomes

|(gs)=|(<)(3(gs))=_(&c+ln 3(gs))&
1
2

ln } E
E(gs) }&

&1

. (4.91)
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TABLE I

Phase Shift $ (D0)
0 (k), Scattering Matrix S (D0)

0 (k), and Partial Scattering Amplitude a(D0)
0 (k) for the

Inverse Square Potential, as a Function of the Geometric Dimension D0 of Position Space

D0 tan $ (D0)
0 (k) S (D0)

0 (k) a (D0)
0 (k) k(D0&1)�2

1 (mod 4)
?&L
?+L

(1+i) ?+(1&i) L
(1&i) ?+(1+i) L

?&L
(1&i) ?+(1+i) L

2 (mod 4)
?
L

L+i?
L&i?

?
L&i?

3 (mod 4)
L+?
L&?

(&1+i) ?+(1+i) L
&(1+i) ?+(1&i) L

L+?
&(1+i) ?+(1&i) L

4 (mod 4) &
L
?

?&iL
?+iL

&
L

?+iL

Note. The shorthand L=ln(k2�|E(gs) | ) is used in this table.

Finally, from Eqs. (4.81), (4.84), (4.85), and (4.91), the S-matrix reads

S (D0)
0 (k)=e i&0? ln(k2�|E(gs) | )+i?

ln(k2�|E(gs) | )&i?
, (4.92)

while the phase shifts are implicitly given by the expression

tan \$ (D0)
0 (k)&

?&0

2 +=
?

ln(k2�|E(gs) | )
, (4.93)

and the partial scattering amplitude reads

a (D0)
0 (k)=

1
2ik(D0&1)�2

ln(k2�|E(gs) | )(ei&0?&1)+i?(ei&0?+1)
ln(k2�|E(gs) | )&i?

. (4.94)

Equations (4.92), (4.93), and (4.94) are remarkably similar to Eqs. (2.37), (2.38),
and (2.39) for the two-dimensional delta function potential. Table I summarizes the
main results of the scattering for an arbitrary number of dimensions D0 .

The above analysis refers to l=0. For all other values l>0, the coupling will be
weak, so that the phase shifts will be given by the values of Eq. (3.12), with the
condition that *=* (V)

(gs) ; then,

$(D0)
l | l{0=[(l+&0)&- l(l+2&0)]

?
2

, (4.95)
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and

S (D0)
l (k)| l{0=(&1)l exp(i&0 ?) exp[&i? - l(l+2&0)], (4.96)

which are scale-invariant expressions.
A number of consequences follow from Eqs. (4.92) and (4.93):

1. The unique pole of the scattering matrix (4.92) corresponds to the unique
bound state.

2. The phase shifts can be renormalized using a floating renormalization scale
+, as an alternative to ground-state renormalization. Then the s-wave phase shift
reads simply

1
tan ($ (D0)

0 (k)&?&0 �2)
=

1
tan ($ (D0)

0 (+)&?&0 �2)
+

1
?

ln \k
++

2

. (4.97)

3. Equations (4.94), (4.95), (B8), and (B9) give the differential scattering
cross section

f (D0)
k (cos %)=

N&0

2ik(D0&1)�2

_
ln(k2�|E(gs) | )(ei&0 ?&1)+i?(ei&0?+1)

ln(k2�|E(gs) | )&i?
+ f

s(D0)

k (cos %), (4.98)

where

f
s(D0)

k (cos %)=
N&0

2ik(D0&1)�2 :
�

l=1
\ l

&0

+1+
_[(&1) l ei&0?e i? - l(l+2&0)&1] C (&0)

l (cos %). (4.99)

4. All the relevant quantities are logarithmic with respect to the energy and
agree with the predictions of generalized dimensional analysis [2].

5. Equations (4.92), (4.93), and (4.94) relate the bound-state and scattering
sectors of the theory and show that the inverse square potential is renormalizable.

V. CONCLUSIONS

In this paper, we have uncovered a number of remarkable analogies between the
two-dimensional delta-function and inverse square potentials. In addition to dis-
playing their characteristic transmuting behavior, with all the ensuing implications,
we have explicitly seen that they share the following properties:
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(i) Unusual boundary conditions at the origin.

(ii) Characteristic critical couplings (coincident for D0=2) that determine
the possible regimes of each potential.

(iii) Only one bound state in the renormalized theory, even though this is
achieved through different mechanisms (the delta-function potential always
generates a unique state, while the inverse square potential annihilates all the
regularized excited states by exponential suppression).

(iv) Almost identical ground-state wave functions (up to the normalization
constant).

(v) Similar s-wave scattering matrix elements��they are proportional, differ-
ing only upon an extra D0 -dependent phase factor for the inverse square potential.

(vi) Characteristic logarithmic behavior of s-wave scattering quantities.

It should be noticed that the bound-state sectors look essentially identical in both
theories, while the s-wave scattering sectors are identical for D=2 and almost iden-
tical for D{2.

However, there a number of differences as well. Due to its zero-range nature, the
two-dimensional delta function only scatters s waves, while the inverse square
potential, due to its infinite range, scatters all other angular-momentum channels in
a scale-invariant (energy-independent) way.

Moreover, these results are independent of the regularization technique; in par-
ticular, they are in perfect agreement with the D0 -dimensional generalization [35]
of the cutoff-renormalization method of Ref. [16].

Finally, the techniques used in this paper could be easily generalized. For
example, one could consider the generalized inverse square potential

V(r)=&*
v(0(D))

r2 , (5.1)

with a dimensionless function v(0(D)) that depends on the D-dimensional solid
angle 0(D); the angular part of the solution could be properly modified, but the
basic scaling relationships would remain the same. In principle, this strategy could
be conveniently used for the dipole potential [31, 32] and for other forms of
angular dependence in Eq. (5.1).

APPENDIX A

Rotational Invariance: Central Potentials in D Dimensions

In this appendix we will enforce the condition of rotational invariance and use
the notation and definitions of hyperspherical coordinates as introduced in Ref. [2].
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As usual, a central potential V(r) is defined to be rotationally invariant; thus, its
functional form is independent of the angular variables in D-dimensional hyper-
spherical coordinates. Its associated symmetry group is SO(D), with a quantum
mechanical representation generated by the D(D&1)�2 generalized angular
momentum operators xi pk&xk pi (with i<k). The quadratic Casimir operators

L2
j = :

D&1

k>i= j

(x i pk&xk pi)
2

=&�2 :
D&1

k= j \ `
k&1

i= j

sin2 %i+
&1

_ �2

�%2
k

+(D&k&1) cot %k
�

�%k& (A1)

(with j=1, ..., D&1) commute with all the generators of the Lie algebra and with
all possible rotations. Each L2

j represents the ``total'' D-dimensional angular
momentum squared in the subspace spanned by the Cartesian coordinates
(xj , ..., xD), and is characterized by the properties that it commutes with the
Hamiltonian of any central potential and that it satisfies the eigenvalue equation

L2
j |E, L)=lj (lj+D& j&1) �2 |E, L) , (A2)

where the eigenstates |E, L) are labeled by the energy and by the collective index
of generalized angular momentum quantum numbers

L=(l#l1 , l2 , ..., lD&2 , m#lD&1). (A3)

The eigenstates |E, L) lead to the generalization of the usual 3D factorization of
the position wave function, which can be written as [39]

9EL(r, 0(D))=(r, 0(D) | E, L)=REl (r) YL(0(D)), (A4)

in terms of the hyperspherical harmonics YL(0 (D))=(0(D) | L). Notice that the
peculiar number m is associated with rotations on the (xD&1 , xD) plane, which are
characterized by the azimuthal angle ,#%D&1 ; the corresponding operator is
usually chosen to be

LD&1=xD&1 pD&xD pD&1=
�

i
�

�,
, (A5)

instead of L2
D&1 , with eigenvalues m� (both positive and negative). In addition, the

generalized angular momentum quantum numbers satisfy the constraints

0�|m|�lD&2�lD&3� } } } �l3�l2�l. (A6)
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Moreover, the angular part of the Laplacian [36],

20(D)= :
D&1

j=1
_\ `

j&1

k=1

sin2 %k+ sinD& j&1%j&
&1 �

�%j \sinD& j&1 % j
�

�% j+ , (A7)

from Eq. (A1), can be simply written in terms of the total angular momentum
L2=L2

1 , namely,

20D=&
L2

�2 , (A8)

so that Eq. (A2) leads to

20(D) YL(0(D))=&l(l+D&2) YL(0(D)). (A9)

In particular, the solutions of the angular part of Laplace's equation that are inde-
pendent of all angles but %1 are the hyperspherical harmonics with l2= } } } =
lD&2=m=0, for which Eq. (A9) reduces to the ultraspherical differential equation,
with regular solutions given by the Gegenbauer (or ultraspherical) polynomials
C (&)

l (cos %1), defined in terms of its generating function (see Refs. [24, 40])

(1&2tz+z2)&&= :
�

l=0

C (&)
l (t) zl. (A10)

This is all the background needed for our work; the reader may consult Ref. [39]
for general proofs and Refs. [41, 42] for explicit expressions of the hyperspherical
harmonics.

Equation (A9) justifies a posteriori the use of the notation REl (r) introduced in
Eq. (A4), which assumes that R(r) depends only on the angular momentum quan-
tum number l (but not on l2 , ..., lD&2 , m), in addition to the energy E. In effect,
after isolating the angular factor that is common to all central potentials, the wave
function REl (r) satisfies the equation

_2 (D)
r &

l(l+D&2)
r

+V(r)& REl (r)=EREl (r), (A11)

with a radial Laplacian

2 (D)
r =

1
rD&1

�
�r \rD&1 �

�r+ (A12)

=
1

r(D&1)�2

d 2

dr2 [r(D&1)�2]+
(D&1)(D&3)

4r2 . (A13)
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As a result, the function

uEl (r)=REl(r) r(D&1)�2 (A14)

satisfies a one-dimensional Schro� dinger equation

_&
d 2

dr2+V(r)+
4l, D

r2 & uEl (r)=EuEl (r), (A15)

in which the centrifugal barrier is characterized by the effective coupling constant

4l, D =l(l+D&2)+(D&1)(D&3)�4 (A16)

=(l+&)2&1�4, (A17)

where & is the variable defined in Eq. (2.3). In our work, Eq. (A17) is most useful,
particularly because, for the potentials of interest in this work, it provides a
straightforward connection with a family of Bessel differential equations.

Equation (A17) depends on the number of dimensions of the space only through
the combination l+&; this amounts to the remarkable phenomenon known as
interdimensional dependence [43]: the solutions for any two problems related via
l+&=l $+&$, with &{&$ (i.e., D{D$) are identical.

A remark about notation is in order. In most contexts, it is customary to drop
the subscript E labeling the wave functions in Eqs. (A4), (A11), (A14), and (A15),
i.e., to write REl (r)#Rl (r) and uEl (r)#ul (r). Alternatively, for the bound-state
sector, one often writes Rnrl (r), unrl (r), and Enr l , where nr is the radial quantum
number.

Finally, in order to have a well-defined problem, boundary conditions are needed
both at infinity and at the origin. At infinity, the bound-state solutions should go
to zero in order to ensure their integrability, while the scattering solutions are sub-
ject to the usual requirements [44]. On the other hand, the boundary condition at
r=0 requires further analysis.

In fact, the boundary condition at the origin is the basis for the classification of
potentials into the regular and singular families, as discussed in Appendix C. In this
framework, regular and semi-regular potentials are characterized by the limit

r2V(r) ww�r � 0 0, (A18)

so that, near the origin, both the potential and total energy terms are negligible and
the limiting form of the wave function becomes asymptotically a solution of the
radial part of Laplace's equation, i.e.,

Rl (r) t
(r � 0) u l (r)

r(D&1)�2=[r l, r&(l+2&)], (A19)
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where [ , ] stands for linear combination. In Eq. (A19), the first component is
acceptable but the second one should be discarded because {2

D[YL(0D)�rl+D&2] is
proportional to the multipole density of order, l, i.e., it involves derivatives of the
delta function $(D)(r) of order l. Therefore, for regular potentials, there is a criterion
for the selection between the two linearly independent solutions of Eq. (A15), and
this provides the boundary condition

Rl (r) B r l. (A20)

In practice, it is sufficient to consider the weaker boundary condition

ul (0)=0. (A21)

As discussed in Subsection III.B, the source of the unusual properties of critical
(dimensionally transmuting) and singular potentials is the ``loss'' of the boundary
condition (A21).

APPENDIX B

Rotational Invariance: Partial-Wave Analysis in D Dimensions

For our work, we need another aspect of rotational invariance in D dimensions:
the expansion in D-dimensional partial waves, which is developed next. A spherical
wave state |E, L) is represented by a solution of the radial Schro� dinger equation
for a free particle; then Eq. (A11), when V(r)=0, has solutions proportional to the
Bessel functions Zl+&(kr), with &=D�2&1, where Z=J, or N, or H (1, 2); explicitly,

Rl (r) B zl, &=�?
2

x&&Zl+&(x), (B1)

where the ultraspherical Bessel functions admit the asymptotic expansions

zl, &(x) t
(x � �) x&(D&1)�2{ \x+#D&l

?
2

&
?
2+ , (B2)

in which {(!) is the corresponding trigonometric function (i.e., cos ! for j(!), sin !
for n(!), and exp(\i!) for h(1, 2)(!)), and #D=(3&D) ?�4 (from Ref. [2]). In par-
ticular, the regular free-particle solution of Eq. (A11) (based on its behavior at the
origin) is provided by jl, &(kr). On the other hand, the angular part leads to the
Gegenbauer (or ultraspherical) polynomials C (&)

l (cos %) defined through Eq. (A10).
In short, the regular solution is of the form j l, D�2&1 (kr) C (D�2&1)

l (cos %).
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The partial-wave expansion for central potentials in D dimensions then proceeds
in complete analogy to the three-dimensional case [45]. This can be accomplished
by considering the transition from a plane-wave state |k) , represented by the wave
function eikr cos % (we will choose %#%1 for the sake of simplicity), to a spherical-
wave state |E, L). The coefficients of the transition can be found from the identity
(Ref. [24, p. 363])

eix cos %=1(&) \x
2+

&&

:
�

l=0

(l+&) i lJl+&(x) C (&)
l (cos %), (B3)

with x=kr; this implies that

eikr cos %=N& :
�

l=0
\ l

&
+1+ iljl, &(kr) C (&)

l (cos %), (B4)

which is the D-dimensional generalization of Rayleigh's formula, with

N&=2&1(&+1) �2
?

. (B5)

Equation (B4) straightforwardly reduces to the familiar result for D=3(&=1�2).
The case D=2(&=0) appears to be singular, but also reproduces the known results
[46] when the following replacements are made: (i) C (0)

l (t)=lim& � 0 C (&)
l (t)�&

(Ref. [24]); (ii) C (0)
l (cos %)=2 cos(l%)�l for l{0 (this is proportional to a

Chebyshev polynomial, Ref. [24]) but C (0)
0 (cos %)=1; and (iii) most often, the sum

is extended from m=&� to m=�, with m=\l, and the factor of 2 in (ii) is
removed (otherwise this factor is kept as the Neumann number, = l=2 for l{0, but
=0=1).

As the transition operator T commutes with the generalized angular momentum
operators, it has a diagonal form in the angular momentum eigenbasis, with
elements T (D)

l (k); thus, one can expand its matrix elements (k| T |k$) in terms of
T (D)

l (k), with

T (D)
l (k)=&

S (D)
l (k)&1

2?i
, (B6)

where the scattering matrix elements

S (D)
l (k)=exp[2i$ (D)

l (k)]=
1+i tan $ (D)

l (k)
1&i tan $ (D)

l (k)
(B7)
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are usually expressed in terms of the scattering phase shifts $ (D)
l (k). Then the corre-

sponding scattering amplitude f (D)
k (cos %) admits a straightforward expansion

f (D)
k (cos %)=N& :

�

l=0
\ l

&
+1+ a (D)

l (k) C (&)
l (cos %), (B8)

with an l th partial-wave amplitude

a (D)
l (k)=&

?
k(D&1)�2 T (D)

l (k)=
exp[2i$ (D)

l (k)]&1
2ik(D&1)�2 (B9)

that provides the asymptotic form of the wave function

9(r) t
(r � �) N&

(kr) (D&1)�2 :
�

l=0 \
l
&

+1+ exp[i[$ (D)
l (k)+l?�2]]

_sin[kr+#D&l?�2+$ (D)
l (k)] C (&)

l (cos %). (B10)

As a practical matter, the scattering matrix can be computed directly from the
asymptotic expansion of the exact solution to the problem, i.e.,

Rl (r)#REl (r) t
(r � �) A (+)

l h (1)
l, &(kr)+A (&)

l h (2)
l, &(kr), (B11)

which yields

S (D)
l (k)=

A (+)
l

A (&)
l

. (B12)

Finally, the total scattering cross section can be obtained directly by integration of
| f (D)

k (cos %)|2, with the result

_D(k)=
20D&1

kD&1 :
�

l=0

(2l+2&)
1(l+2&)

l !
sin2 $ (D)

l (k). (B13)

APPENDIX C

Duality Transformation for Power-Law Potentials

In this appendix, which we have adapted from Ref. [37], we will consider the
class of central power-law potentials

V(r)=sgn(;) *r;, (C1)
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where the sign is chosen so that *>0 corresponds to attractive potentials. Accord-
ing to their behavior at the origin, they can be classified into the following
categories.

1. Regular potentials: ;�0.

2. Semi-regular potentials: &2<;<0.

3. Critically singular potential: ;=&2.

4. Strictly singular potentials: ;<&2.

What physically characterizes the singular potentials is that the centrifugal
barrier fails to be the dominant term at the origin; mathematically, the Hamiltonian
loses its self-adjoint character [34]. In particular, the critical potential is the one
that generates dimensional transmutation.

The central theme of this appendix is the existence of a remarkable duality trans-
formation D, which relates the potentials in the regular and semi-regular families;
in particular, D establishes a one-to-one correspondence between the exponents ;
in the intervals (&2, 0] and [0, �). As we will see below, if

D(sgn(;) *r;)=sgn(;� ) *� r;� , (C2)

then the corresponding relation between exponents reads

(;+2)(;� +2)=4. (C3)

Equations (C2) and (C3) exhibit the following properties: (i) D is idempotent;
(ii) &2<;<0 if and only if 0<;� <�, so that sgn(;)=&sgn(;� ); (iii) the
Coulomb potential (;=&1) is the dual of the harmonic oscillator (;=2); (iv) its
limiting exponents (;=&2 and ;=�) define the inverse square potential as the
dual of the infinite hyperspherical potential; and (v) the constant potential or free-
particle case is self-dual.

Let us now show that Eq. (C3) represents the only nontrivial duality transforma-
tion implemented by a scale transformation for arbitrary power-law potentials. In
general, under the transformation

{r= f (*)
u(r)=u~ (*) g(*),

(C4)

from a radial wave function u(r) to u~ (*), the Schro� dinger equation

_ d 2

dr2+E&V(r)&
(l+&2&1�4)

r2 & ul (r)=0 (C5)
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is mapped into a transformed equation of the same form, without first-order
derivative term, if and only if

[ g(*)]2 B f $(*), (C6)

where the prime, as usual, denotes the derivative; then

{d 2

d*
+[ f $(*)]2 [E&V(f (*))]&L2

1(*)(l+&)2+L$2(*)&L2
2(*)= u~ (*)=0, (C7)

where

Lj (*)=
1
j ! \

d ln
d* +

j

f (*) (C8)

(for j=1, 2). Even though Eqs. (C4) and (C7) are fairly general and have many
applications, the scale transformation

{r=*:

u(r)=u~ (*) *(:&1)�2,
(C9)

leading to

{ d 2

d*2+:2*2(:&1)[E&V(*:)]&
:2(l+&)2&1�4

*2 = u~ (*)=0, (C10)

can immediately provide the desired connection for the power-law potentials of
Eq. (C1). In effect, unless the trivial transformation :=1 is allowed, the only way
of bringing the middle term in Eq. (C10) to the required transformed form,
E� &V� (*), is to perform the exchange

&V(r) = &sgn(;) *r; � E� (C11)

E � &V� (*)=&sgn(;� ) *� *;� ; (C12)

this ``crossing'' implies that the exponents be constrained by

:=&
;�
;

=
2

;+2
, (C13)

which is equivalent to the anticipated duality relation (C3). In conclusion, the
required coordinate and wave function substitutions are

{r=*2�(;+2)

u(r)=u~ (*) *&;�2(;+2),
(C14)

96 CAMBLONG ET AL.



which transform Eq. (C5) into

_ d 2

d*2+E� &sgn(;� ) *� *;� &
(l� +&~ )2&1�4

*2 & u~ l (*)=0, (C15)

with a dual energy eigenvalue

E� =&sgn(;) *:2, (C16)

dual coupling

*� =sgn(;) E:2, (C17)

and dual angular momentum quantum number l� , such that

l� +&~ =:(l+&), (C18)

where : is explicitly given by Eq. (C13), and we also allow for the possibility of a
change in the number of dimensions, according to &~ =D� �2&1. In particular,
Eq. (C15) shows that the dual potential is, simply,

V� (*)=&E:2*;� . (C19)

Finally, the dimensionless form of Eq. (C15) can be obtained by introducing an
inverse length scale from the original problem through the energy, i.e.,

}=- |E|; (C20)

then the resulting transformation involves the dimensionless variables

{z=}1�:*

w(z)=}&(D+1&1�:)�2u~ (}&1�:z),
(C21)

in terms of which

{}r=z2�(;+2)

}&D�2u(r)=w(z) z&;�2(;+2),
(C22)

and the transformed Schro� dinger equation becomes

_ d 2

dz2&sgn(;) *:2}&2�:+_:2z;� &
(l� +&~ )2&1�4

z2 & wl (z)=0, (C23)
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where _=sgn(E). Two important remarks immediately follow from Eq. (C23):
(i) the ensuing dimensionless energy equation,

'~ =&sgn(;) *:2 |E|&1�:, (C24)

is the basis for the relation between the energy eigenvalue problems of the corre-
sponding dual potentials (for example, for ;=&1, ;� =2, :=2, it provides the well-
known connection between the Coulomb potential and the harmonic oscillator, in
spaces of any number of dimensions); and (ii) the dimensionless dual potential

V� (z)=&_:2z;� (C25)

satisfies the sign relation sgn(V� )=&sgn(E), which, combined with Eq. (C24),
leads to a one-to-one correspondence between the bound-state sectors and between
the scattering sectors of the dual potentials.

For our work, the transformation in the ``neighborhood'' of the inverse square
potential amounts to ;=&(2&=)<0, with =<<1, which implies that ;� =4�=&2
>>1 and :=2�=, thus converting Eq. (C23) into

_ d 2

dz2+
4
=2 *}&=+_

4
=2 z4�=&2&

(l� +&~ )2&1�4
z2 & wl (z)=0, (C26)

where the potential energy term &_4z4�=&2�=2 is seen to behave as an infinite hyper-
spherical potential well in the limit ==0+, for E<0 (i.e., _=&1).
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