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Abstract In the frame of a well established lattice gas
model for granular compaction, we investigate the high
intensity tapping regime where a pile expands signifi-
cantly during external excitation. We find that this model
shows the same general trends as more sophisticated
models based on molecular dynamic type simulations. In
particular, a minimum in packing fraction as a function
of tapping strength is observed in the reversible branch
of an annealed tapping protocol.
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1 Introduction

The phenomenology of compaction of granular matter
under vertical tapping captures the attention of a num-
ber of investigations and is not exempt from controver-
sies ﬂ] Most studies nowadays focus on the dynamics of
compaction—the evolution of structural properties as a
function of the number of taps applied to the sample. In
spite of being of chief importance, much less work is done
on the steady state regime achieved by the sample after
a very large number of taps. At low tapping intensities,
the relaxation dynamics of these systems is extremely
slow, which makes the steady state very hard to reach.
In a pioneering work, Nowak et al. [ showed that the
steady state can be achieved by means of a suitable an-
nealing. Recently, Ribiere et al. E] argued that the steady
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state is indeed obtainable, reproducible and may consti-
tute a true thermodynamic state for granular systems.
These experiments show that the packing fraction ¢ in
the steady state is a monotonic decreasing function of the
tapping intensity: the so-called “reversible branch”. A
number of studies, from experimental E; B @] and mod-
eling ﬂa; ; ﬁ; ; E; m; |J__1|] approaches have confirmed this
general trend. One exception has been found in a model
of pentagon packings ﬂﬂﬁﬁ] where the reversible branch
presents a monotonic increase of ¢ as tapping intensity
is increased.

Recently, by using a few models of granular depo-
sition, it has been shown ﬂﬂ] that ¢, in the reversible
branch, presents a minimum at relatively high tapping
intensities. This has now been observed in the labora-
tory [LH]. Previous experimental studies where unable to
observe this feature presumably due to the high inten-
sity taps required. According to the simulation models,
it may be necessary to transfer enough energy to the
packing during a tap to induce the system to expand up
to five times its volume before this minimum can be ob-
served. This is a rather difficult experiment to carry out
with a setup designed to explore slow relaxation by gentle
tapping. In twodimensional systems, the minimum can
be observed at much lower tapping strength; an effec-
tive expansion during the tap of less than twice the bed
height. It is worthmentioning that some of the models
used in Ref. Iﬂ] where the same models used by others
; ], but focusing in a different region of the parameters
that control tap intensity.

The use of annealed tapping to investigate the hys-
teresis of granular assemblies subjected to tapping was
also used in the frame of a very simple frustrated lattice
gas model proposed by Nicodemi et al. ; m] to inves-
tigate granular compaction. In this work we assess the
ability of this model to display a reversible branch simi-
lar to the one observed in experiments and whether the
density minimum predicted by more sophisticated mod-
els is also present. With this aim, we explore a range of
parameter values of the model not yet reported in the
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literature in order to simulate strong intensity tapping
conditions.

The rest of the paper is organized as follows. In Sect.
we review the main features of the frustrated lattice gas
model [d]. In Sect. Bl we describe the tapping protocol.
In Sect. [@] we present the results. In Sect. Bl we draw the
conclusions.

2 Frustrated lattice gas model

We consider a model first proposed by Nicodemi et al. ﬂQ]
The model consists of a system of particles that move on
a square lattice whose bonds are characterized by fixed
random numbers ¢;; = £1. Any site ¢ can be either
empty or filled with a particle. Particles are character-
ized by an internal degree of freedom (spin) S; = +1
and are subjected to the constraint that whenever two
neighboring sites ¢ and j hold particles with spin S; and
S;, the following conditions must be satisfied

€i7jSiSj =1. (1)

This condition introduces an effective frustration. In
such system there will always be empty sites due to this
constraint.

In order to introduce external vibrations and gravity,
the square lattice is tilted by 45 degree. In this way parti-
cles diffusing on the lattice will always move up or down
since there are no neighboring sites at the same vertical
position. The model is used to carry out a Monte Carlo
(MC) simulation. In each MC step, we choose a particle
and a move type (spin flip or particle hopping) at ran-
dom. A spin flip is accepted with probability one if there
is no violation of Eq. [l If a particle attempts a hop, one
of the four neighboring sites is chosen with equal proba-
bility as the landing site. If the particle attempts a move
upward (either up-right or up-left), the landing site is
empty and the internal degrees of freedom satisfy Eq. [0
we accept the move with probability P». If the particle
attempts to move downward, we accept the move with
probability P (with P; + P, = 1), provided that Eq. [
holds and that the landing site is available.

In the absence of vibrations, the effect of gravity is
simulated by imposing P, = 0. When vibrations are
switched on, P, becomes finite. The control parameter is
the ratio x = P»/P; which describes the intensity of the
vibration.

The MC simulations of the model described above are
done on a tilted lattice with periodic boundary condi-
tions along the horizontal axis and rigid walls at bottom
and top. The top wall is always high enough to avoid
particles to reach it during vibration. After fixing the
random bond matrix €; ;, an initial configuration is pre-
pared by randomly inserting particles of given spin one
at a time into the box from its top. Each particle falls
down following the described dynamics with x = 0. After
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Fig. 1 Packing fraction ¢ as a function of MC time ¢ during
the deposition phase in a tap for zo = 1.0 and 7 = 10°. At ¢t =
10° the vibration is switched off and deposition begins. After
stabilization, the vibration is switched back on at ¢t ~ 1.017 x
10°. The inset shows ¢ along two full taps. The deposition
phases cover a very narrow slot of time as compared with the
long duration of the vibration phases in this example.

a particle has settled, a new one is released. We intro-
duce a fixed number N of particles. To obtain an initial
low density configuration, particle spins are not allowed
to flip in this preparation process. The state prepared
in this way has a packing fraction of ¢ = 0.563 + 0.007.
Packing fraction ¢ is always measured as the fraction
of occupied sites in a rectangular region that span the
system in the horizontal direction and whose height is
equivalent to the height that the system would have had
at ¢ = 1 (i.e., if no voids where present). The region
of measurement is vertically centered with the center of
mass of the system.

3 Annealed tapping

In the studies carried out by Nicodemi et al. ﬂm], tapping
is simulated through different protocols depending on
the shape of the function z(¢) used to control vibrations.
Here, we use a stepwise function that switches on the
vibration to a constant value of x over a period of time
7 and then switches it back off until full deposition and
equilibration is reached. Hence, each tap is simulated
using

x(t) = xo[l — 6(t — 7)), (2)

with 0(t) the Heaviside step function.

Full deposition and equilibration is defined as the
state in which all spins remain in the same site for at
least 200 unit time even though they may flip. A unit
time is defined as 2N MC trials. In average, each parti-
cle has one chance to hop and one chance to flip in this
time.
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Fig. 2 Packing fraction ¢ as a function of the number of
taps applied for 2o = 1 and 7 = 10 (upper curve), 10* (lower
curve), and 1.5 x 10° (middle curve).

In Fig. @, we show the evolution of the packing frac-
tion ¢ during a ’strong’ tap with zo = 1.0 and 7 = 10°.
Whenever the vibration is on [2(t) = z¢], ¢ (measured in
a central box, as described in Sect. ) fluctuates rapidly
but continuously decreases in average. Once vibrations
are turned off [z(¢t) = 0], ¢ rapidly grows as particles
fall until full deposition is reached and a constant value
of ¢ is obtained. We have run some trial simulations in
which we wait 1000 unit time (instead of 200) after all
particle migrations have ceased before deciding that the
system is fully stable and have found no differences in
the results.

Since we are interested in simulating strong taps,
we have investigated different values of the parameters
o and 7 in order to achieve an effective expansion of
the system during vibration. We have found that set-
ting zo = 1 and varying 7 allows us to explore a wide
range of effective expansions. It is worth mentioning that
Nicodemi et al. ﬂQ; have investigated conditions where
the slow relaxation of the system were under scrutiny and
for this reason they were mainly focused on values of xg
below 1. We find that for £y = 1 and 7 < 100 the system
barely expands during the vibration phase. However, for
7 > 100 an effective expansion of the system is achieved.
We measure the dimensionless expansion A as the ratio
between the packing fraction of the system at the time
we switch off the vibration (¢t = 7) and the packing frac-
tion after the bed is fully deposited (see Sect. [).

In Fig. Bl we show, as an example, the evolution of
the packing fraction ¢ during tapping with x¢ = 1 for
three values of 7. These correspond to independent ex-
periments with an initial low density configuration pre-
pared as described above. It is clear from the figure that
low values of 7 lead to slow relaxation whereas high val-
ues of 7 yield a rapid equilibration.

The annealing protocol is carried out as follows. After
the initial preparation of the pack, 103 taps with xy = 1
are applied at a low tapping intensity, i.e., with a low

value of 7. Then, the tapping strength is increased by
increasing the value of 7 and a new series of 103 taps are
applied to the final configuration reached in the previous
series. The process is repeated up to very large values of
7. Then, a decreasing ramp of 7 values is followed down
to the initial low tapping intensity.

4 Results for the high intensity tapping regime

We use a 30 x 4000 squared lattice where we introduce
N = 1000 particles. Initially, particles are “dropped” one
at a time from above (with random horizontal position
and spin) and they move according to the prescribed dy-
namics with z = 0 but spin flips are not allowed. When-
ever a particle is unable to migrate to a neighboring site
after 16 MC trials the particle is frozen in its site and a
new particle is released until all particles are deposited.

The tapping intensity—controlled by 7—is increased
and decreased in discrete steps form 7 = 1 up to 7 =
1.5 x 10° and back down to 7 = 1. At each value of 7, a
total of 1000 taps are applied to the system. The value of
¢ considered for each 7 corresponds to the average over
the last 500 taps. The entire annealing is repeated from
the initial low density configuration for five different ran-
dom matrices ¢; ;. All values of ¢ reported correspond to
the average over these five independent experiments and
error bars display the corresponding standard deviation.
We notice that, although the mean value of ¢ has a very
low dispersion, the “instantaneous” ¢ in any given run
may present larger fluctuations around the mean (see
Fig. 2.

In Fig. B we show the packing fraction ¢ as a func-
tion of 7 for the entire annealing protocol. The increasing
(irreversible) and decreasing (reversible) branches are in-
dicated with different symbols. We have also increased
7 from the last high density configuration in a second
annealing cycle (data not shown). The same values of
¢ obtained during the decreasing ramp are reproduced.
This confirms that the upper curve shown in Fig. Bl is
indeed reversible.

It is clear from Fig. [l that a minimum in density
is present at high values of 7. Beyond this minimum, ¢
increases with 7 rather slowly (notice the log scale in the
horizontal axis). Due to limitations in CPU time we are
unable to explore, at present, this regime beyond this
values of 7. However, we can estimate a limiting value of
¢ for very strong tapping (see below).

The existence of a minimum in the density—tapping
intensity curve has been reported very recently [14]. In
Ref. , the effect is explained in terms of the forma-
tion of arches. At low tapping intensities, the introduc-
tion of free volume is very limited (small expansion). An
increase in effective expansion promotes the formation
of larger arches (and hence larger voids) since particles
need some space in order to arrange in these coopera-
tive structures. However, if expansion during tapping is
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Fig. 3 Packing fraction ¢ as a function of 7 for zg = 1

along an annealing protocol. The circles correspond to the
“non-reversible branch” of initial increasing tapping intensi-
ties (increasing 7). The squares correspond to the “reversible
branch” of decreasing tapping intensities (decreasing 7). The

system is tapped 10® times at each value of 7. The last
500 configurations are averaged to estimate the value of ¢
reached. The entire simulation has been repeated five times
for different bond random matrices €; ;. The reported data
corresponds to the average—and the error bars to the stan-
dard deviation—over these five repetitions

too large, falling particles have less chances to meet each
other at the time of reaching their stable positions in
order to cooperate and form arches.

In the present model arches are not clearly defined.
A definition of which particles support a given parti-
cle is required to identify arches ﬂﬁfﬁ] However, the
frustration introduced by the bond matrix €; ; induces
the particles to interlock in loops that leave voids in the
structure. These loops are the analogous to arches in
more realistic models.

In order to compare our results with previous mod-
els, we plot in Fig. H the packing fraction as a function
of the effective dimensionless expansion A induced by
the corresponding value of 7. Results from Ref. Iﬂ] for
twodimensional models are also reproduced. We observe
that all models present a minimum even though the po-
sition varies in the range 1.10 < A < 2.10. The posi-
tion of the minimum found in 3D models seems to be in
the range 3.0 < A < 5.0 [14]. The frustrated lattice gas
model yields rather low packing fractions when compared
with more realistic models. However, it is clear that the
main qualitative features of the reversible branch of the
annealed tapping curve are very well captured by the
lattice model.

Since the increase in ¢ at large values of 7 seems to be
due to the particles depositing without much chances to
interact as they reach the surface of the growing stable
pile, we can simulate this in a extreme condition. Instead
of expanding the system using very long 7 values, we now
fill the box dropping particles one at time so that they
reach the pile individually. This is a process similar to
the one used in generating the very first initial condition.

Fig. 4 Packing fraction ¢ as a function of the effective di-
mensionless expansion A induced by tapping. For each value
of 7 the corresponding expansion is calculated as the ratio be-
tween the density at the time when the vibration is switched
off and the density after full deposition. Symbols as in Fig.
We show results taken from Ref. [[d] for a molecular dynamics
of dissipative soft disks with static friction (down triangles), a
pseudo dynamic model of inelastic disks (right triangles) and
an off lattice MC of hard disks (up triangles). The horizontal
dash-dotted line corresponds to the limit of very strong taps
(T — 00) in the lattice model (see text).

However, we now allow the particles to flip their spin as
they fall. Moreover, the already deposited particles are
not freezed but allowed to diffuse and flip while the pile
is being built up. We expect this filling process to mimic
the limiting case of an expansion obtained with 7 — oo.
The packing fraction so obtained is shown in Fig. [d We
argue that this should be the limiting value to which ¢
would approach if we further increased 7.

5 Conclusions

We have shown that a well known frustrated lattice gas
model of granular compaction—initially designed to study
slow dynamics under gentle tapping—is able to repro-
duce the qualitative features of more complex models in
which strong tapping conditions are simulated. In par-
ticular, we observe the existence of a minimum in the re-
versible branch of the annealed tapping. It is somewhat
surprising that such simple model can display nonmono-
tonic behavior. This makes the model a suitable working
platform to study this newly discovered feature of gran-
ular compaction. It would be of special interest to inves-
tigate if the steady states of equal mean packing fraction
produced at different tapping intensities (at both sides
of the minimum) can be distinguished through the size
of the volume fluctuations, an order parameter, or the
distribution of characteristic structures such as voids or
loops. This model presents the advantage that is of sim-
ple implementation and that simulation are much less
CPU time demanding than more realistic models which
show the same general features.



In Ref. ﬂﬂ], the existence of a minimum in the re-
versible branch of granular compaction is explained in
terms of arching. Since this lattice model does not con-
sider proper contact dynamics nor realistic volume ex-
clusion, it is clear that the presence of the minimum is
due to an underlying phenomenon that controls both,
arching and packing fraction.

At low tapping intensities, the high packing fractions
achieved are due to repeated tapping that allows the
system to relax in search for progressively more com-
pact (lower potential energy) structures. This is achieved
through the local rearrangements promoted from tap to
tap. However, at very high tapping intensities, the sys-
tem achieves the steady state in a single tap (see Fig. [
since the full pack is arranged de novo after a strong tap
in a global relaxation event. In this last case, in order
to achieve higher packing fractions, the particles need to
follow a deposition process that allows them enough time
to search for the lowest potential energy configuration in
a single tap. This is best promoted if the bed is expanded
significantly during the tap so that the longer deposition
times required and the larger free volume introduced give
greater chances for the particles to find lower positions.
In summary, the existence of the minimum in the re-
versible branch of granular compaction seems to be ulti-
mately related to a competition between the global and
local relaxation promoted at different scales of tapping
strength [d].
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