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Abstract

We make a careful study about the nonrelativistic reduction of one-meson-exchange models
for the nonmesonic weak hypernuclear decay. Starting from a widely accepted effective coupling
Hamiltonian involving the exchange of the complete pseudoscalar and vector meson octets (π , η,
K , ρ, ω, K∗), the strangeness-changing weak ΛN → NN transition potential is derived, including
two effects that have been systematically omitted in the literature, or, at best, only partly considered.
These are the kinematical effects due to the difference between the lambda and nucleon masses, and
the first-order nonlocality corrections, i.e., those involving up to first-order differential operators. Our
analysis clearly shows that the main kinematical effect on the local contributions is the reduction of
the effective pion mass. The kinematical effect on the nonlocal contributions is more complicated,
since it activates several new terms that would otherwise remain dormant. Numerical results for
12
Λ C and 5

ΛHe are presented and they show that the combined kinematical plus nonlocal corrections
have an appreciable influence on the partial decay rates. However, this is somewhat diminished in
the main decay observables: the total nonmesonic rate, Γnm, the neutron-to-proton branching ratio,
Γn/Γp , and the asymmetry parameter, aΛ. The latter two still cannot be reconciled with the available
experimental data. The existing theoretical predictions for the sign of aΛ in 5

ΛHe are confirmed.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The free decay of a Λ hyperon occurs almost exclusively through the mesonic mode,
Λ → πN , with the nucleon emerging with a momentum of about 100 MeV/c. Inside
nuclear matter (pF ≈ 270 MeV/c) this mode is Pauli blocked, and, for all but the lightest
Λ hypernuclei (A� 5), the weak decay is dominated by the nonmesonic channel, ΛN →
NN , which liberates enough kinetic energy to put the two emitted nucleons above the
Fermi surface. In the absence of stable hyperon beams, these nonmesonic decays offer
the only way available to investigate the strangeness-changing weak interaction between
hadrons. (For reviews on hypernuclear decay, see Refs. [1–3].)

The simplest model for this process is the exchange of a virtual pion [4], and in fact
this can reproduce reasonably well the total (nonmesonic) decay rate, Γnm = Γn + Γp , but
fails badly for other observables like the ratio of neutron-induced (Λn → nn) to proton-
induced (Λp → np) transitions, Γn/Γp, and the asymmetry parameter aΛ. The deficiency
of this model is attributed to effects of short range physics, which should be quite important
in view of the large momentum transfers involved (∼ 400 MeV/c). Although there have
been some attempts to account for this fact by making use of quark models to compute
the shortest range part of the transition potential [5–9], most of the theoretical work
opted for the addition of other, heavier mesons in the exchange process [10–23]. None
of these models gives fully satisfactory results. Inclusion of correlated two-pion exchange
has not been completely successful either [24,25]. Nor have the addition of uncorrelated
two-pion exchange, two-nucleon induced transitions or medium effects, treated within the
nonrelativistic [26–31] or relativistic [32] propagator approaches, been of much help.

Here, we concentrate on the line of one-meson-exchange (OME) models [4–25]. We
do not explicitly discuss hybrid models, i.e., those involving quark degrees of freedom
[5–9]. However, much of the theoretical developments we present could be generalized
to include them. Also two-pion exchange [24,25] could be brought into our general
framework. The main ingredients of OME models are the effective baryon–baryon–meson
weak and strong Hamiltonians. These are constructed in the language of relativistic field
theory, but in almost all calculations (exceptions are Refs. [14–16]) one has proceeded to
make a nonrelativistic reduction for the extraction of the transition potential. This often
involves some further approximations, like neglecting the nonlocality in this potential, and
balancing by hand the distorted kinematics in the OME Feynman amplitudes, resulting
from the difference between initial and final baryon masses. This not only alters the
different terms in the transition potential, but also eliminates several of them. Our main
purpose here is to assess the relative importance of these effects.

The paper is organized as follows. Most of the formalism is developed in Section 2.
In Subsection 2.1, we explain the construction of the nonrelativistic transition potential,
taking due care of the kinematics and including nonlocal terms, and, in Subsection 2.2,

we give a motivation for not neglecting a priori the lambda–nucleon mass difference.
In Subsections 2.3 and 2.4, the explicit expressions for the local and first-order nonlocal
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Fig. 1. OME Feynman amplitude in coordinate space.

contributions to the transition potential due to the exchange of a π , ρ, K or K∗ meson are
derived and commented. The ones corresponding to the η and ω exchanges can be easily
obtained by analogy with those of the π and ρ, respectively, thus allowing the inclusion
of the full pseudoscalar and vector meson octets, as deemed necessary by the present day
consensus. In Subsection 2.5, we describe how to take the finite size effects into account
by means of form factors. Our numerical results are reported in detail and discussed in
Section 3. The phenomenological way to include short range correlations is presented in
Subsection 3.1, together with the main expressions for the calculation of the transition rates
in the extreme particle–hole model of Ref. [21], and all this is applied to the decay of 12

Λ C.
In Subsection 3.2, we do the same for 5

ΛHe and compute also the asymmetry parameter.
Finally, Section 4 summarizes our main conclusions. Some useful formulas are collected in
Appendix A and a specific point relating to our phase conventions is discussed in Appendix
B.

2. OME transition potential

2.1. General discussion

The transition rate for the nonmesonic weak decay of a hypernucleus in its ground state
|I 〉, having energy EI , to a residual nucleus in any of the allowed final states 〈F |, having
energies EF , and two outgoing nucleons is given by Fermi’s golden rule,

Γ = 2π
∑
s ′1s ′2F

∫ ∫
d3p′

1
(2π)3

d3p′
2

(2π)3
δ(E′

1 +E′
2 +EF −EI )

∣∣〈p′
1s

′
1p

′
2s

′
2,F |V̂ |I 〉∣∣2

. (1)

To construct the transition potential V̂ in one-meson-exchange models, one starts from the
free space Feynman amplitude depicted in Fig. 1, where x = (t,x) denotes space–time

coordinates, p, momentum, and s, spin and, eventually, other intrinsic quantum numbers
(such as isospin). In the remainder of this subsection we will consider a general situation,
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i.e., without specifying which baryons are propagating in each of the four legs, or which
meson is being exchanged, or yet the exact nature of the couplings at the two vertices. This
will be particularized to Λ-hypernuclear decay in the subsections that follow.

Vertices a and b correspond to coupling Hamiltonians of the general form (c = a or b)

Hc(x)= gcψ̄(x)
[
Γ c(∂)φ(x)

]
ψ(x), (2)

whereψ and φ stand for the baryon and meson fields, respectively, gc is a coupling constant
and Γ c may contain differential operators, in which case they are understood to be acting
on the boson field only. The Feynman rules give

F = (2π)4δ(E′
1 +E′

2 −E1 −E2)δ(p
′
1 + p′

2 − p1 − p2)F, (3)

where Ei =
√
M2

i + p2
i (i = 1,2) for the incoming baryons, having masses Mi , and

similarly (primed quantities) for the outgoing ones, and F is the Feynman amplitude in
momentum space. Choosing the CM frame,

−p1 = p2 = p, −p′
1 = p′

2 = p′, (4)

this can be put in the form

iF (p′,p; s′1s′2s1s2)= χ
†
s ′1
χ

†
s ′2
V (p′,p)χs1χs2 (5)

with

V (p′,p)= ū′
1(−p′)ū′

2(p
′)V(q)u1(−p)u2(p), (6)

where ui(pi )χsi and χ
†
s ′i
ū′
i (p

′
i ) (i = 1,2) are the momentum eigenspinors and their

conjugates for the incoming and outgoing baryons, respectively, and, denoting the meson
propagator by D,

−iV(q)= [−igaΓ a(iq)
]
iD(q)

[−igbΓ b(−iq)]. (7)

We have introduced the 4-momentum transfer in the CM frame, q = (ω,q), with

ω = 1
2
(E1 −E′

1 +E′
2 −E2), q = p′ − p. (8)

Notice that we have directed q from vertex a to vertex b.
The nonrelativistic transition potential V̂ is given by the identification

〈p′|V̂ |p〉 = V (p′,p), (9)

where an expansion up to quadratic terms in momentum/mass is implied. To this end it is
convenient to change the momentum variables to q , defined in Eq. (8), and

Q = mp′ +m′p
m+m′ , (10)

where m and m′ are the initial and final reduced masses,
1
m

= 1
M

+ 1
M

,
1
m′ = 1

M ′ + 1
M ′ . (11)
1 2 1 2

In this transformation, the following relations hold:
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p′2

2m′ + p2

2m
= 1

2

(
1
m′ + 1

m

)
Q2 + q2

2(m+m′)
, (12)

p′ · r ′ − p · r = Q · (r ′ − r)+ q ·
(
m′r ′ +mr

m+m′

)
, (13)

where
r = r2 − r1 and r ′ = r ′

2 − r ′
1 (14)

are, respectively, the initial and final relative coordinates.
The contribution of any given meson, i , to Eq. (9) has the general form

Vi(p
′,p)= vi(p

′,p)
q2 +µ2

i −ω2
, (15)

where µi is the meson mass. The nonrelativistic expansion of the numerator in Eq. (15)
poses no problem, but the denominator does not truly have such an expansion.2 Therefore,
it needs a special treatment. Recall that, strictly speaking, the Feynman amplitude F in
Eq. (5) is defined only for energy-conserving transitions, i.e., for E1 +E2 =E′

1 +E′
2, and

in this case one has, in the nonrelativistic approximation,

p2

2m
− p′2

2m′ ∼=M ′
1 +M ′

2 −M1 −M2. (16)

This relation together with Eq. (12) allow us to write, again in the nonrelativistic
approximation,

ω ∼=M0 − q2

2Mq

− Q2

2MQ

, (17)

where we have introduced the kinematical masses M0, Mq and MQ, given by

M0 = 1
2

[
1 + 1

2

(
M1 −M2

M1 +M2
+ M ′

1 −M ′
2

M ′
1 +M ′

2

)]
(M1 −M ′

1)

+ 1
2

[
1 − 1

2

(
M1 −M2

M1 +M2
+ M ′

1 −M ′
2

M ′
1 +M ′

2

)]
(M ′

2 −M2),

1
Mq

= 1
4

(
M1 −M2

M1 +M2
− M ′

1 −M ′
2

M ′
1 +M ′

2

)
1

m+m′ ,

1
MQ

= 1
4

(
M1 −M2

M1 +M2
− M ′

1 −M ′
2

M ′
1 +M ′

2

)(
1
m

+ 1
m′

)
. (18)

It is clear that, whenever the absolute values of the differences of baryon masses are much
smaller than the corresponding sums, as is the case, e.g., for hypernuclear decay, one can
take advantage of the inequalities |M0/Mq | � 1 and |M0/MQ| � 1 to write the following
approximation:

1
q2 +µ2

i −ω2
∼= 1

1 +M0/Mq

1
q2 + µ̃2

i

− M0/MQ

(1 +M0/Mq)2
Q2

(q2 + µ̃2
i )

2
, (19)
2 The nonrelativistic approximation is for the baryon dynamics.
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where we have introduced the effective meson mass

µ̃i =
√

µ2
i −M2

0
1 +M0/Mq

. (20)

The net result is that the nonrelativistic approximation, as defined here, will reduce
V (p′,p) to a quadratic polynomial in Q,

V (p′,p)∼= V (0)(q)+ V (1)(q) · Q + Q · V(2)(q) · Q, (21)

whose coefficients V (0), V (1) and V(2) are themselves, excluding the denominators that
come from the meson propagators, polynomials of degree 2, 1 and 0, respectively, in q .
This Q dependence translates, in the coordinate representation, into an expansion in the
nonlocality of the transition potential. To see this, we make use of Eq. (9) to write3

〈r ′|V̂ |r〉 =
∫

d3p′

(2π)3

∫
d3p

(2π)3
〈r ′|p′〉〈p′|V̂ |p〉〈p|r〉

≡
∫

d3p′

(2π)3

∫
d3p

(2π)3
eip

′·r ′
e−ip·rV (p′,p). (22)

Changing the integration variables to (q,Q), making use of Eq. (13) and truncating, for
simplicity, the quadratic polynomial in Eq. (21) at the linear term, this gives

〈r ′|V̂ |r〉 ∼= [
V (0)(r ′)− iV (1)(m′r ′+mr

m+m′
) · ∇′]δ(r ′ − r), (23)

where

V (0)(r)=
∫

d3q

(2π)3
eiq·rV (0)(q), (24)

V (1)(r)=
∫

d3q

(2π)3
eiq·rV (1)(q). (25)

This means that for any state of relative motion, Ψ ,

〈r |V̂ |Ψ 〉 = V̂ (r)Ψ (r), (26)

with the transition potential in coordinate space, V̂ (r), given, as an operator in wave-
function space, by

V̂ (r)= V (0)(r)+ V̂ (1)(r) (27)

where V (0)(r) is the local potential, and the differential operator

V̂ (1)(r)= −i m

m+m′
(∇ · V (1)(r)

) − iV (1)(r) · ∇, (28)

3 To do this we have to assume that Eqs. (9) and (21) hold for p and p′ unrestricted, although V (p′,p) was

extracted from the Feynman amplitude F in Eqs. (3) and (5), which, being related to a T-matrix, is unambiguous
only for energy-conserving transitions.
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its first-order nonlocality correction.4 For our purposes here it will be sufficient to stop at
this order, and we will not consider the second-order corrections, that would come from
the last term in Eq. (21).

Before closing this subsection, let us make a brief comment on our treatment of the ω2

term in the meson propagator in Eq. (15), more specifically, on the expression we use
for the time component, ω, of the 4-momentum transfer in Eq. (8). We are extracting
the transition potential from the Feynman diagram in Fig. 1, in which the baryons are
on their mass shells. However, as already alluded to in footnote 3, we need to extend
these OME amplitudes to the off-shell region, for which there is no unique procedure.
In the meson-exchange theory for the strong NN force, this is done by treating the
two interacting particles through the Bethe–Salpeter equation [33], and this ambiguity
appears in the choice of which one of its various tridimensional reductions to use. This
issue, which is related to meson retardation effects, has been much discussed in the past
[34–41], but remains unsettled. We have followed the general philosophy of Machleidt
and collaborators [38–40], to the effect that, for the case of similar masses, the best
choice is to use tridimensional reductions that treat the two particles symmetrically, like
the Blankenbecler–Sugar [42] or the Thompson [43] equations. One, then, puts the two
interacting particles equally off-shell in the CM frame, and fixes the time-components
of the relative 4-momenta in the initial and final two-particle propagators at the values
p0 = 1

2 (E2 − E1) and p′
0 = 1

2 (E
′
2 − E′

1), respectively. (See, for instance, Eq. (2.28) in
Ref. [37], remembering our convention in Eq. (4).) This leads directly to our expression
for ω in Eq. (8). Notice that, for strictly equal masses, this gives ω = 0, being, therefore,
equivalent, in this case, to the instantaneous approximation. Our choice for ω in Eq. (8)
leads, in the nonrelativistic approximation, to Eq. (17) and, consequently, to the expansion
of the meson propagators in Eq. (19). We are confident that this is appropriate for processes
not too far off the energy-shell. In other situations that might occur, for instance, in a fully
microscopic treatment of short-range correlations, this point should be reexamined.

2.2. Kinematical effects

In computing the OME Feynman amplitudes contributing to the strong NN force it is
standard practice [39] to avoid the kinematical complications due to the difference between
the neutron and proton masses by setting

Mn,Mp →M ≡ (Mn +Mp)/2, (29)

which can be justified by the small value of the ratio

Mn −Mp

M
= 0.0014. (30)
4 Notice that, despite its name, this has a local piece, namely, the first term in Eq. (28), where (∇ ·V (1)(r))≡
div V (1)(r).
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The analogous practice is followed in the calculation of the transition potentials for the
weak decay of Λ-hypernuclei [18]. In this case, however, one equally sidesteps the lambda-
nucleon mass difference, by setting, at the vertex where the Λ decays,

MΛ,M → M̄ ≡ (MΛ +M)/2, (31)

despite the fact that the corresponding ratio,
MΛ −M

M̄
= 0.17, (32)

is nowhere as small.
Undoubtedly, this approximation considerably simplifies the calculations. However, in

view of the nonnegligible value of the ratio (32), it seems appropriate to investigate the
effects of the latter approximation. To this end, we examine below, for each meson in
the pseudoscalar and vector octets, the expression for the nonrelativistic OME transition
potential obtained by accepting the approximation in Eq. (29), but not that in Eq. (31). This
gives for the kinematical masses (18)

M0 = 1
4

(
MΛ −M

MΛ +M

)
(3MΛ +M)= 92.18 MeV,

1
Mq

= 1
2

(
MΛ −M

3MΛ +M

)
1
M

= 2.196 × 10−5 MeV−1,

1
MQ

= 1
4

(
MΛ −M

MΛ +M

)(
3MΛ +M

MΛM

)
= 8.800 × 10−5 MeV−1, (33)

where we have used [44] M = 938.92 MeV and MΛ = 1115.68 MeV. The approximation
(31) would have set M0, 1/Mq and 1/MQ to zero.

2.3. Contributions of nonstrange mesons

For the nonstrange mesons, we have, acting respectively at the vertices a and b in Fig. 1,
weak (W ) and strong (S) coupling Hamiltonians that we take to be the same as those in
Ref. [18]. For the pion they are

HW
ΛNπ = iGFµ

2
π ψ̄N(Aπ +Bπγ5)φ

(π) · τ
(

0
1

)
ψΛ, (34)

HS
NNπ = igNNπ ψ̄Nγ5φ

(π) · τψN, (35)

where GFµ
2
π = 2.21 × 10−7 is the Fermi weak coupling-constant, Aπ and Bπ are fitted

to the free Λ decay, and gNNπ is taken from OME models for the strong NN force. The
isospurion

(0
1
)

is used to enforce the 1T = 1/2 rule for isospin violation, observed in the
free Λ decay [18]. For the rho meson, we have

HW
ΛNρ =GFµ

2
π ψ̄N

[(
Aργ

νγ5 +BV
ρ γ

ν +BT
ρ

σµν∂µ

2M̄

)
φ(ρ)
ν · τ

](
0
1

)
ψΛ, (36)[( ) ]
HS
NNρ = ψ̄N gVNNργ

ν + gTNNρ
σµν∂µ

2M
φ(ρ)
ν · τ ψN. (37)
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Table 1
Coupling constants, masses (µi ) and cutoff parameters (Λi ) for the nonstrange mesons. The weak couplings are
in units of GFµ2

π . Adapted from Ref. [18]

Meson Coupling constants µi Λi

i Weak Strong [MeV] [GeV]
PV PC

π Aπ = 1.05 Bπ = −7.15 gNNπ = 13.3 140.0 1.30
η Aη = 1.80 Bη = −14.3 gNNη = 6.40 548.6 1.30
ρ Aρ = 1.09 BVρ = −3.50 gVNNρ = 3.16 775.0 1.40

BTρ = −6.11 gT
NNρ

= 13.3
ω Aω = −1.33 BVω = −3.69 gVNNω = 10.5 783.4 1.50

BTω = −8.04 gT
NNω

= 3.22

The corresponding Hamiltonians for the η and ω are completely analogous to those of the
π and ρ, respectively, if one takes into consideration their isoscalar nature.

The weak couplings of the heavier mesons are theoretically inferred from those of the
pion through unitary-symmetry arguments and other relationships. The strong ones are
again taken from OME models for the nuclear force. We will follow the parametrization
adopted in Ref. [18], where further details can be found on this matter. For definiteness,
the numerical values are reproduced in Table 1.

2.3.1. One pion exchange
The local nonrelativistic one-pion-exchange transition potential is given in momentum

space by

V (0)
π (q)= −

(
1 + M0

Mq

)−1
GFµ

2
π

gNNπ

2M
τ 1 · τ 2

(
Aπ + Bπ

2M̌
σ 1 · q

)
σ 2 · q

q2 + µ̃2
π

, (38)

where

M̌ = M + 3MΛ

3M +MΛ

M. (39)

Comparing Eq. (38) with the result that would have been obtained under approximation
(31), namely [18, Eq. (24)],

V̄ (0)
π (q)= −GFµ

2
π

gNNπ

2M
τ 1 · τ 2

(
Aπ + Bπ

2M̄
σ 1 · q

)
σ 2 · q

q2 +µ2
π

, (40)

it is possible to estimate the relative size of the effects of the more accurate treatment of
the kinematics, adopted here, from the following correction factors:

(1 +M0/Mq)
−1 = 0.998, M̌/M̄ = 0.996, (41)

µ̃π/µπ = 0.752. (42)

If each of these values were equal to unity, there would be no effect at all. Apparently,
the situation is not much different from this, except in the last case, which will have a

noticeable effect since it increases by ∼ 35% the range of the corresponding contribution
to the transition potential.
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When changing to the coordinate representation through Eqs. (24) or (25), the shape
functions

fC(r,µ)=
∫

d3q

(2π)3
eiq·r 1

q2 +µ2 = e−µr

4πr
,

fV (r,µ)= − ∂

∂r
fC(r,µ)= µ

(
1 + 1

µr

)
fC(r,µ),

fS(r,µ)= 1
3
[
µ2fC(r,µ)− δ(r)

]
,

fT (r,µ)= 1
3
µ2

[
1 + 3

µr
+ 3
(µr)2

]
fC(r,µ) (43)

naturally arise, accordingly as the numerators in the Fourier transforms are, respectively,
a constant, a vector, a scalar or a tensor built, at most quadratically, from q . In terms of
these, we get, for the potential (38) in coordinate space,

V (0)
π (r)=

(
1 + M0

Mq

)−1
GFµ

2
π

gNNπ

2M
τ 1 · τ 2

×
[
−iAπfV (r, µ̃π )σ 2 · r̂ + Bπ

2M̌
fS(r, µ̃π )σ 1 · σ 2

+ Bπ

2M̌
fT (r, µ̃π )S12(r̂)

]
, (44)

where r̂ = r/r and S12(r̂) = 3(σ 1 · r̂)(σ 2 · r̂) − σ 1 · σ 2. Under approximation (31), this
would reduce to

V̄ (0)
π (r)=GFµ

2
π

gNNπ

2M
τ 1 · τ 2

×
[
−iAπfV (r,µπ)σ 2 · r̂ + Bπ

2M̄
fS(r,µπ)σ 1 · σ 2

+ Bπ

2M̄
fT (r,µπ)S12(r̂)

]
. (45)

The first-order nonlocality coefficient in momentum space, appearing in Eq. (21), is
given, for the pion, by

V (1)
π (q)= −

(
1 + M0

Mq

)−1
GFµ

2
π

gNNπ

2M
τ 1 · τ 2

(
Bπ

2M̀
σ 1

)
σ 2 · q

q2 + µ̃2
π

, (46)

where
1
M̀

= 1
M

− 1
MΛ

. (47)

Changing to the coordinate representation according to Eq. (25), we get

V (1)
π (r)= −i

(
1 + M0

M

)−1
GFµ

2
π

gNNπ

2M
Bπ

` τ 1 · τ 2fV (r, µ̃π )(σ 2 · r̂)σ 1 (48)

q 2M

and introducing this into Eq. (28) yields for the first-order nonlocality correction



C. Barbero et al. / Nuclear Physics A 726 (2003) 267–302 277

V̂ (1)
π (r)=

(
1 + M0

Mq

)−1
GFµ

2
π

gNNπ

2M
Bπ

2M̀
τ 1 · τ 2

×
{

2MΛ

3MΛ +M

[
fS(r, µ̃π )σ 1 · σ 2 + fT (r, µ̃π )S12(r̂)

]
− fV (r, µ̃π )(σ 2 · r̂)(σ 1 · ∇)

}
. (49)

The mass averaging approximation (31) would set 1/M̀ to zero. Therefore, V̄
(1)
π (q)= 0

and there would be no first-order nonlocality correction for the pion under this approxima-
tion, i.e.,

ˆ̄V (1)
π (r)= 0. (50)

2.3.2. One rho exchange
The one-rho-exchange contribution to the local nonrelativistic transition potential in

momentum space is

V (0)
ρ (q)=

(
1 + M0

Mq

)−1
GFµ

2
πτ 1 · τ 2

× [
K1
ρ −K2

ρq
2 −K3

ρ(σ 1 × q) · (σ 2 × q)

− iK4
ρ(σ 1 × σ 2) · q +K5

ρ(σ 1 · q)] 1
q2 + µ̃2

ρ

, (51)

where, for notational convenience, we have introduced the coefficients

K1
ρ = BV

ρ g
V
NNρ,

K2
ρ = BV

ρ g
V
NNρ

[(
1

4M

)2
+

(
1

4M̌

)2
+ 1

2

(
1
Mq

)2
]

+
(
BV
ρ

2M
gTNNρ

2M
+ BT

ρ

2M̄

gVNNρ

2M̌

)(
1 + M0

Mq

)
+ BT

ρ

2M̄

gTNNρ

2M

(
M2

0

4MM̌

)
,

K3
ρ =

[
BV
ρ

2M̌
+ BT

ρ

2M̄

(
1 + M0

Mq

)][
gVNNρ

2M
+ gTNNρ

2M

(
1 + M0

Mq

)]
,

K4
ρ =Aρ

[
gVNNρ

2M
+ gTNNρ

2M

(
1 + M0

Mq

)]
,

K5
ρ =Aρ

gTNNρ

2M

(
M0

2M

)
. (52)

The corresponding potential under approximation (31), V̄ (0)
ρ (q), can be obtained from

Eq. (51) through the substitutions:5

V (0)
ρ → V̄ (0)

ρ , Kj
ρ → K̄j

ρ (j = 1–5), M0/Mq → 0, µ̃ρ →µρ, (53)
5 This agrees with Eq. (34) of Ref. [18], except for a wrong sign (Aρ → −Aρ ) and an omitted term (∝ q2).
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with

K̄1
ρ = BV

ρ g
V
NNρ,

K̄2
ρ = BV

ρ g
V
NNρ

[(
1

4M

)2
+

(
1

4M̄

)2
]

+ BV
ρ

2M
gTNNρ

2M
+ BT

ρ

2M̄

gVNNρ

2M̄
,

K̄3
ρ =

(
BV
ρ +BT

ρ

2M̄

)(
gVNNρ + gTNNρ

2M

)
,

K̄4
ρ =Aρ

(
gVNNρ + gTNNρ

2M

)
,

K̄5
ρ = 0. (54)

Let us now compare Eqs. (52) with the corresponding expressions under approximation
(31), namely, Eqs. (54). Firstly, we notice that the two correction factors in Eq. (41) as well
as

µ̃ρ/µρ = 0.992
are very close to unity. Secondly, we also notice that the relative values of the remaining
correction terms can be estimated from

1
2

(
1
Mq

)2
[(

1
4M

)2
+

(
1

4M̌

)2
]−1

= 1.85 × 10−3,

M2
0

4MM̌
= 2.21 × 10−3,

M0

2M
= 4.91 × 10−2

and are, therefore, considerably less than unity. We, thus, expect that, as far as the local
contributions are concerned, only very small corrections will result from the more accurate
treatment of the kinematics in the present case.

Making use of Eq. (24), we get, for the potential (51) in coordinate space,

V (0)
ρ (r)=

(
1 + M0

Mq

)−1
GFµ

2
πτ 1 · τ 2

× {
K1
ρfC(r, µ̃ρ)+ 3K2

ρfS(r, µ̃ρ)+ 2K3
ρfS(r, µ̃ρ)σ 1 · σ 2

−K3
ρfT (r, µ̃ρ)S12(r̂)+ fV (r, µ̃ρ)

[
K4
ρ(σ 1 × σ 2)+ iK5

ρσ 1
] · r̂}

.

(55)
Once more, the corresponding potential under approximation (31) can be obtained from
the above equation by means of the substitutions (53).

For the rho meson, the coefficient of the linear term in Eq. (21) is given by

V (1)
ρ (q)= −

(
1 + M0

Mq

)−1
GFµ

2
πτ 1 · τ 2

× [
K6
ρq − iK7

ρσ 1 × q − iK8
ρσ 2 × q −K9

ρ(σ 1 × q)× σ 2
+K10
ρ (σ 2 × q)× σ 1 +K11

ρ σ 1 − iK12
ρ σ 1 × σ 2

] 1
q2 + µ̃2

ρ

, (56)
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where

K6
ρ = BV

ρ g
V
NNρ

1
16M̀

(
3
M̌

− 1
M

)
+BV

ρ

gTNNρ

2M
M0

4MḾ

+ BT
ρ

2M̄
gVNNρ

[
1

2M̀

(
1 + M0

Mq

)
− M0

2MM̌

]
+ BT

ρ

2M̄

gTNNρ

2M
M2

0

4MM̀
,

K7
ρ = BV

ρ g
V
NNρ

[
1

8M̌

(
2
M

+ 1
Ḿ

)
+ 1

8MḾ

]
+BV

ρ

gTNNρ

2M
M0

4MM̀

+ BT
ρ

2M̄
gVNNρ

[
1
2

(
2
M

+ 1
Ḿ

)(
1 + M0

Mq

)]
+ BT

ρ

2M̄

gTNNρ

2M
M2

0

4MḾ
,

K8
ρ = BV

ρ g
V
NNρ

1
4M

(
1
M

+ 1
Ḿ

)
+BV

ρ

gTNNρ

2M

[
1
2

(
2
M

+ 1
Ḿ

)(
1 + M0

Mq

)]

+ BT
ρ

2M̄
gVNNρ

M0

4MM̀
+ BT

ρ

2M̄

gTNNρ

2M
M0

2

[
1
M̀

(
1 + M0

Mq

)
+ M0

MM̌

]
,

K9
ρ = BV

ρ

gTNNρ

2M
M0

2MM̌
+ BT

ρ

2M̄

gTNNρ

2M
M0

M

(
1 + M0

Mq

)
,

K10
ρ = BV

ρ g
V
NNρ

1
4MM̀

+BV
ρ

gTNNρ

2M
1

2M̀

(
1 + M0

Mq

)

+ BT
ρ

2M̄
gVNNρ

M0

4MḾ
+ BT

ρ

2M̄

gTNNρ

2M
M0

2Ḿ

(
1 + M0

Mq

)
,

K11
ρ =Aρg

V
NNρ

[
1
2

(
2
M

+ 1
Ḿ

)]
,

K12
ρ =Aρ

gTNNρ

2M
M0

M
, (57)

with
1
Ḿ

= 1
M

+ 1
MΛ

. (58)

To get the first-order nonlocality correction V̂
(1)
ρ (r), we need first to change (56) to the

coordinate representation, according to Eq. (25). This gives

V (1)
ρ (r)= −

(
1 + M0

Mq

)−1
GFµ

2
πτ 1 · τ 2

×
{
fV (r, µ̃ρ)

r

[
iK6

ρr +K7
ρσ 1 × r +K8

ρσ 2 × r

− iK9
ρ(σ 1 × r)× σ 2 + iK10

ρ (σ 2 × r)× σ 1
]

}

+ fC(r, µ̃ρ)

[
K11
ρ σ 1 − iK12

ρ σ 1 × σ 2
]
. (59)



280 C. Barbero et al. / Nuclear Physics A 726 (2003) 267–302

Introducing (59) into Eq. (28) and noticing that −iσ × r · ∇ = σ · l, where l = −ir × ∇ is
the relative orbital angular momentum, we obtain, finally,

V̂ (1)
ρ (r)=

(
1 + M0

Mq

)−1
GFµ

2
πτ 1 · τ 2

×
{

2MΛ

3MΛ +M

[
fS(r, µ̃ρ)

(
3K6

ρ + 2
(
K10
ρ −K9

ρ

)
σ 1 · σ 2

)
− (

K10
ρ −K9

ρ

)
fT (r, µ̃ρ)S12(r̂)

− fV (r, µ̃ρ)
(
K12
ρ σ 1 × σ 2 + iK11

ρ σ 1
) · r̂]

− fV (r, µ̃ρ)

r

[
K6
ρr · ∇ +K7

ρσ 1 · l +K8
ρσ 2 · l

+ (
K10
ρ −K9

ρ

)
σ 1 · σ 2r · ∇

+K9
ρσ 2 · rσ 1 · ∇ −K10

ρ σ 1 · rσ 2 · ∇]
+ fC(r, µ̃ρ)

(
K12
ρ σ 1 × σ 2 + iK11

ρ σ 1
) · ∇

}
. (60)

Under approximation (31), the only surviving coefficients for the nonlocal potential
would be

K̄7
ρ = BV

ρ g
V
NNρ

1
4M̄

(
1
M̄

+ 2
M

)
+ BT

ρ

2M̄
gVNNρ

(
1
M̄

+ 1
M

)
,

K̄8
ρ = BV

ρ g
V
NNρ

1
4M

(
1
M

+ 2
M̄

)
+BV

ρ

gTNNρ

2M

(
1
M

+ 1
M̄

)
,

K̄11
ρ =Aρg

V
NNρ

(
1
M

+ 1
M̄

)
, (61)

and Eq. (60) would reduce to

ˆ̄V (1)
ρ (r)= −GFµ

2
πτ 1 · τ 2

[
fV (r,µρ)

r

(
K̄7
ρσ 1 · l + K̄8

ρσ 2 · l)

− iK̄11
ρ fC(r,µρ)σ 1 · ∇ + i

2
K̄11
ρ fV (r,µρ)σ 1 · r̂

]
. (62)

2.3.3. Extension to η and ω exchanges
If one remembers to make the replacement τ1 · τ 2 → 1, the results obtained above for

the π and ρ mesons can be straightforwardly extended to the η and ω, respectively, and the
corresponding expressions need not be reproduced here. Let us just mention that the ratios
µ̃η/µη = 0.985 and µ̃ω/µω = 0.992 are very close to unity and, consequently, as happened

for the ρ, the effects of the reduction of the effective mass are much less important for these
mesons than they are for the pion.
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2.4. Contributions of strange mesons

For the strange mesons, the weak and strong vertices in Fig. 1 are interchanged with
respect to those for the nonstrange ones, i.e.,

a =W, b= S (nonstrange mesons),
a = S, b=W (strange mesons). (63)

For the kaon, the effective Hamiltonian for the strong coupling is [18, Eq. (28)]

HS
ΛNK = igΛNKψ̄Nγ5φ

(K)ψΛ, (64)

while, for the weak one, it is [18, Eq. (29)]

HW
NNK = iGFµ

2
π ψ̄N

{[
CPV
K

(
0
1

)(
φ(K)

)† +DPV
K

(
φ(K)

)†
(

0
1

)]

+ γ5

[
CPC
K

(
0
1

)(
φ(K)

)† +DPC
K

(
φ(K)

)†
(

0
1

)]}
ψN. (65)

For the K∗, we have, for the strong coupling [18, Eq. (38)],

HS
ΛNK∗ = ψ̄N

[(
gVΛNK∗γ ν + gTΛNK∗

σµν∂µ

2M̄

)
φ(K

∗)
ν

]
ψΛ, (66)

and for the weak one [18, Eq. (39)],

HW
NNK∗ =GFµ

2
π ψ̄N

{
γ ν

[
C

PC,V
K∗

(
0
1

)(
φ(K

∗)
ν

)† +D
PC,V
K∗

(
φ(K

∗)
ν

)†
(

0
1

)]

+ σµν∂µ

2M

[
C

PC,T
K∗

(
0
1

)(
φ(K

∗)
ν

)† +D
PC,T
K∗

(
φ(K

∗)
ν

)†
(

0
1

)]

+ γ νγ5

[
CPV
K∗

(
0
1

)(
φ(K

∗)
ν

)† +DPV
K∗

(
φ(K

∗)
ν

)†
(

0
1

)]}
ψN . (67)

We again follow the parametrization adopted in Ref. [18], and collect the numerical values
in Table 2 for convenience.

These mesons are isodoublets, and in terms of their different charge states we can write

φ(K) ≡
(
φ(K

+)

φ(K
0)

)
= [

φ(K
+)τ+ + φ(K

0)
](0

1

)
,

(
φ(K)

)†
(

0
1

)
= (

φ(K
0))†

,(
0
1

)(
φ(K)

)† = (
φ(K

+))†
τ− + 1

2
(
φ(K

0)
)†
(1 − τ0) (68)

for the kaon, and similar equations for the K∗. As a result, when applying the Feynman
rules to compute the transition potential as explained in Subsection 2.1, the isospurion will
permit the introduction of isospin operators of the form
I = 1
2
C(1 + τ 1 · τ 2)+D (69)
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Table 2
Coupling constants, masses (µi ) and cutoff parameters (Λi ) for the strange mesons. The weak couplings are in
units of GFµ2

π . Adapted from Ref. [18]

Meson Coupling constants µi Λi

i Weak Strong [MeV] [GeV]
PV PC

K CPV
K

= 0.76 CPC
K

= −18.9 gΛNK = −14.1 495.8 1.20
DPV
K

= 2.09 DPC
K

= 6.63

K∗ CPV
K∗ = −4.48 C

PC,V
K∗ = −3.61 gV

ΛNK∗ = −5.47 892.4 2.20

C
PC,T
K∗ = −17.9 gT

ΛNK∗ = −11.9

DPV
K∗ = 0.60 D

PC,V
K∗ = −4.89

D
PC,T
K∗ = 9.30

for each of the different couplings in Eqs. (65) and (67). Explicitly, they are

IPV
K = 1

2
CPV
K (1 + τ 1 · τ 2)+DPV

K ,

IPC
K = 1

2
CPC
K (1 + τ 1 · τ 2)+DPC

K , (70)

for the kaon, and

I
PC,V
K∗ = 1

2
C

PC,V
K∗ (1 + τ 1 · τ 2)+D

PC,V
K∗ ,

I
PC,T
K∗ = 1

2
C

PC,T
K∗ (1 + τ 1 · τ 2)+D

PC,T
K∗ ,

IPV
K∗ = 1

2
CPV
K∗(1 + τ 1 · τ 2)+DPV

K∗ , (71)

for the K∗. It then becomes apparent that each such coupling will give a contribution
proportional to 1

2C +D to the isoscalar potential and a similar one proportional to 1
2C to

the isovector potential.

2.4.1. One K exchange
The contribution to the local nonrelativistic transition potential in momentum space due

to this meson is

V
(0)
K (q)=

(
1 + M0

Mq

)−1
GFµ

2
π

gΛNK

2M̌

(
IPV
K − IPC

K

2M
σ 2 · q

)
σ 1 · q

q2 + µ̃2
K

. (72)

Comparing this with the result that would have been obtained under approximation (31),
namely,6

V̄
(0)
K (q)=GFµ

2
π

gΛNK

2M̄

(
IPV
K − IPC

K

2M
σ 2 · q

)
σ 1 · q

q2 +µ2
K

, (73)
6 This differs from Eqs. (24) and (31) of Ref. [18] in the sign of IPV
K

and the interchange of σ 1 and σ 2.
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and noticing that the two correction factors in Eq. (41) as well as

µ̃K/µK = 0.982

are very close to unity, one can see that, for the kaon, only very small corrections will
result in the local contributions from the more accurate treatment of the kinematics. The
expression for the potential (72) in coordinate space is

V
(0)
K (r)=

(
1 + M0

Mq

)−1
GFµ

2
π

gΛNK

2M̌

×
[
iIPV
K fV (r, µ̃K)σ 1 · r̂ + IPC

K

2M
fS(r, µ̃K)σ 1 · σ 2

+ IPC
K

2M
fT (r, µ̃K)S12(r̂)

]
, (74)

and, under approximation (31), this becomes

V̄
(0)
K (r)=GFµ

2
π

gΛNK

2M̄

×
[
iIPV
K fV (r,µK)σ 1 · r̂ + IPC

K

2M
fS(r,µK)σ 1 · σ 2

+ IPC
K

2M
fT (r,µK)S12(r̂)

]
. (75)

Starting with the first-order nonlocality coefficient in momentum space in Eq. (21), we
have, for the kaon,

V
(1)
K (q)=

(
1 + M0

Mq

)−1
GFµ

2
π

gΛNK

2M̀

(
IPV
K − IPC

K

2M
σ 2 · q

)
σ 1

q2 + µ̃2
K

, (76)

which, in the coordinate representation, becomes

V
(1)
K (r)=

(
1 + M0

Mq

)−1
GFµ

2
π

gΛNK

2M̀

×
[
IPV
K fC(r, µ̃K)σ 1 − i

IPC
K

2M
fV (r, µ̃K)(σ 2 · r̂)σ 1

]
. (77)

Introducing this into Eq. (28) yields, for the first-order nonlocal potential,

V̂
(1)
K (r)=

(
1 + M0

Mq

)−1
GFµ

2
π

gΛNK

2M̀

×
{

2MΛ

3MΛ +M

[
IPC
K

2M
fS(r, µ̃K)σ 1 · σ 2 + IPC

K

2M
fT (r, µ̃K)S12(r̂)

+ iIPV
K fV (r, µ̃K)(σ 1 · r̂)

]
}

− iIPV
K fC(r, µ̃K)(σ 1 · ∇)− IPC

K

2M
fV (r, µ̃K)(σ 2 · r̂)(σ 1 · ∇) . (78)



284 C. Barbero et al. / Nuclear Physics A 726 (2003) 267–302

As already stated, the mass averaging approximation (31) would set 1/M̀ , defined in
Eq. (47), to zero. Therefore, there would be no first-order nonlocality correction for the
kaon under this approximation, i.e.,

ˆ̄V (1)
K (r)= 0. (79)

2.4.2. One K∗ exchange
For one-K∗-exchange, the local nonrelativistic transition potential in momentum space

is

V
(0)
K∗ (q)=

(
1 + M0

Mq

)−1
GFµ

2
π

× [
K̂1
K∗ − K̂2

K∗q2 − K̂3
K∗(σ 1 × q) · (σ 2 × q)

− iK̂4
K∗(σ 1 × σ 2) · q + K̂5

K∗(σ 2 · q)] 1
q2 + µ̃K∗

, (80)

where we have introduced the isospin operators

K̂1
K∗ = gVΛNK∗IPC,V

K∗ ,

K̂2
K∗ = gVΛNK∗IPC,V

K∗

[(
1

4M

)2
+

(
1

4M̌

)2
+ 1

2

(
1
Mq

)2
]

+
(
gTΛNK∗

2M̄
I

PC,V
K∗

2M̌
+ gVΛNK∗

2M
I

PC,T
K∗
2M

)(
1 + M0

Mq

)

+ gTΛNK∗

2M̄
I

PC,T
K∗
2M

(
M2

0

4MM̌

)
,

K̂3
K∗ =

[
I

PC,V
K∗
2M

+ I
PC,T
K∗
2M

(
1 + M0

Mq

)][
gVΛNK∗

2M̌
+ gTΛNK∗

2M̄

(
1 + M0

Mq

)]
,

K̂4
K∗ = IPV

K∗

[
gVΛNK∗

2M̌
+ gTΛNK∗

2M̄

(
1 + M0

Mq

)]
,

K̂5
K∗ = IPV

K∗
gTΛNK∗

2M̄

(
M0

2M̌

)
. (81)

The corresponding potential under approximation (31), V̄ (0)
K∗ (q), can be obtained from

Eq. (80) through the substitutions:

V
(0)
K∗ → V̄

(0)
K∗ , K̂

j
K∗ → ˆ̄Kj

K∗ (j = 1–5),
M0/Mq → 0, µ̃K∗ →µK∗, (82)

with
ˆ̄K1
K∗ = gVΛNK∗IPC,V

K∗ ,[( )2 ( )2
]

T PC,V V PC,T
ˆ̄K2
K∗ = gVΛNK∗IPC,V

K∗
1

4M
+ 1

4M̄
+ gΛNK∗

2M̄
IK∗

2M̄
+ gΛNK∗

2M
IK∗
2M

,
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ˆ̄K3
K∗ =

(
I

PC,V
K∗ + I

PC,T
K∗

2M

)(
gVΛNK∗ + gTΛNK∗

2M̄

)
,

ˆ̄K4
K∗ = IPV

K∗

(
gVΛNK∗ + gTΛNK∗

2M̄

)
,

ˆ̄K5
K∗ = 0. (83)

By an analysis very similar to the one performed for the ρ meson and noticing that

µ̃K∗/µK∗ = 0.994

is also very close to unity, one concludes that, again in the present case, only very small
corrections will result in the local contributions from the more accurate treatment of the
kinematics.

For completeness, we give below the expression for the potential (80) in coordinate
space:

V
(0)
K∗ (r)=

(
1 + M0

Mq

)−1
GFµ

2
π

{
K̂1
K∗fC(r, µ̃K∗)+ 3K̂2

K∗fS(r, µ̃K∗)

+ 2K̂3
K∗fS(r, µ̃K∗)σ 1 · σ 2 − K̂3

K∗fT (r, µ̃K∗)S12(r̂)

+ fV (r, µ̃K∗)
[
K̂4
K∗(σ 1 × σ 2)+ iK̂5

K∗σ 2
] · r̂}

. (84)

Once more, the corresponding potential under approximation (31) can be obtained from
Eq. (84) by means of the substitutions (82).

The first-order nonlocality coefficient in momentum space, appearing in Eq. (21), for
this meson, is

V
(1)
K∗(q)= −

(
1 + M0

Mq

)−1
GFµ

2
π

× [
K̂6
K∗q − iK̂7

K∗σ 1 × q − iK̂8
K∗σ 2 × q

− K̂9
K∗(σ 1 × q)× σ 2 + K̂10

K∗(σ 2 × q)× σ 1

− K̂11
K∗σ 2 + iK̂12

K∗σ 1 × σ 2
] 1
q2 + µ̃2

K∗
, (85)

where

K̂6
K∗ = gVΛNK∗IPC,V
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M
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0

4MM̀
,

K̂7
K∗ = gVΛNK∗IPC,V
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1

8M̌

(
2
M

+ 1
Ḿ

)
+ 1

8MḾ

]
+ gVΛNK∗

I
PC,T
K∗
2M

M0

4MM̀( )( ) PC,T
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2M̄
I
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1
2

2
M
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Ḿ

1 + M0

Mq

+ gTΛNK∗

2M̄
IK∗
2M

M2
0

4MḾ
,
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K̂8
K∗ = gVΛNK∗IPC,V

K∗
1

4M

(
1
M

+ 1
Ḿ

)
+ gVΛNK∗

I
PC,T
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2MM̌
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(
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)
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K̂10
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1

4MM̀
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I
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2M

1
2M̀

(
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+ gTΛNK∗
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4MḾ
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I
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2M
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2Ḿ

(
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,

K̂11
K∗ = gVΛNK∗IPV

K∗
1
2

(
2
M

+ 1
Ḿ

)
+ gTΛNK∗

2M̄
IPV
K∗

M0

2M̀
,

K̂12
K∗ = gVΛNK∗IPV

K∗
1

2M̀
+ gTΛNK∗

2M̄
IPV
K∗

M0

2Ḿ
, (86)

with 1/M̀ and 1/Ḿ as defined in Eqs. (47) and (58). To get the first-order nonlocality
correction V̂ (1)

K∗ (r), we need first to change (85) to the coordinate representation. This gives

V
(1)
K∗(r)= −

(
1 + M0

Mq

)−1
GFµ

2
π

×
{
fV (r, µ̃K∗)

r

[
iK̂6

K∗r + K̂7
K∗σ 1 × r + K̂8

K∗σ 2 × r

− iK̂9
K∗(σ 1 × r)× σ 2 + iK̂10

K∗(σ 2 × r)× σ 1
]

− fC(r, µ̃K∗)
[
K̂11
K∗σ 2 − iK̂12

K∗σ 1 × σ 2
]}
. (87)

Introducing (87) into Eq. (28), we obtain, finally,

V̂
(1)
K∗ (r)=

(
1 + M0

Mq

)−1
GFµ

2
π

×
{

2MΛ

3MΛ +M

[
fS(r, µ̃K∗)

(
3K̂6

K∗ + 2
(
K̂10
K∗ − K̂9

K∗
)
σ 1 · σ 2

)
− (

K̂10
K∗ − K̂9

K∗
)
fT (r, µ̃K∗)S12(r̂)

+ fV (r, µ̃K∗)
(
K̂12
K∗σ 1 × σ 2 + iK̂11

K∗σ 2
) · r̂]

− fV (r, µ̃K∗)

r

[
K̂6
K∗r · ∇ + K̂7

K∗σ 1 · l + K̂8
K∗σ 2 · l

+ (
K̂10
K∗ − K̂9

K∗
)
σ 1 · σ 2r · ∇

+ K̂9
K∗σ 2 · rσ 1 · ∇ − K̂10

K∗σ 1 · rσ 2 · ∇]
}

− fC(r, µ̃K∗)
(
K̂12
K∗σ 1 × σ 2 + iK̂11

K∗σ 2
) · ∇ . (88)
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If one assumed that the averaged-mass approximation (31) could be made, several terms
in the nonlocal potential would disappear. The only remaining coefficients would be

ˆ̄K7
K∗ = gVΛNK∗IPC,V

K∗
1

4M̄

(
1
M̄

+ 2
M

)
+ gTΛNK∗

2M̄
I

PC,V
K∗

(
1
M

+ 1
M̄

)
,

ˆ̄K8
K∗ = gVΛNK∗IPC,V

K∗
1

4M

(
1
M

+ 2
M̄

)
+ gVΛNK∗

I
PC,T
K∗
2M

(
1
M̄

+ 1
M

)
,

ˆ̄K11
K∗ = gVΛNK∗IPV

K∗

(
1
M

+ 1
M̄

)
, (89)

and the first order nonlocality correction would reduce to

ˆ̄V (1)
K∗(r)= −GFµ

2
π

[
fV (r,µK∗)

r

( ˆ̄K7
K∗σ 1 · l + ˆ̄K8

K∗σ 2 · l)
+ i ˆ̄K11

K∗fC(r,µK∗)σ 2 · ∇ − i

2
ˆ̄K11
K∗fV (r,µK∗)σ 2 · r̂

]
. (90)

It is interesting to point out that, whereas the first-order nonlocal terms are systemat-
ically omitted in the literature on nonmesonic decay, they are routinely included in the
closely related domain of strangeness-conserving, parity-violating nuclear forces. (See, for
instance, Eq. (115) in Ref. [45].) We note, however, that the terms proportional to K̄11 and
ˆ̄K11, for the vector mesons, have been recently discussed in the literature [21].

2.5. Finite size effects

Before closing this section, let us mention a refinement that should always be added
to the strict OME description we have been developing up to now, especially when large
momentum transfers are involved, as is the case for nonmesonic hypernuclear decays. This
is the effect of the finite size (FS) of the interacting baryons and mesons at each vertex.

Taking a clue from the OME models for the NN force [38,39], the FS effects are
phenomenologically implemented in momentum space by inserting, at each vertex in
Fig. 1, a form factor, which we choose to be of the monopole type,

Λ2
i − µ̃2

i

q2 +Λ2
i

, (91)

where i refers to the meson involved and Λi are the cutoff parameters in Tables 1 and 2.
This corresponds in coordinate space to replacing, in the expressions for the transition
potential discussed in Subsections 2.3 and 2.4, each of the shape functions (43) as follows:

fN (r, µ̃i)→ fN (r, µ̃i)− fN(r,Λi)+ Λ2
i − µ̃2

i

2Λi

∂

∂Λi

fN(r,Λi), (92)

whereN = C,V,S,T . When the kinematical effects are ignored, Eqs. (91) and (92) should

be modified by making µ̃i → µi , thus leading to agreement with Ref. [18].

In what follows, it is to be understood that these FS effects are always included.
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3. Numerical results and discussion

3.1. Decay rates

We present here the numerical results for the different contributions to the nonmesonic
weak decay rates of 12

Λ C. We consider, separately, the neutron-induced (n) and the proton-
induced (p) contributions, as well as those coming from the parity-conserving (PC) and
parity-violating (PV) transitions. All quantities are in units of the free Λ decay constant,
Γ0 = 2.50×10−6 eV. The main observables are the total nonmesonic decay constantΓnm =
Γn + Γp and the ratio Γn/Γp, whose experimental estimates are in the ranges 0.89–1.14
and 0.52–1.87, respectively, with large error bars [46–50]. Most, if not all, calculations in
the context of OME models give reasonable results for Γnm but fail completely for Γn/Γp.
However, our main objective here is not so much to try to reproduce the experimental
values for these observables, but rather to assess the relative importance of the kinematical
and nonlocality effects, usually ignored, in their theoretical prediction. For simplicity, we
restrict the discussion of the nonlocality corrections to those of first order.

For the explicit evaluation of the transition rates, we follow the approach of Ref. [21].
The initial and final nuclear states in Eq. (1) are described in the extreme particle–hole
model (EPHM), taking as vacuum the simplest possible shell-model approximation for the
ground state of 12C, namely, 1s1/2 and 1p3/2 orbitals completely filled with neutrons and
protons.7 The Λ single-particle state has quantum numbers j1 = 1s1/2 and the nucleon
inducing the transition occupies a j2 = 1s1/2 or 1p3/2 orbital. Therefore, [21, Eqs. (4.2),
(4.3)]

|I 〉 = ∣∣(j1Λ)(jn)
−1;JI

〉
, |F 〉 = ∣∣(jn)−1(j2N)

−1;JF
〉
, (93)

where JI = 1, j = 1p3/2, N = p or n for proton- or neutron-induced transitions,
respectively, and JF takes all the values allowed by angular momentum coupling and
(when relevant) antisymmetrization. Then, changing the momentum variables in Eq. (1)
to relative (p′) and center-of-mass (P ′) momenta, making a multipole decomposition of
the corresponding free waves and performing the angular integrations, one gets, for N -
induced transitions, [21, Eqs. (2.4), (2.9)]

ΓN = 16M3

π

∑
j2JF

∆j2N∫
0

dε′
√
ε′(∆j2N − ε′)

×
∑

l′L′λ′S ′
J ′T ′M ′

T

∣∣〈p′l′ P ′L′ λ′S′J ′T ′M ′
T , (jn)

−1 (j2N)
−1;JF ;JI

∣∣

× V̂
∣∣(j1Λ) (jn)

−1;JI
〉∣∣2
, (94)

where T ′ is the total isospin of the two emitted nucleons and the angular momentum
couplings l′ + L′ = λ′, λ′ + S′ = J ′ and J ′ + JF = J I are carried out. One also has
7 As shown in that reference, further sophistication of the nuclear structure description has little effect on the
nonmesonic decay rates.
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P ′ = 2
√
Mε′, p′ = √

M(∆j2N − ε′) and∆j2N =MΛ−M+εj1Λ+εj2N , where the single-
particle energies are taken from experiment, according to Table 3 of Ref. [15].

After some standard manipulations, Eq. (94) takes the form [21, Eqs. (2.13), (4.4)]

ΓN = 16M3

π

∑
j2

1j2N∫
0

dε′
√
ε′(∆j2N − ε′)

×
∑
J ′

F
j2N
J ′

∑
l′L′λ′S ′T ′

∣∣M(p′l′ P ′L′ λ′S′J ′T ′; j1Λj2N)
∣∣2
, (95)

which allows a nice separation between the nuclear structure aspects and those of the decay
dynamics proper. The nuclear structure factor is, in second-quantized notation,

F
j2N
J ′ = 1

2JI + 1

∑
JF

∣∣〈I‖(a†
j2N

a
†
j1Λ

)
J ′ ‖F 〉∣∣2

, (96)

and its nonzero values, for the nuclear states in Eqs. (93), are: F 1s1/2n
0 = F

1s1/2p
0 = 1/2,

F
1s1/2n
1 = F

1s1/2p
1 = 3/2, F 1p3/2n

1 = 7/4, F 1p3/2n
2 = 5/4, F 1p3/2p

1 = 3/2 and F 1p3/2p
2 = 5/2.

(See Table I in Ref. [23].) On the other hand, the nuclear matrix element governing the
decay is

M(p′l′ P ′L′ λ′S′J ′T ′; j1Λj2N)

= 1√
2

[
1 − (−)l′+S ′+T ′]

(p′l′ P ′L′ λ′S′J ′T ′MT |V̂ |j1Λj2N J ′), (97)

where (· · · |V̂ | · · ·) is a direct matrix element and the factor in front takes care of
antisymmetrization. To compute the isospin part of this matrix element, one writes the
baryon content of the ket as |ΛN)= | 1

2mtΛ
1
2mtN ), where mtN takes the values mtp = 1/2

for protons and mtn = −1/2 for neutrons, while, in accordance with the isospurion
stratagem, one treats the Λ as if it corresponded to mtΛ = −1/2. On the bra side, one
sets MT = mtΛ + mtN . To simplify the spatial integration, one resorts to a Moshinsky
transformation [51] of the initial ΛN system. To this end, the shell-model radial wave
functions are approximated by those of a harmonic oscillator with a length parameter of
b= 1.75 fm, which is an average between the values appropriate for a Λ and for a nucleon
[16]. Some useful expressions for the computation of these matrix elements are given in
Appendix A.

As done in Ref. [21] and already stated above, the FS effects are taken into account as
indicated in Subsection 2.5. Another important effect to include due to the relatively large
momentum transfers involved in nonmesonic decays is that of short range correlations
(SRC). The most satisfactory way to deal with the SRC between the Λ and the inducing
nucleon in the initial state would be through a finite-nucleus G-matrix calculation [52].
However, as mentioned in Ref. [18], this can be well simulated by means of the correlation
function
gΛN(r)= (
1 − e−r2/α2)2 + βr2e−r2/γ 2

, (98)
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Table 3
Corrections due to the kinematical effects on the nonmesonic decay rates of 12

Λ C in several OME models, when
only the local potential is included in the calculation. See text for detailed explanation

Model/Kinematics Γ PC
n Γ PV

n Γ PC
p Γ PV

p Γnm Γn/Γp

π

Averaged 0 0 0 0 0 0
µπ → µ̃π 0.0019 0.0230 0.0974 0.0601 0.1823 0.0031
Full 0.0019 0.0224 0.1000 0.0586 0.1829 0.0024

(π,η,K)

Averaged 0 0 0 0 0 0
µπ → µ̃π 0.0024 0.0292 0.0615 0.0653 0.1583 −0.0275
µi → µ̃i 0.0023 0.0359 0.0498 0.0707 0.1586 −0.0150
Full 0.0023 0.0353 0.0508 0.0694 0.1577 −0.0156

π + ρ

Averaged 0 0 0 0 0 0
µπ → µ̃π 0.0008 0.0214 0.0712 0.0658 0.1593 0.0055
µi → µ̃i 0.0008 0.0209 0.0711 0.0685 0.1614 0.0047
Full 0.0008 0.0206 0.0729 0.0652 0.1597 0.0046

(π,η,K)+ (ρ,ω,K∗)
Averaged 0 0 0 0 0 0
µπ → µ̃π 0.0048 0.0245 0.0710 0.0803 0.1807 −0.0103
µi → µ̃i 0.0058 0.0323 0.0605 0.0953 0.1940 −0.0032
Full 0.0058 0.0306 0.0619 0.0878 0.1862 −0.0033

with α = 0.5 fm, β = 0.25 fm−2 and γ = 1.28 fm. As for the SRC between the two
emitted nucleons, one might want to perform a T-matrix calculation including final state
interactions along the lines of Ref. [53].8 A simpler, if less satisfactory, way is to again
appeal to a correlation function, like [54]

gNN (r)= 1 − j0(qcr), (99)

where j0 is a spherical Bessel function and qc = 3.93 fm−1. For our purposes here, it is
sufficient to follow Ref. [21] and opt for these phenomenological correlation functions.
Thus, in the calculation of the nuclear matrix elements in Eq. (97) we simply make the
replacements

|j1Λj2N J)→ gΛN(r)|j1Λj2N J),(
p′l′ P ′L′ λ′S′J ′T ′M ′

T

∣∣ → (
p′l′ P ′L′ λ′S′J ′T ′M ′

T

∣∣gNN (r). (100)

Following the discussion in Subsections 2.3 and 2.4, we initially focus our attention on
the reduction of the effective meson masses, µ̃i in Eq. (20), especially that of the pion, µ̃π
in Eq. (42), and show that indeed this is the main kinematical effect for the local potential,
but not so for the nonlocal one. To this end we give, in Tables 3 and 4, the corrections that
should be added, according to several different calculations, to the standard OME results,
8 In fact, there are claims that this is very important for a good description of the nonmesonic decay
observables [20].
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Table 4
First-order nonlocality corrections for the nonmesonic decay rates of 12

Λ C in several OME models, and for
different treatments of the kinematical effects. See text for detailed explanation

Model/Kinematics Γ PC
n Γ PV

n Γ PC
p Γ PV

p Γnm Γn/Γp

π

Averaged 0 0 0 0 0 0
µπ → µ̃π 0 0 0 0 0 0
Full 0.0032 0 0.0729 0 0.0761 −0.0062

(π,η,K)

Averaged 0 0 0 0 0 0
µπ → µ̃π 0 0 0 0 0 0
µi → µ̃i 0 0 0 0 0 0
Full 0.0037 −0.0332 0.0312 −0.0335 −0.0318 −0.0401

π + ρ

Averaged 0.0001 0.0016 0.0004 −0.0102 −0.0080 0.0034
µπ → µ̃π 0.0001 0.0017 0.0003 −0.0110 −0.0088 0.0032
µi → µ̃i 0.0001 0.0018 0.0003 −0.0114 −0.0091 0.0033
Full 0.0023 0.0014 0.0386 −0.0088 0.0334 −0.0001

(π,η,K)+ (ρ,ω,K∗)
Averaged 0.0013 −0.0471 −0.0008 −0.0970 −0.1435 −0.0238
µπ → µ̃π 0.0014 −0.0500 −0.0011 −0.1027 −0.1524 −0.0227
µi → µ̃i 0.0015 −0.0522 −0.0011 −0.1071 −0.1589 −0.0229
Full 0.0133 −0.0901 0.0404 −0.1425 −0.1790 −0.0515

i.e., those obtained when both the kinematical and the nonlocality effects are completely
ignored. In Table 3, are the corrections corresponding to calculations that use only the
local potential, and in Table 4, those corresponding to calculations that include also the
first-order nonlocality terms. In each table, the first column indicates which mesons have
been included in the exchange process and how far the kinematical effects due to the
lambda-nucleon mass difference have been taken into consideration. The entry “averaged”
means that the mass-averaging approximation (31) has been made and, consequently, no
kinematical effects have been included, while µπ → µ̃π or µi → µ̃i indicates that they
partly have been, through these replacements made, respectively, for the pion alone or

for all the mesons, in the expressions for the mass-averaged potentials V̄ (0)
i and ˆ̄V (1)

i in
Subsections 2.3 and 2.4. (Excluding, of course, the factor GFµ

2
π .) Finally, the entry “full”

means that the kinematical effects have been fully taken into account, by making use of
the complete expressions for V (0)

i and V̂ (1)
i when constructing the local transition potential

and (for Table 4) its first-order nonlocality correction.
Examining the first block in Table 3, one notices immediately that, when only the local

potential is included in the calculation, the kinematical effects are well represented, for
the pion, by the replacement µπ → µ̃π in the expression (45) for the local transition
potential obtained when they are completely neglected. Thus, the further modifications
caused by these effects in the local potential, which lead to the “full” expression (44), are

of less importance. Comparing the last two lines in the remaining blocks of this table, one
concludes that the analogous statement holds also for the other mesons. Finally, knowing
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Table 5
Analysis of the different contributions to the nonmesonic decay rates of 12

Λ C in several OME models. All
corrections are computed with “full” kinematics. See text for detailed explanation

Model/Contributions Γ PC
n Γ PV

n Γ PC
p Γ PV

p Γnm Γn/Γp

π

Uncorrected value 0.0063 0.1162 0.6019 0.2887 1.0131 0.1375
Local kinem. corr. 0.0019 0.0224 0.1000 0.0586 0.1829 0.0024
1st-order nonloc. corr. 0.0032 0 0.0729 0 0.0761 −0.0062
Corrected value 0.0114 0.1386 0.7748 0.3473 1.2721 0.1337

(π,η,K)

Uncorrected value 0.0056 0.2345 0.2124 0.3813 0.8339 0.4045
Local kinem. corr. 0.0023 0.0353 0.0508 0.0694 0.1577 −0.0156
1st-order nonloc. corr. 0.0037 −0.0332 0.0312 −0.0335 −0.0318 −0.0401
Corrected value 0.0116 0.2366 0.2944 0.4172 0.9598 0.3488

π + ρ

Uncorrected value 0.0056 0.1004 0.5140 0.3608 0.9807 0.1212
Local kinem. corr. 0.0008 0.0206 0.0729 0.0652 0.1597 0.0046
1st-order nonloc. corr. 0.0023 0.0014 0.0386 −0.0088 0.0334 −0.0001
Corrected value 0.0087 0.1224 0.6255 0.4172 1.1738 0.1257

(π,η,K)+ (ρ,ω,K∗)
Uncorrected value 0.0241 0.2218 0.2961 0.6238 1.1657 0.2672
Local kinem. corr. 0.0058 0.0306 0.0619 0.0878 0.1862 −0.0033
1st-order nonloc. corr. 0.0133 −0.0901 0.0404 −0.1425 −0.1790 −0.0515
Corrected value 0.0432 0.1623 0.3984 0.5691 1.1729 0.2124

this and comparing the second and third lines in these same blocks, one can see that the
main local kinematical correction is that affecting the pion exchange. All these conclusions
are in agreement with the discussion in Subsections 2.3.1, 2.3.2, 2.3.3, 2.4.1 and 2.4.2.

Going now to Table 4, one sees that the situation is quite different as regards the
influence of the kinematical effects on the nonlocal potential. In fact, the first two
blocks show that, in OME models containing only pseudoscalar mesons, the first-order
nonlocality corrections vanish unless one takes the kinematical effects fully into account.
This is just a restatement of Eqs. (50), (79) and the analogous result for the η meson.
Similarly, examination of the last two blocks shows that, in OME models containing
vector mesons, if one does not take the kinematical effects fully into account the first-order
nonlocality corrections generally turn out very different from their actual values. The mere
replacement µi → µ̃i does not work well in this case. This is so because, as can be seen in
Subsections 2.3.2 and 2.4.2, several nonlocal terms appear as a direct consequence of the
kinematical effects, rather than simply being modified by them. Therefore, to be consistent,
one should take the kinematical effects due to the lambda–nucleon mass difference fully
into account when dealing with the nonlocality corrections.

To better visualize our findings, we exhibit in Table 5 an analysis of the different
contributions to the nonmesonic decay rates of 12

Λ C in the four OME models we have been
considering. In the first line of each block, we give the values that would be obtained for

the transition rates in the standard OME approach, i.e., when neither the kinematical, nor
the nonlocality corrections are included. On the second line, are the corrections to these
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values arising from the kinematical effects related to the lambda-nucleon mass difference,
but still restricted to the local contributions only. On the third line, we have the first-order
nonlocality corrections, and on the last one, the values of the decay rates including the
two corrections. As required by consistency, according to our previous discussion, both
corrections are computed with the kinematical effects fully taken into account.

Examining this table, one notices that the kinematical and the nonlocality corrections
are typically of comparable sizes. Furthermore, for the partial and total decay rates, the
former ones are always positive, while the latter are sometimes negative. Consequently, the
two corrections should be included simultaneously, or not at all. Another point to remark
is that the modifications in the uncorrected values of these decay rates when going from
one OME model to another are of the same general magnitude as these corrections within
each model. Therefore, it might be questionable to consider other mesons besides the pion
without, at the same time, including the kinematical and nonlocality corrections.

The influence of the two effects together in the several partial decay rates varies around
∼ 80% for Γ PC

n and ∼ 20% for the other ones, depending on the OME model. The net
effect on the main decay observables is smaller: it is ∼ 15% for Γnm and ∼ 10% for
the ratio Γn/Γp, again depending on the OME model considered. As one can see, these
corrections are of no help to solve the discrepancy between the theoretical prediction
and the experimental determinations for the latter quantity. They are too small for that,
and usually go in the wrong direction. As a final observation, notice that the combined
correction affects very differently the parity-conserving and the parity-violating transitions,
especially when strange mesons are involved. For instance, in the model including the full
pseudoscalar and vector meson octets (fourth block), the uncorrected value for Γ PC/Γ PV

is 0.379, while the corrected one is 0.604.
One might wonder how important the corrections are for each meson-exchange taken

in isolation. To answer this question, we show in Table 6 the different contributions to the
partial and total decay rates, as well as to the n/p ratio, coming from each meson acting
alone. Of course, in actual fact the contributions of the several mesons interfere with each
other, so that the numbers shown in this table do not have any direct physical meaning, but
they serve as an indication of the importance of the two corrections for each meson.

The local kinematical corrections affect the pion more than any other meson, as
expected due to its low mass. There, the effect on the decay rates is of the order of 20–
30%, while for the other mesons it does not exceed ∼ 10%. For the n/p ratio, the effect is
always negligible.

The first-order nonlocality corrections vary a lot, both in sign, and in magnitude.
Depending on the meson and on the partial rate considered, the corrections can be as low as
a few per cent, but in many cases reach the 50% level. The effect on the omega-exchange
is exceptionally large, specially for the parity-violating transitions, where, in fact, more
than half of the contribution comes from the nonlocal terms. However, for this meson the
parity-conserving transitions are far more important and, besides this, the net nonlocal PC
contribution is opposite to the PV one, such that the final effect of the nonlocal corrections
on the total decay rate is of less than 5%. This is again an indication that the effects we

are considering here are not exactly small, although, due to a series of compensations, they
end up by not affecting the usual decay observables too much.
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Table 6
Analysis of the different contributions to the nonmesonic decay rates of 12

Λ C coming from each meson acting
alone. The interference among the different mesons is ignored. All corrections are computed with “full”
kinematics. See text for detailed explanation

Meson/Contributions Γ PC
n Γ PV

n Γ PC
p Γ PV

p Γnm Γn/Γp

π

Uncorrected value 0.0063 0.1162 0.6019 0.2887 1.0131 0.1375
Local kinem. corr. 0.0019 0.0224 0.1000 0.0586 0.1829 0.0024
1st-order nonloc. corr. 0.0032 0 0.0729 0 0.0761 −0.0062
Corrected value 0.0114 0.1386 0.7748 0.3473 1.2721 0.1337

η

Uncorrected value 0.0020 0.0031 0.0047 0.0024 0.0122 0.7200
Local kinem. corr. 0 0.0002 0.0002 0.0001 0.0006 −0.0047
1st-order nonloc. corr. 0.0003 0 0.0005 0 0.0007 −0.0130
Corrected value 0.0023 0.0033 0.0054 0.0025 0.0135 0.7023

K

Uncorrected value 0.0058 0.0453 0.0780 0.0277 0.1569 0.4841
Local kinem. corr. 0.0002 0.0041 0.0061 0.0025 0.0129 0.0009
1st-order nonloc. corr. −0.0002 −0.0233 0.0073 −0.0139 −0.0303 −0.1886
Corrected value 0.0058 0.0261 0.0914 0.0163 0.1395 0.2964

ρ

Uncorrected value 0.0016 0.0017 0.1274 0.0082 0.1390 0.0246
Local kinem. corr. 0.0001 0.0002 0.0070 0.0003 0.0075 0.0004
1st-order nonloc. corr. −0.0005 0.0007 −0.0069 −0.0013 −0.0080 0.0029
Corrected value 0.0012 0.0026 0.1275 0.0072 0.1385 0.0279

ω

Uncorrected value 0.0073 0.0020 0.0732 0.0019 0.0843 0.1232
Local kinem. corr. 0.0007 0.0001 0.0051 0.0001 0.0062 0.0028
1st-order nonloc. corr. 0.0016 0.0037 −0.0030 0.0011 0.0034 0.0708
Corrected value 0.0096 0.0058 0.0753 0.0031 0.0939 0.1968

K∗
Uncorrected value 0.0062 0.0145 0.0614 0.0189 0.1010 0.2579
Local kinem. corr. 0.0001 0.0011 0.0021 0.0007 0.0040 0.0060
1st-order nonloc. corr. −0.0016 0.0086 −0.0025 −0.0004 0.0041 0.0960
Corrected value 0.0047 0.0242 0.0610 0.0192 0.1091 0.3599

3.2. Asymmetry parameter

The only remaining nonmesonic decay observable, beyond Γnm and Γn/Γp, that has
been measured to date is the asymmetry parameter, aΛ, which depends on the interference
between the amplitudes for PC and PV proton-induced transitions to final states with
different isospins. This parameter is a characteristic of the nonmesonic decay of a polarized
Λ in the nuclear medium, having been defined so as to subdue the influence of the particular
hypernucleus considered [15]. It is experimentally extracted from measurements of the
asymmetry, Ay , in the angular distribution of the emitted protons in the nonmesonic

decay of polarized hypernuclei [55,56]. There are large discrepancies, both experimentally
and theoretically, in the determination of aΛ [3, Section 7], specially after the newest
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experimental results for the decay of 5
ΛHe [56], which give a positive value for this

observable, differently from all previous measurements. In strong disagreement with that,
all calculations so far find a negative value for aΛ [3], which makes the investigation of the
kinematical plus nonlocality corrections on this observable particularly relevant.

For the case of 5
ΛHe, the following expression can be used to compute the asymmetry

parameter [3]:

aΛ =Ay

(5
ΛHe

) = 2�[√
3ae∗ − b(c∗ − √

2d∗)+ √
3f (

√
2 c∗ + d∗)

]
|a|2 + |b|2 + 3(|c|2 + |d|2 + |e|2 + |f |2) , (101)

where

a = 〈
np, 1S0

∣∣V̂ ∣∣Λp, 1S0
〉

=M(pl = 0 PL= 0 λ= 0 S = 0 J = 0 T = 1 MT = 0;Λp, (1s1/2)
2 J = 0),

b= i
〈
np, 3P0

∣∣V̂ ∣∣Λp, 1S0
〉

= iM(pl = 1 PL= 0 λ= 1 S = 1 J = 0 T = 1 MT = 0;Λp, (1s1/2)
2 J = 0),

c = 〈
np, 3S1

∣∣V̂ ∣∣Λp, 3S1
〉

= −M(pl = 0 PL= 0 λ= 0 S = 1 J = 1 T = 0 MT = 0;Λp, (1s1/2)
2 J = 1),

d = −〈
np, 3D1

∣∣V̂ ∣∣Λp, 3S1
〉

=M(pl = 2 PL= 0 λ= 2 S = 1 J = 1 T = 0 MT = 0;Λp, (1s1/2)
2 J = 1),

e = i
〈
np, 1P1

∣∣V̂ ∣∣Λp, 3S1
〉

= −iM(pl = 1 PL= 0 λ= 1 S = 0 J = 1 T = 0 MT = 0;Λp, (1s1/2)
2 J = 1),

f = −i〈np, 3P1
∣∣V̂ ∣∣Λp, 3S1

〉
= −iM(pl = 1 PL= 0 λ= 1 S = 1 J = 1 T = 1 MT = 0;Λp, (1s1/2)

2 J = 1).
(102)

The extra factors in the transition amplitudes are due to differences in phase conventions,
as explained in Appendix B, and we have rewritten them in terms of the nuclear matrix
elements defined in Eq. (97).

It is important to realize that the formula (101) is not of general validity, and is, in fact,
merely an approximation taken over from the result valid for a free space process [57] and
adapted somehow to the hypernuclear decay situation. In particular, there is no definitive
prescription on how to divide the energy liberated in the decay, ∆F, between the relative
and CM motions of the emitted nucleons. It seems that, based on the expectation that the
final result be insensitive to this point, some authors merely take P = 0 in Eq. (102), while
others integrate over phase space, both the numerator, and the denominator in Eq. (101).
We have checked that the two prescriptions indeed give similar results for 5

ΛHe, and opted
to tabulate only those corresponding to the first one. A more rigorous calculation of aΛ is
planned for the near future.

We give, in Table 7, the results we obtained for the decay rates and asymmetry parameter

of 5

ΛHe. The calculation goes along similar lines to those explained in Subsection 3.1,
except for the obvious changes. The (hyper)nuclear model-space is restricted to the 1s1/2
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Table 7
Analysis of the different contributions to the nonmesonic decay rates and asymmetry parameter of 5

ΛHe in several
OME models. All corrections are computed with “full” kinematics. See text for detailed explanation

Model/Contributions Γ PC
n Γ PV

n Γ PC
p Γ PV

p Γ PC/Γ PV aΛ

π

Uncorrected value 0.0004 0.0739 0.3889 0.1479 1.7553 −0.4351
Local kinem. corr. 0.0005 0.0130 0.0599 0.0258 −0.0295 −0.0084
1st-order nonloc. corr. 0.0011 0 0.0461 0 0.1810 −0.0021
Corrected value 0.0020 0.0869 0.4949 0.1737 1.9068 −0.4456

(π,η,K)

Uncorrected value 0.0013 0.1734 0.1261 0.2077 0.3342 −0.5852
Local kinem. corr. 0.0008 0.0234 0.0280 0.0327 0.0229 −0.0106
1st-order nonloc. corr. 0.0013 −0.0285 0.0176 −0.0215 0.0952 −0.0406
Corrected value 0.0034 0.1683 0.1717 0.2189 0.4523 −0.6364

π + ρ

Uncorrected value 0.0001 0.0648 0.3135 0.1939 1.2118 −0.2665
Local kinem. corr. 0.0001 0.0121 0.0433 0.0299 −0.0251 −0.0217
1st-order nonloc. corr. 0.0004 0.0016 0.0245 −0.0056 0.1003 −0.0273
Corrected value 0.0006 0.0785 0.3813 0.2182 1.2870 −0.3155

(π,η,K)+ (ρ,ω,K∗)
Uncorrected value 0.0112 0.1672 0.1778 0.3642 0.3558 −0.5131
Local kinem. corr. 0.0026 0.0206 0.0344 0.0442 0.0233 −0.0090
1st-order nonloc. corr. 0.0054 −0.0715 0.0237 −0.0897 0.2073 −0.0167
Corrected value 0.0192 0.1163 0.2359 0.3187 0.5864 −0.5388

orbital; the relevant nuclear structure factors, Eq. (96), are [23] F 1s1/2n
0 = F

1s1/2p
0 = 1/2,

F
1s1/2n
1 = F

1s1/2p
1 = 3/2; we used 1.62 fm for the oscillator length parameter; and took

∆F = 153.83 MeV. It is clear from this table that the comments made above about the
decay rates of 12

Λ C remain qualitatively valid in the present case. As to the asymmetry
parameter, the effect of the two corrections reaches ∼ 18% in the π + ρ model, but is of
only ∼ 5% in the complete model. On the average, it varies around ∼ 10%. It is interesting
to observe that the two corrections always go in the direction of making aΛ even more
negative, thus confirming the sign of the existing theoretical predictions for this observable
in contraposition to its most recent experimental determination.

4. Summary and conclusions

We have proposed an approach that naturally establishes a hierarchy for the different
levels of approximation in the extraction of the nonrelativistic transition potential in OME
models in general. The central result is Eq. (21). The first term corresponds to the local
approximation, usually adopted in the literature on nonmesonic decay. The second one, to
the first-order nonlocality correction, which we have included in our calculations here. And
the last one, to the second-order nonlocality correction, which we have neglected. We have

also given a detailed and general account on how to deal accurately with the kinematical
effects that result when one has different baryon masses on the four legs in the OME
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Feynman amplitude in Fig. 1. All this was particularized to Λ hypernuclear nonmesonic
decay and detailed expressions for all contributions to the transition potential coming from
the exchange of the complete pseudoscalar and vector meson octets were given.

Using this formalism, we have investigated the relative importance of two effects
sistematically ignored in OME models for the nonmesonic weak decay of Λ-hypernuclei.
First, that of an accurate treatment of the kinematics, i.e., of taking into account the
difference in mass between the hyperon and the nucleon, when determining the OME
transition potential. Secondly, we considered the influence of the first-order nonlocality-
correction terms. Surprisingly, in view of the nonnegligible value of the mass-asymmetry
ratio in Eq. (32), we came to the conclusion that the kinematical effect on the local potential
is small, except for the reduction of the effective mass of the pion, Eq. (42), which implies
an increase of ∼ 35% in the range of the corresponding transition potential. However its
indirect influence is important, since it activates several nonlocal terms in the transition
potential.

Our conclusion is that the influence of the two effects together on the partial decay
rates is sizeable, the full amount depending on which mesons are included. It can be very
large for Γ PC

n , often exceeding 100%, while it typically stays in the 20–30% range for the
other partial rates. The effects are somewhat washed out in the main decay observables,
averaging to ∼ 15% for the total nonmesonic decay rate, Γnm = Γn + Γp, and to ∼ 10%
for, both the neutron- to proton-induced ratio, Γn/Γp , and the asymmetry parameter, aΛ.
In particular, they do not in any way account for the well-known discrepancy between the
standard OME predictions for the latter two observables and their measured values [3].
To summarize, although the kinematical and nonlocality effects can be very important for
particular transitions, they end up by not affecting the main decay observables too much.
One can partly understand this from the following two facts:

1. The most affected transitions are by far the neutron-induced, parity-conserving ones.
However those contribute very little to Γnm and to Γn/Γp, and not at all to aΛ, which
is a property of proton-induced transitions only.

2. The largest relative effect of the nonlocality corrections is on the PV transitions coming
from the one-omega-exchange process. However, for this meson, the PC transitions are
much more important and they are affected in the opposite direction. As a result the
two effects are largely neutralized in any of the main decay observables, which depend
on, either the sum of the intensities, or the product of the amplitudes for these two
types of transitions.

We have also shown that the parameter Γ PC/Γ PV is strongly affected in OME models
that include strange mesons. The relative correction is of ∼ 30% in the (π + η + K)

model and of ∼ 60% in the complete model. However, none of the three nonmesonic decay
observables that have been measured up to now is sensitive to this ratio.

Let us finalize by saying that, although the effects we have studied here can be
considered small in view of the imprecision of the available measurements and the degree
of uncertainty presently existing in the parameters of OME models for nonmesonic decay

(particularly coupling constants), they are not altogether negligible. In fact, in many cases
they appear to influence the theoretical predictions by roughly as much as the inclusion
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of other mesons beyond the pion in the exchange process. It seems, therefore, that they
have a part to play in OME models for nonmesonic hypernuclear decays, specially if one
takes into consideration that more detailed and accurate experimental data on this issue is
forthcoming.
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Appendix A. Calculation of nuclear matrix elements

We collect in this appendix some useful expressions for the calculation of the several
matrix elements contributing to Eq. (97). As mentioned below that equation, the first step
is to factor out the baryon content of the initial state,

|j1Λj2N J)= |j1j2J ) |ΛN)≡ |n1l1j1 n2l2j2J ) |ΛN), (A.1)

and perform a Moshinsky transformation [51] for its space-spin part,

|n1l1j1 n2l2j2 J )= √
(2j1 + 1)(2j2 + 1)

∑
λS

√
(2λ+ 1)(2S + 1)



l1

1
2 j1

l2
1
2 j2

λ S J




×
∑
nlNL

|nl NLλSJ ) (nl NLλ|n1l1 n2l2 λ). (A.2)

A look at Subsections 2.3 and 2.4 shows that the operators involved are always of
the general form v(r)Ω(σ 1,σ 2, r̂,∇). All matrix elements are diagonal in the quantum
numbersL and J , and the needed results are listed below. Some of them have already been
given in Ref. [21] but are repeated here for completeness.9

(p′l′ P ′Lλ′S′J |v(r)|nl NLλSJ )= δl′lδλ′λδS ′S(P
′L|NL)(p′l′|v(r)|nl), (A.3)

(p′l′ P ′Lλ′S′J |v(r)σ 1 · σ 2|nl NLλSJ )
= δl′lδλ′λδS ′S

[
2S(S + 1)− 3

]
(P ′L|NL)(p′l′|v(r)|nl), (A.4)

(p′l′ P ′Lλ′S′J |v(r)S12(r̂)|nl NLλSJ )
= (−)L+J+1δS1δS ′1

√
120(2l′ + 1)(2l + 1)(2λ′ + 1)(2λ+ 1)
9 There are some misprints in the formulas for the matrix elements in the published version of Ref. [21]. These
misprints, however, do not occur in its preprint version, nucl-th/0011092.
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×
(
l′ 2 l

0 0 0

){
λ′ 2 λ

l L l′
}{

1 2 1
λ J λ′

}
(P ′L|NL)(p′l′|v(r)|nl), (A.5)

(−)S ′+S(p′l′ P ′Lλ′S′J |v(r)σ 1 · r̂ |nl NLλSJ )
= (p′l′ P ′Lλ′S′J |v(r)σ 2 · r̂ |nl NLλSJ )
= (−)L+J+1

√
6(2l′ + 1)(2l + 1)(2λ′ + 1)(2λ+ 1)(2S′ + 1)(2S + 1)

×
(
l′ 1 l

0 0 0

){
λ′ 1 λ

l L l′
}{

S′ 1 S
1
2

1
2

1
2

}{
S′ 1 S

λ J λ′
}

× (P ′L|NL)(p′l′|v(r)|nl), (A.6)
(p′l′ P ′Lλ′S′J |iv(r)(σ 1 × σ 2) · r̂|nl NLλSJ )

= (−)L+J+S(δS ′0δS1 + δS ′1δS0)
√

12(2l′ + 1)(2l + 1)(2λ′ + 1)(2λ+ 1)

×
(
l′ 1 l

0 0 0

){
λ′ 1 λ

l L l′
}{

S′ 1 S

λ J λ′
}
(P ′L|NL)(p′l′|v(r)|nl), (A.7)

(−)S ′+S(p′l′ P ′Lλ′S′J |v(r)σ 1 · ∇|nl NLλSJ )
= (p′l′ P ′Lλ′S′J |v(r)σ 2 · ∇|nl NLλSJ )
= (−)L+J+1

√
6(2l′ + 1)(2l + 1)(2λ′ + 1)(2λ+ 1)(2S′ + 1)(2S + 1)

×
(
l′ 1 l

0 0 0

){
λ′ 1 λ

l L l′
}{

S′ 1 S
1
2

1
2

1
2

}{
S′ 1 S

λ J λ′
}

× (P ′L|NL)(p′l′|v(r)d̂V (l′, l; r)|nl), (A.8)
(p′l′ P ′Lλ′S′J |iv(r)(σ 1 × σ 2) · ∇|nl NLλSJ )

= (−)L+J+S(δS ′0δS1 + δS ′1δS0)
√

12(2l′ + 1)(2l + 1)(2λ′ + 1)(2λ+ 1)

×
(
l′ 1 l

0 0 0

){
λ′ 1 λ

l L l′
}{

S′ 1 S

λ J λ′
}

× (P ′L|NL)(p′l′|v(r)d̂V (l′, l; r)|nl), (A.9)
(−)S ′+S(p′l′ P ′Lλ′S′J |v(r)σ 1 · l|nl NLλSJ )

= (p′l′ P ′Lλ′S′J |v(r)σ 2 · l|nl NLλSJ )
× (−)l+L+J+1δl′l

√
6l(l + 1)(2l + 1)(2λ′ + 1)(2λ+ 1)(2S′ + 1)(2S + 1)

×
{
λ′ 1 λ

l L l′
}{

S′ 1 S
1
2

1
2

1
2

}{
S′ 1 S

λ J λ′
}

× (P ′L|NL)(p′l′|v(r)|nl), (A.10)
(p′l′ P ′Lλ′S′J |iv(r)(σ 1 × σ 2) · l|nl NLλSJ )

= (−)l+L+J+Sδl′l (δS ′0δS1 + δS ′1δS0)
√

12l(l + 1)(2l + 1)(2λ′ + 1)(2λ+ 1)

×
{
λ′ 1 λ

l L l′
}{

S′ 1 S

λ J λ′
}
(P ′L|NL)(p′l′|v(r)|nl), (A.11)

(p′l′ P ′Lλ′S′J |v(r)r̂ · ∇|nl NLλSJ )
′ ′ ′ ′ ′ ˆ
= (p l P Lλ S J |v(r)dS(r)|nl NLλSJ )

= δl′lδλ′λδS ′S(P
′L|NL)(p′l′|v(r)d̂S(r)|nl), (A.12)
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(p′l′ P ′Lλ′S′J |v(r)σ 1 · σ 2r̂ · ∇|nl NLλSJ )
= (p′l′ P ′Lλ′S′J |v(r)σ 1 · σ 2d̂S(r)|nl NLλSJ ), (A.13)

(p′l′ P ′Lλ′S′J |v(r)σ 1 · r̂σ 2 · ∇|nl NLλSJ )
= 1

3
(p′l′ P ′Lλ′S′J |v(r)σ 1 · σ 2d̂S(r)|nl NLλSJ )

+ 1
3
(p′l′ P ′Lλ′S′J |v(r)S12(r̂)d̂T (l

′, l; r)|nl NLλSJ )

+ 1
2
(p′l′ P ′Lλ′S′J |i v(r)

r
(σ 1 × σ 2) · l|nl NLλSJ ), (A.14)

(p′l′ P ′Lλ′S′J |v(r)σ 2 · r̂σ 1 · ∇|nl NLλSJ )
= 1

3
(p′l′ P ′Lλ′S′J |v(r)σ 1 · σ 2d̂S(r)|nl NLλSJ )

+ 1
3
(p′l′ P ′Lλ′S′J |v(r)S12(r̂)d̂T (l

′, l; r)|nl NLλSJ )

− 1
2
(p′l′ P ′Lλ′S′J |i v(r)

r
(σ 1 × σ 2) · l|nl NLλSJ ). (A.15)

We have introduced the following effective radial differential operators:

d̂S(r)= ∂

∂r
,

d̂V (l
′, l; r)= ∂

∂r
+ l(l + 1)− l′(l′ + 1)+ 2

2r
,

d̂T (l
′, l; r)= ∂

∂r
+ l(l + 1)− l′(l′ + 1)+ 6

4r
. (A.16)

When the short range correlations are implemented as indicated in Eqs. (100), one should,
accordingly, make the following replacements in the relative radial matrix elements in
Eqs. (A.3)–(A.15):

|nl)→ gΛN(r)|nl),
(p′l′| → (p′l′|gNN (r). (A.17)

Clearly, the correlation function gΛN(r) is also subject to the action of the differential
operators in these equations. Explicitly, the center-of-mass radial overlap and the relative
radial matrix elements are given by

(P ′L|NL)=
∫
R2 dR jL(P

′R)RNL

(
b/

√
2,R

)
(A.18)

and

(p′l′|v(r)d̂(r)|nl)=
∫
r2 dr jl′(p

′r)gNN(r)v(r)d̂(r)
[
gΛN(r)Rnl

(√
2b, r

)]
,

(A.19)

where jL and jl′ are spherical Bessel functions, RNL and Rnl are harmonic oscillator

radial wave-functions with the first arguments giving the respective length parameters, and
d̂(r) is either unity or one of the differential operators (A.16).
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Finally, let us remark that the convention for the relative coordinate adopted here,
Eq. (14), has the opposite sign to those of Refs. [21] and [51], for instance. This introduces
an extra phase factor of (−1)l and (−1)l′ , respectively, in our kets and bras involving the
relative motion. As a result, the transformation brackets in Eq. (A.2) differ by a factor of
(−1)l from those originally defined in Ref. [51]. To avoid this adjustment, one can simply
shift to the opposite convention for the relative coordinate by making the transcriptions
r → −r , r̂ → −r̂ and ∇ → −∇ in the expressions for the transition potential in coordinate
space given in Subsections 2.3 and 2.4. In either case, the equations in Subsection 3.1 and
here in Appendix A remain formally unaltered.

Appendix B. Phase conventions for a, b, . . . , f

With the phase conventions of Nabetani et al. (N.O.S.K.), in Ref. [57], from which
Eq. (101) is obtained, the transition amplitudes are defined as follows:

a = (〈
pn, 1S0

∣∣V̂ ∣∣pΛ, 1S0
〉)

N.O.S.K., d = (〈
pn, 3D1

∣∣V̂ ∣∣pΛ, 3S1
〉)

N.O.S.K.,

b = (〈
pn, 3P0

∣∣V̂ ∣∣pΛ, 1S0
〉)

N.O.S.K., e = (〈
pn, 1P1

∣∣V̂ ∣∣pΛ, 3S1
〉)

N.O.S.K.,

c = (〈
pn, 3S1

∣∣V̂ ∣∣pΛ, 3S1
〉)

N.O.S.K., f = (〈
pn, 3P1

∣∣V̂ ∣∣pΛ, 3S1
〉)

N.O.S.K.. (B.1)

The relationship with our phase conventions is(〈
pn, 2S ′+1l′J

∣∣V̂ ∣∣pΛ, 2S+1lJ
〉)

N.O.S.K.

= (−)S ′+Si−l′
〈
np, 2S ′+1l′J

∣∣V̂ ∣∣Λp, 2S+1lJ
〉
, (B.2)

where the first correction is due to the change in ordering in the Clebsch–Gordan couplings
for the spins, and the second one, to the fact that we do not include the phase il′ in the
final partial-wave radial function (cf. Eq. (A.19)). This explains the extra phase factors
appearing in Eq. (102).

Notice that there is no factor (−)l′+l in Eq. (B.2) as might be expected due to the change
in ordering of the two particles in both the initial and final states, the reason being that this
is compensated by the fact that we use the opposite convention for the relative coordinates.
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[22] E. Bauer, F. Krmpotić, Nucl. Phys. A 717 (2003) 217.
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