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• We show that both the Schrödinger and Klein–Gordon equations can be derived from the confluent hypergeometric differential
equation.

• Also a non linear Klein–Gordon equation can be analogously derived.
• The latter coincides with one advanced by Nobre, Rego-Monteiro, and Tsallis.
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a b s t r a c t

We show that the Schrödinger and Klein–Gordon equations can both be derived from a
hypergeometric differential equation. The same applies to non linear generalizations of
these equations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we uncover the rather surprising fact that the Schrödinger and Klein–Gordon equations can both be derived
from a hypergeometric differential equation. The same applies to nonlinear generalizations of these equations, such as the
ones recently proposed, in ad hoc fashion, by Nobre, Rego-Monteiro, and Tsallis (NRT) [1] (see Appendix B).

The paper is organized as follows. Section 2.1 deals with the hypergeometric Schrödinger derivation, Section 2.2 with
the Klein–Gordon one, and Section 3 with the nonlinear Schrödinger equation, that turns out to be different from the
NRT equation. Section 4 illustrates the latter equation with a wave packet example. Section 5 hypergeometrically derives
a nonlinear Klein–Gordon equation, that does coincide with the NRT one. Some conclusions are drawn in Section 6, and
special details are given in Appendices A–C.

2. Hypergeometric derivations: Schrödinger and Klein–Gordon equations

We start our considerations by showing that both Schrödinger’s and Klein–Gordon’s equations can be derived from the
differential equation satisfied by the confluent hypergeometric function’s φ without further ado.
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2.1. Schrödinger’s wave equation

We encounter in Ref. [2] a differential equation that can be solved by appeal to hypergeometric functions, namely,

U ′′(z)+ U ′(z)+


λ

z
+


1
4

− µ2


1
z2


U(z) = 0, (2.1)

and a solution is

U(z) = z
1
2 +µe−zφ


1
2

+ µ− λ, 2µ+ 1; z

, (2.2)

where φ is the confluent hypergeometric function. Appealing to the change of variables

2µ+ 1 = b;
1
2

+ µ− λ = a. (2.3)

Eqs. (2.1) and (2.2) become

U ′′(z)+ U ′(z)+


b
2

− a


1
z

−


b2 − 2b

4


1
z2


U(z) = 0, (2.4)

U(z) = z
b
2 e−zφ(a, b.z). (2.5)

Introducing solution (2.5) into (2.4) we ascertain that the differential equation satisfied by φ is

zφ′′(a, b; z)+ (b − z)φ′(a, b; z)− aφ(a, b; z) = 0. (2.6)

For the special instance a = bwe obtain (see Ref. [3])

φ(a, a; z) = ez, (2.7)

and (2.6) now becomes (for a = b)

zφ′′(a, a; z)+ (a − z)φ′(a, a; z)− aφ(a, a; z) = 0. (2.8)

At this point we make a critical choice and set z

z =
i
h̄
(px − Et) and E =

p2

2m
. (2.9)

At this stage we have introduced some physical information into the abstract mathematical formalism, according to the
invariance respected by z (Galilean here). A different choice is made in Ref. [4], that leads to the Fokker–Planck equation.
Accordingly, in our formalism the entire physical content is givenby the critical choice of z, while the rest is justmathematics.

Now, according to (2.9) one has

∂z
∂t

= −
iE
h̄

;
∂z
∂x

=
ip
h̄
. (2.10)

Then, on account of (2.7) one has

e
i
h̄ (px−Et)

= φ


a, a;

i
h̄
(px − Et)


≡ φ. (2.11)

The associated confluent hypergeometric differential equation is now

i
h̄
(px − Et)φ′′

+


a −

i
h̄
(px − Et)


φ′

− aφ = 0,

φ′
=

dφ
dz

; φ′′
=

d2φ

dz2
. (2.12)

We see from (2.11) that, since

∂φ

∂t
= φ′

∂z
∂t

;
∂φ

∂x
= φ′

∂z
∂x
, (2.13)

then

φ′′
= −

h̄2

p2
∂2φ

∂x2
φ′

=
ih̄
E
∂φ

∂t
≡ φ, (2.14)
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so that, in the differential equation (2.12) the two a-terms cancel each other and the factor i
h̄ (px − Et) can be simplified.

Accordingly, (2.12) adopts the appearance

−
h̄2

p2
∂2φ

∂x2
−

ih̄
E
∂φ

∂t
= 0, (2.15)

or, equivalently,

ih̄
∂φ

∂t
= −

h̄2

2m
∂2φ

∂x2
. (2.16)

Since H0 = −
h̄2
2m

∂2

∂x2
we can finally write

ih̄
∂φ

∂t
= H0φ, (2.17)

i.e., Schrödinger’s free particle equation. For an arbitrary Hamiltonian H , (2.17) may be generalized by inference, not
deduction, to

ih̄
∂φ

∂t
= Hφ, (2.18)

the usual Schrödinger equation (SE). Thus, we do deduce Schrödinger’s wave equation (free particle) directly from the
hypergeometric differential equation (HDE), but cannot do the samewith (2.18), that ismerely a ‘‘reasonable’’ generalization.
Let us insist: the ‘‘quantumness’’ is inserted into the HDE via the choice (2.9).

2.2. Klein–Gordon’s equation

We start with the critical physical choice

z = i(kx − ωt); ω2
= k2c2 +

m2c4

h̄2 , (2.19)

(Lorentz invariance) and write

ei(kx−ωt) = φ [a, a; i(kx − ωt)] = φ. (2.20)

The operating confluent hypergeometric differential equation is here

i(kx − ωt)φ′′
+ [a − i(kx − ωt)]φ′

− aφ = 0. (2.21)

We now perform similar manipulations of partial derivatives as in the preceding section and end up with the identities

φ′′
= −

1
k2
∂2φ

∂x2
φ′

=
i
ω

∂φ

∂t
= φ, (2.22)

getting for (2.21)

−
1
k2
∂2φ

∂x2
−

i
ω

∂φ

∂t
= 0. (2.23)

Since

∂φ

∂t
=

i
ω

∂2φ

∂t2
, (2.24)

(2.23) becomes

−
1
k2
∂2φ

∂x2
+

1
ω2

∂2φ

∂t2
= 0. (2.25)

Using now the equality

∂2φ

∂x2
= −k2φ, (2.26)

and a little algebra we arrive at

1
c2
∂2φ

∂t2
−
∂2φ

∂x2
+

m2c2

h̄2 φ = 0, (2.27)

the desired Klein–Gordon equation.
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3. A nonlinear Schrödinger equation

The above procedure can be generalized by appealing to the more general hypergeometric function F . This F-treatment
has been worked out by us in Ref. [5], only for the Schrödinger case and without reference to the present confluent instance,
originally developed in Section 2.We reconsider this nonlinear generalization here for completeness’s sake, in order to better
appreciate the workings of our hypergeometric approach. See more details in Appendix A.

As shown in Ref. [5], one can write

F(−α, γ ; γ ; −z) = (1 + z)α. (3.1)
It follows that for Tsallis’ imaginary q-exponential function (see its definition in Refs. [5,4,3,2,1]) one has

1 +
i
h̄
(1 − q)(px − Et)

 1
1−q

= F


1
q − 1

, γ ; γ ;
i
h̄
(q − 1)(px − Et)


≡ F , (3.2)

where E =
p2

2m . According to Ref. [6], F satisfies

z(1 − z)F ′′(α, β; γ ; z)+ [γ − (α + β + 1)z]F ′(α, β; γ ; z)− αβF(α, β; γ ; z) = 0. (3.3)
After following developments detailed in Appendix A one arrives at

ih̄
∂

∂t


F(x, t)
F(0, 0)

q

= H0


F(x, t)
F(0, 0)


. (3.4)

Generalizing to arbitrary H we have

ih̄
∂

∂t


ψ(x, t)
ψ(0, 0)

q

= H

ψ(x, t)
ψ(0, 0)


. (3.5)

Differences and similarities between these equations and those obtained by Nobre, Rego-Monteiro, and Tsallis (NRT) [1] are
fully discussed in Ref. [5]. Some NRT details are reviewed in Appendix B.

4. The q-Gaussian wave packet

We pass now to discuss an important solution of (3.5): the wave packet. Details of the ordinary case are summarized in
Appendix C. The pertinent analysis for the NRT equation has been given in Ref. [7]. Setting ψ(0, 0) = 1 one has

ih̄
∂ψq

∂t
= −

h̄2

2m
∂2ψ

∂x2
. (4.1)

Following Ref. [7], we propose as a solution

ψ =

1 + (q − 1)


a(t)x2 + b(t)x + c(t)

 1
1−q , (4.2)

where a, b, and c are temporal functions to be determined. From ψ(0, 0) = 1 one has c(0) = 0. Deriving ψq with respect
to time we find

∂ψq

∂t
= −q


ȧ(t)x2 + ḃ(t)x + ċ(t)


ψq−1. (4.3)

We then look for the second ψ-derivative with respect to x:

∂2ψ

∂x2
=


2(q + 1)a2x2 + 2(q + 1)abx + b2 − 2(q − 1)ac − 2a


ψq−1. (4.4)

Introducing these two results into (4.1) we are led to a nonlinear system for a, b, and c

imqȧ = h̄(q + 1)a2, (4.5)

imqḃ = h̄(q + 1)ab, (4.6)

2imqċ = h̄

qb2 − 2(q − 1)ac − 2a


. (4.7)

This system’s solution is given by

a(t) =
mq

ih̄(q + 1)t + mqα
, (4.8)

b(t) =
1
β

1
[ih̄(q + 1)t + mqα]

, (4.9)

c(t) = (mqα)
1−q
1+q


1

q − 1
−

1
4m2q2β2α


[ih̄(q + 1)t + mqα]

q−1
q+1 +

1
4mqβ2[ih̄(q + 1)t + mqα]

+
1

1 − q
, (4.10)

where α and β are constants to be fixed according to initial or boundary conditions for (4.1).
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It is straightforward to prove that Eqs. (4.8)–(4.10) are transformed into Eqs. (C.8)–(C.10) of Appendix C for q → 1. Thus
the q-Gaussian wave packet transforms into the Gaussian wave packet when q → 1. Since our Eq. (3.4) is different from
NRT’s nonlinear one, so are also their associated wave packet solutions.

5. A hypergeometric-generated non-linear Klein–Gordon equation

We derive now in hypergeometric fashion a nonlinear KG equation satisfied by the q-exponential function. Let z =

i(q − 1)(kx − ωt) (critical physical choice).
Then,

1 − z = [1 + i(1 − q)(kx − ωt)]
1

1−q = F


1
q − 1

, γ ; γ ; i(q − 1)(kx − ωt)


≡ F . (5.1)

Recourse to the equalities

F ′′
= −

1
k2(q − 1)2

∂2F
∂x2

, (5.2)

F ′
= −

1
iω(q − 1)

∂F
∂t

= −
F (1−q)

ω2q(q − 1)
∂2F
∂t2

, (5.3)

F =
i
ω
F (1−q) ∂F

∂t
, (5.4)

allow one to obtain, via (A.3):

z(1 − z)
k2(q − 1)2

∂2F
∂x2

+


γ −


q

q − 1
+ γ


z


1
iω(q − 1)

∂F
∂t

+
iγ

ω(q − 1)
F (1−q) ∂F

∂t
= 0, (5.5)

or, equivalently,

z(1 − z)
k2(q − 1)2

∂2F
∂x2

+


γ (1 − z)−


qz

q − 1


1

iω(q − 1)
∂F
∂t

+
iγ

ω(q − 1)
F (1−q) ∂F

∂t
= 0. (5.6)

Now, from (5.1), one has 1 − z = F (1−q) so that (5.6) adopts the appearance

zF (1−q)

k2(q − 1)
∂2F
∂x2

+


γ F (1−q)

−


qz

q − 1


1
iω
∂F
∂t

+
iγ
ω

F (1−q) ∂F
∂t

= 0, (5.7)

and, simplifying terms,

zF (1−q)

k2(q − 1)
∂2F
∂x2

+
iqz

ω(q − 1)
∂F
∂t

= 0, (5.8)

entailing

F (1−q)

k2
∂2F
∂x2

+
iq
ω

∂F
∂t

= 0. (5.9)

Using here (5.3) we reach

F (1−q)

k2
∂2F
∂x2

−
F (1−q)

ω2

∂2F
∂t2

= 0, (5.10)

which, simplifying the common factor F 1−q in (5.10), yields

1
k2
∂2F
∂x2

−
1
ω2

∂F
∂t

= 0. (5.11)

Since, additionally, one has

∂2F
∂x2

= −k2qF (2q−1), (5.12)

some algebra leads to

1
c2
∂2F
∂t2

−
∂2F
∂x2

+
qm2c2

h̄2 F (2q−1)
= 0. (5.13)
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If φ is given by

φ(x, t) = A [1 + i(1 − q)(kx − ωt)]
1

1−q , (5.14)

we find, via (5.13),

1
c2
∂2

∂t2


φ(x, t)
φ(0, 0)


−
∂2

∂x2


φ(x, t)
φ(0, 0)


+

qm2c2

h̄2


φ(x, t)
φ(0, 0)

(2q−1)

= 0, (5.15)

that in n dimensions becomes

1
c2
∂2

∂t2


φ(x⃗, t)
φ(0, 0)


− ∇

2

φ(x⃗, t)
φ(0, 0)


+

qm2c2

h̄2


φ(x⃗, t)
φ(0, 0)

(2q−1)

= 0, (5.16)

where

φ(x⃗, t) = A

1 + i(1 − q)(k⃗ · x⃗ − ωt)

 1
1−q
. (5.17)

Eq. (5.16) and its two dimensional case (5.15) coincides with the nonlinear Klein–Gordon equation advanced by NRT in
Ref. [1].

6. Conclusions

In this work we have uncovered a rather surprising fact. Both the Schrödinger and Klein–Gordon equations can be derived
from a hypergeometric differential equation. To this end, the choice of the independent variable in the differential equation
proves to be critical, because physical information is in this way provided. See, as an example, (2.9).

The same procedure can be applied to nonlinear generalizations of these equations, such as the ones recently proposed by
Nobre, Rego-Monteiro, and Tsallis (NRT) [1]. Thewave packet solution of our nonlinear SE (see Section 3) has been developed
as an example of it.
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Appendix A. Non linear Schrödinger eq. of Ref. [5] (review)

The procedure of Section 2 can be generalized by appealing to the more general hypergeometric function F . This F-
treatment has been previously developed by us in Ref. [5], only for the Schrödinger case and without reference to the confluent
instance. We review this generalization here for completeness’s sake.

As shown in Ref. [5], one can write

F(−α, γ ; γ ; −z) = (1 + z)α. (A.1)

It follows that for Tsallis’ imaginary q-exponential function (see its definition in Refs. [5,4,3,2,1]) one has
1 +

i
h̄
(1 − q)(px − Et)

 1
1−q

= F


1
q − 1

, γ ; γ ;
i
h̄
(q − 1)(px − Et)


≡ F , (A.2)

where E =
p2

2m . According to Ref. [6], F satisfies

z(1 − z)F ′′(α, β; γ ; z)+ [γ − (α + β + 1)z]F ′(α, β; γ ; z)− αβF(α, β; γ ; z) = 0. (A.3)

For the particular case (A.2), this last expression adopts the appearance

i
h̄
(q − 1)(px − Et)


1 −

i
h̄
(q − 1)(px − Et)


F ′′

+


γ −


1

q − 1
+ γ + 1


i
h̄
(q − 1)(px − Et)


F ′

−
γ

q − 1
F = 0. (A.4)

Accordingly, one can deduce a relationship between Ḟ (time) and F ′ (space) (see Ref. [5] for details)

F ′


1

q − 1
, γ ; γ ;

i
h̄
(q − 1)(px − Et)


=

ih̄
(q − 1)E

∂

∂t
F


1

q − 1
, γ ; γ ;

i
h̄
(q − 1)(px − Et)


. (A.5)



A. Plastino, M.C. Rocca / Physica A 450 (2016) 435–443 441

In similar fashion one obtains [6]

F ′′


1

q − 1
, γ ; γ ;

i
h̄
(q − 1)(px − Et)


= −

h̄2

(q − 1)2p2
∂2

∂x2
F


1

q − 1
, γ ; γ ;

i
h̄
(q − 1)(px − Et)


. (A.6)

Replacing (A.5) and (A.6) into (A.4), the latter becomes

−
i
h̄
(q − 1)(px − Et)


1 −

i
h̄
(q − 1)(px − Et)


h̄2

(q − 1)2p2
∂2F
∂x2

+


γ −


1

q − 1
+ γ + 1


i
h̄
(q − 1)(px − Et)


ih̄

(q − 1)E
∂F
∂t

−
γ

q − 1
F = 0, (A.7)

that, in turn, can be rewritten as

−
i
h̄
(q − 1)(px − Et)


1 −

i
h̄
(q − 1)(px − Et)


×

h̄2

(q − 1)m2

∂2F
∂x2

+


γ −


1

q − 1
+ γ + 1


i
h̄
(q − 1)(px − Et)


ih̄
∂F
∂t

− γ EF = 0. (A.8)

Also, we obtain from (A.2)

− γ EF


1
q − 1

, γ ; γ ;
i
h̄
(q − 1)(px − Et)


= −ih̄γ


F


1

q − 1
, γ ; γ ;

i
h̄
(q − 1)(px − Et)

(1−q)

×
∂

∂t
F


1

q − 1
, γ ; γ ;

i
h̄
(q − 1)(px − Et)


. (A.9)

Using n (A.9), (A.8) adopts the appearance

−
h̄2

2m(q − 1)


1 − F (1−q) F (1−q) ∂

2

∂x2
F + ih̄


γ +


1

q − 1
+ γ + 1

 
F (1−q)

− 1
 ∂

∂t
F − ih̄γ F (1−q) ∂

∂t
F = 0, (A.10)

and, after simplifying,

−
h̄2

2m
F (1−q) ∂

2

∂x2
F − ih̄q

∂

∂t
F = 0, (A.11)

that can be recast as

ih̄q
∂

∂t
F = F (1−q)H0F , (A.12)

where H0 is the free particle Hamiltonian. Note that for q = 1 things‘properly reduce to Schrödinger’s wave equation. If,
instead of (A.2) we have

F(x, t) = A

1 +

1
h̄
(1 − q)(px − Et)

 1
1−q

, (A.13)

then F(0, 0) = A and (A.12) becomes

ih̄q
∂

∂t


F(x, t)
F(0, 0)


=


F(x, t)
F(0, 0)

(1−q)

H0


F(x, t)
F(0, 0)


, (A.14)

or, equivalently,

ih̄q

F(x, t)
F(0, 0)

(q−1)
∂

∂t


F(x, t)
F(0, 0)


= H0


F(x, t)
F(0, 0)


, (A.15)

that can in turn be written as

ih̄
∂

∂t


F(x, t)
F(0, 0)

q

= H0


F(x, t)
F(0, 0)


. (A.16)

Generalizing to arbitrary H we have

ih̄
∂

∂t


ψ(x, t)
ψ(0, 0)

q

= H

ψ(x, t)
ψ(0, 0)


. (A.17)

Differences and similarities between these equations and those obtained by Nobre, Rego-Monteiro, and Tsallis (NRT) [1] are
fully discussed in Ref. [5].
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Appendix B. The NRT equation

We review here the NRT equation for the free particle in order to make this paper self-contained. It reads [1]

ih̄(2 − q)
∂

∂t


ψ(x⃗, t)
ψ(0, 0)


= H0


ψ(x⃗, t)
ψ(0, 0)

2−q

. (B.1)

Setting φ = ψ2−q we are led to

ih̄(2 − q)
∂

∂t


φ(x⃗, t)
φ(0, 0)

 1
1−q

= H0


φ(x⃗, t)
φ(0, 0)


, (B.2)

and generalizing to arbitrary H one writes

ih̄(2 − q)
∂

∂t


φ(x⃗, t)
φ(0, 0)

 1
1−q

= H

φ(x⃗, t)
φ(0, 0)


, (B.3)

that in ψ terms becomes

ih̄(2 − q)
∂

∂t


ψ(x⃗, t)
ψ(0, 0)


= H


ψ(x⃗x, t)
ψ(0, 0)

2−q

. (B.4)

Appendix C. The ordinary Gaussian wave packet

We want to tackle

ih̄
∂ψ(x, t)
∂t

= −
h̄2

2m
∂2ψ(x, t)
∂x2

, (C.1)

via the Gaussian packet

ψ(x, t) = e−[a(t)x2+b(t)x+c(t)], (C.2)

with the initial condition ψ(0, 0) = 1, entailing c(0) = 0. After a time derivative we get

∂ψ(x, t)
∂t

= −[ȧ(t)x2 + ḃ(t)x + ċ(t)]ψ(x, t). (C.3)

The spatial second derivative yields

∂2ψ(x, t)
∂x2

= −[4a2(t)x2 + 4a(t)b(t)x + b2(t)− 2a(t)]ψ(x, t). (C.4)

Replacing (C.3) and (C.4) into (C.1) we obtain

ȧ =
2h̄
im

a2, (C.5)

ḃ =
2h̄
im

ab, (C.6)

ċ =
h̄

2im
(b2 − 2a), (C.7)

whose solution reads

a(t) =
m

2ih̄t + mα
, (C.8)

b(t) =
1
β

m
[2ih̄t + mα]

, (C.9)

c(t) =
1

4mβ2[2ih̄t + mα]
+

1
2
ln(2ih̄t + mα)−

1
4m2β2α

−
1
2
ln(mα), (C.10)

where for c one has c(0) = 0.
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