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1. Introduction

After the connection between string theory and non-commutative field theories was

unraveled [1]–[3], the study of solitons and instantons in non-commutative spacetimes

has attracted much attention [4]–[18]. Chern-Simons (CS) theories in commutative

space have played a central role for the understanding of relevant phenomena in

planar physics [19, 20] and some of their properties started to be explored recently

in the non-commutative case [21]–[27].

In ordinary (2 + 1)-dimensional space, models of relativistic and non-relativistic

matter minimally coupled to gauge fields whose dynamics is governed by a CS term

have self-dual vortex-like solutions [28]–[30]. It is then interesting to determine if

this kind of solutions are also present in the non-commutative extension of these

models. In this work we shall study the existence and properties of vortex-like

solitons for Chern-Simons matter systems in non-commutative (2 + 1)-dimensional

space. Our approach follows closely that developed in [18] for constructing exact

non-commutative vortex solutions in the Maxwell-Higgs system except that now the

dynamics of the gauge field is governed by a CS lagrangian. Also, we consider the

non-relativistic case introduced in [28] in view of its relevance for studying Bohm-

Aharonov effect and other interesting phenomena in planar physics.

After introducing the non-commutative models in section 2, we derive BPS equa-

tions and construct explicit solutions in the non-relativistic case in section 3. We

find a family of non-topological BPS solitons parametrized by a constant f0. The

corresponding magnetic flux Φ is in general non quantized but becomes an integer

in the θ → 0 limit. In section 4 we consider the relativistic case, and construct
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BPS topological solitons with quantized magnetic flux which coincide with the reg-

ular ordinary vortex solutions when θ → 0. Finally, we present our conclusions in
section 5.

2. The model

We consider 3-dimensional space-time with coordinates Xµ (i = 0, 1, 2) obeying the

following non-commutative relations

[Xµ, Xν ] = iθµν . (2.1)

The real antisymmetric matrix θµν , can be brought into its canonical (Darboux) form

by an appropriate orthogonal rotation

[X1, X2] = iθ , [X1, X0] = [X2, X0] = 0 . (2.2)

One way to describe field theories in non-commutative space is by introducing

a Moyal product ∗ between ordinary functions. To this end, one can establish a
one to one correspondence between operators f̂ and ordinary functions f through a

Weyl ordering

f̂(X1, X2) =
1

2π

∫
d2kf̃(k1, k2) exp

(
i(k1X

1 + k2X
2)
)
. (2.3)

Then, the product of two Weyl ordered operators f̂ ĝ corresponds to a function f∗g(x)
defined as

f ∗ g(x) = exp
(
iθ

2
(∂x1∂y2 − ∂x2∂y1)

)
f(x1, x2)g(y1, y2)

∣∣∣∣
x1=x2,y1=y2

. (2.4)

Given a U(1) gauge field Aµ(x), the field strength Fµν is defined as

Fµν = ∂µAν − ∂νAµ − i(Aµ ∗ Aν −Aν ∗ Aµ) . (2.5)

We shall couple the gauge field to a complex scalar field φ with covariant derivative

Dµφ = ∂µφ− iAµ ∗ φ . (2.6)

An alternative approach to non-commutative field theories which has shown to be

very useful in finding soliton solutions [6] is to directly work with operators in the

phase space (X1, X2), with commutator (2.2). In this case the ∗ product is just the
product of operators and integration over the (X1, X2) plane is a trace,∫

dx1dx2f(x1, x2) = 2πθTr f̂(X1, X2) . (2.7)

2
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In this framework, it is convenient to introduce complex variables z and z̄

z =
1√
2
(x1 + ix2) , z̄ =

1√
2
(x1 − ix2) (2.8)

and annihilation and creation operators â and â† in the form

â =
1√
2θ
(X1 + iX2) , â† =

1√
2θ
(X1 − iX2) (2.9)

so that (2.2) becomes

[â, â†] = 1 . (2.10)

In this way, through the action of a† on the vacuum state |0〉, eigenstates of the
number operator

N̂ = a†a (2.11)

are generated. With this conventions, derivatives in the Fock space are given by

∂z = − 1√
θ
[â†, ] , ∂z̄ =

1√
θ
[â, ] . (2.12)

After introducing

Âz =
1√
2
(Â1 − iÂ2) , Âz̄ =

1√
2
(Â1 + iÂ2) (2.13)

the field strength and covariant derivatives take the form

F̂zz̄ = ∂zÂz̄ − ∂z̄Âz − i[Âz, Âz̄]
= − 1√

θ

(
[â†, Âz] + [â, Az̄] + i

√
θ[Âz, Âz̄]

)
≡ iB̂ ,

Dz̄φ̂ = ∂z̄φ̂− iAz̄φ̂ = 1√
θ
[â, φ̂]− iÂz̄φ̂ ,

Dz
ˆ̄φ = ∂z

ˆ̄φ+ iÂz
ˆ̄φ = − 1√

θ
[â†, ˆ̄φ] + iÂz ˆ̄φ (2.14)

with B̂ the magnetic field.

We will be interested in the non-commutative extension of the non-relativistic

and relativistic Chern-Simons-matter systems introduced, in ordinary space, in

refs. [28]–[30]. The gauge field dynamics for these models is governed by the Chern-

Simons lagrangian LCS[A] defined as

LCS[A] = κ εµνα

(
Aµ ∗ ∂νAα − 2i

3
Aµ ∗ Aν ∗ Aα

)
. (2.15)

The lagrangian for the non-commutative extension of the non-relativistic case will

be taken as

L = LCS[A] + iφ̄ ∗D0φ+ 1
2
Diφ ∗Diφ− 1

4
λφ ∗ φ̄ ∗ φ ∗ φ̄ (2.16)
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while for the relativistic case,

L = LCS[A] +Dµφ ∗Dµφ− V [φ ∗ φ̄] (2.17)

with V the sixth order potential

V [φ ∗ φ̄] = 1
κ2
φ ∗ φ̄ ∗ (φ ∗ φ̄− v2)2 (2.18)

taken at the selfdual point, where Bogomol’nyi equations can be found.

3. BPS equations for the non-relativistic case

The hamiltonian associated with lagrangian (2.16) is simply given by

H =

∫
d2x

(
1

2
Diφ ∗Diφ+ 1

4
λφ ∗ φ̄ ∗ φ ∗ φ̄

)
. (3.1)

It can be written in the form

H =

∫
d2x

(
− 1
2
φ̄(D1 + iαD2)(D1 − iαD2)φ+

+ φ ∗ φ̄ ∗
(
−α
2
F12 +

1

4
λφ ∗ φ̄

))
, (3.2)

where α = ±1. We shall call α = −1 the selfdual case and α = +1 the anti
selfdual one.

Using the Gauss law deriving from lagrangian (2.16),

κεijFij + φ ∗ φ̄ = 0 (3.3)

the hamiltonian takes the form

H =

∫
d2x

(
−1
2
φ̄(D1 + iαD2)(D1 − iαD2)φ− 1

2
(α + λκ)φ ∗ φ̄ ∗ F12

)
. (3.4)

Then, if the following relation among the two free parameters in the theory holds

λκ = −α (3.5)

the lower bound for the hamiltonian is attained when the following Bogomol’nyi

equations are satisfied

(D1 − iαD2)φ = 0 ,
B = − 1

2κ
φ ∗ φ̄ . (3.6)
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Let us first consider the selfdual (α = −1) case. In operator language, eqs (3.6)

can then be written as

Dz̄φ̂ = 0 ,

B = − 1
2κ
φ̂ ˆ̄φ . (3.7)

In order to search for vortex solutions to these equations, we propose the ansatz

φ̂ =

√
2|κ|
θ

∞∑
n=0

fn|n〉〈n+M − 1| , (3.8)

Âz =
i√
θ

∞∑
n=0

dn|n+ 1〉〈n| , (3.9)

where fn and dn are arbitrary real coefficients and {|n〉} is the basis provided by the
number operator N̂ . The ansatz (3.8) leads, in the θ → 0 limit, to φ ∼ ρ(r)zM−1
which corresponds, in ordinary space, to the usual cylindrically symmetric ansatz

with a Higgs field phase (M − 1)ϕ [28].
Inserting ansatz (3.8)–(3.9) into eq. (3.7) one obtains the following recurrence

relations

2
√
p dp−1 − d2p−1 − 2

√
p+ 1 dp + d

2
p = −

|κ|
κ
f 2p ,

dp =
√
p+ 1−

√
p+M

fp

fp+1
(3.10)

which can be combined into the following recurrence relation for the f ′ns coefficients

f 21 =
Mf 20

1− |κ|
κ
f 20
,

f 2p+1 =
(p+M)f 2p

1− |κ|
κ
f 2p + (p+M − 1)f 2p−1/f 2p

, p ≥ 1 . (3.11)

If, instead, we choose the anti selfdual case (α = 1), the equations to solve read

Dzφ̂ = 0 ,

B = − 1
2κ
φ̂ ˆ̄φ . (3.12)

In this case, the appropriate ansatz is

φ̂ =

√
2|κ|
θ

∞∑
n=0

fn|n+M − 1〉〈n| ,

Âz =
i√
θ

∞∑
n=0

dn|n+ 1〉〈n| (3.13)
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and the recurrence relations become

2
√
p dp−1 − d2p−1 − 2

√
p+ 1 dp + d

2
p = −

|κ|
κ
f 2p−1 ,

dp+1 =
√
p+M −√p+ 1fp+1

fp
(3.14)

combining to

f 21 =

(
M − |κ|

κ
f 20

)
f 20 ,

f 2p+1 =
1

p + 1
f 2p

(
−|κ|
κ
f 2p + 1 + p

f 2p
f 2p−1

)
, p ≥ 1 . (3.15)

The flux of the solutions is given by

Φ

2π
= θTrB = −|κ|

κ

∑
p

f 2p . (3.16)

Finite flux configurations correspond to solutions such that

lim
p→∞
fp = 0 . (3.17)

The analysis of the asymptotic behavior of the recurrence relation (3.10) shows

that, for large p,

f 2p −→
1

pβ
(3.18)

with β a real positive parameter to be determined. The flux can also be obtained

directly from the expression of B as

Φ

2π
= lim
p→∞

(
d2p − 2dp

√
p+ 1

)
. (3.19)

Using eqs. (3.10) and (3.14) one gets,

Φ

2π
= M − 1 + β , κ < 0 ,

Φ

2π
= −M + 1− β , κ > 0 . (3.20)

The numerical study of the recurrence relations reveals that eq. (3.10) has so-

lutions only for κ < 0 while eq. (3.14) has solutions only for κ > 0. Thus, as in

the commutative case, solutions exist only for λ < 0, that is, only for an “attrac-

tive” interaction. Given an initial arbitrary value f 20 for the recurrence relation, all

coefficients can be determined in such a way that they satisfy (3.18). Since θ does

not enter explicitly in the recurrence relations, one can construct a whole family of

solutions parametrized by θ (which appears as a factor, see eq. (3.9) or (3.13)).
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Figure 1: The magnetic field B(r) for the selfdual non-relativistic solution for different

values of f0. θ and κ have been taken equal to 1.

We have explored numerically the whole f 20 ≥ 0 range finding, for the selfdual
case, that there exists, for every value of f0, a consistent solution. In contrast, in

the anti-selfdual case, the solution ceases to exist for f 20 > M . This is reminiscent of

what happens for non-commutative Nielsen-Olesen anti-selfdual vortices [17].

We have find that β is a monotonically increasing function of f 20 such that

lim
f0→0
β =M + 1 . (3.21)

Now, according to eqs. (3.20) the magnetic flux of our exact solution is in general

not quantized in non-commutative space.

We show in figures 1 and 2 the magnetic field B as a function of r, for the selfdual

and anti-selfdual solutions, respectively, computed from eqs. (3.7) and (3.12). We

plot different values of f 20 for a given θ. One sees that the B is reminiscent of the

magnetic field corresponding to the ordinary (commutative) case, except that in the

latter case B(0) = 0 while in the present non-commutative case B(0) = B0, with B0
positive (negative) for the selfdual (anti-selfdual) case.

Let us relate at this point this result with that corresponding to ordinary space.

As originally shown in [28] Bogomol’nyi equations for the non-relativistic system

can be exactly solved since the problem can be reduced to finding solutions to the

Liouville equation. Then, the most general axially symmetric regular solution gives,

for the selfdual case,

φcomm =
2
√
2|κ|
r
M

((r0
r

)M
+

(
r

r0

)M)−1
exp (i(M − 1)ϕ) ,

M = 1, 2, . . . , (3.22)
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Figure 2: The magnetic field B(r) for the anti-selfdual non-relativistic solution for differ-

ent values of f0. θ and κ have been taken equal to 1.

where r0 is an integration constant. The other free parameter isM which is quantized

on regularity grounds. Accordingly, the magnetic flux associated to this solution

is quantized,

Φcomm = 2π(2M) . (3.23)

Note that the flux of our selfdual non-commutative solutions coincides, in the f0 → 0
limit with that of the ordinary case. To study the connection between our solution

and that in ordinary space in more detail, let us consider the θ → 0 limit of the
former in configuration space. It is enough to consider the small r region where the

commutative solution (3.22) can be written in the form

φcomm =
2
√
2|κ|
rM0

MzM−1 +O
(
r3M−1

)
. (3.24)

Since, for small θ, r2 ≈ θN̂ , the leading contribution in the non-commutative case
corresponds to the n = 0 term in solution (3.8),

φ̂ ≈
√
2|κ|
θ
f0|0〉〈M − 1| =

√
2|κ|
θ
f0|0〉〈0| aM−1√

(M − 1)!

≈
√
2|κ|
θ
f0|0〉〈0| zM−1√

(2θ)M−1(M − 1)! . (3.25)

A relation between r0 and f0 can be found comparing eqs. (3.24) and (3.25)

f 20 = 2
M+1M !M

(
θ

r20

)M
. (3.26)
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If f 20 does not vanish as θ

M in the θ → 0 limit, the non-commutative solution goes
in this limit to a singular solution in ordinary space. Only when the behavior (3.26)

is satisfied, the θ → 0 limit converges to the Jackiw-Pi solution [28]. We have

numerically checked this finding that, already for θ/r20 ≈ 0.01, the non-commutative
and the Jackiw-Pi solutions are indistinguishable.

4. BPS equations for the relativistic model

The associated hamiltonian for the model (2.17) for static field configurations is

H =

∫
d2x
(
Diφ ∗Diφ+ A0 ∗ A0 ∗ φ ∗ φ̄+ V [φ ∗ φ̄]

)
. (4.1)

The Gauss law deriving from (2.17) takes, for static configurations, the form

2κB = −
(
φ ∗ φ̄ ∗ A0 + A0 ∗ φ ∗ φ̄

)
. (4.2)

Assuming that A0 (Moyal) commutes with φ∗ φ̄ (as it will be the case for our ansatz,
see below) we have

A0 = −κ(φ ∗ φ̄)−1 ∗B . (4.3)

Inserting (4.3) in (4.1) and integrating by parts one gets

H =

∫
d2x

(
(D1 + iαD2)φ ∗ (D1 − iαD2)φ+

+
κ2

|φ|2 ∗
(
B + α

1

2κ2
|φ|2 ∗ (|φ|2 − v2)

)2)
− αv2Φ , (4.4)

where α = ±1, |φ|2 = φ∗ φ̄ and Φ = ∫ d2xB is, as before, the magnetic flux. Thus, in
the selfdual case (α = −1) the energy is bounded by v2Φ, and the bound is saturated
when the selfdual equations are fulfilled

Dz̄φ = 0 ,

B +
1

2κ2
|φ|2 ∗ (|φ|2 − v2) = 0 . (4.5)

Analogously, in the anti-selfdual case (α = 1) the energy bound is −v2Φ and is
reached when the anti-selfdual equations are satisfied

Dzφ = 0 ,

B − 1

2κ2
|φ|2 ∗ (|φ|2 − v2) = 0 . (4.6)

Let us analyze the selfdual case first. As in the non-relativistic case we shall

work in the operator framework and propose an ansatz of the form

φ̂ = v

∞∑
n=0

fn|n〉〈n+M | ,

Âz =
i√
θ

∞∑
n=0

dn|n+ 1〉〈n| , (4.7)

9
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where again fn and dn are arbitrary real coefficients. With this ansatz both the

magnetic field and |φ|2 are diagonal

B =
1

θ

(∑
n=1

(gn−1 − gm) |n〉〈n| − g0|0〉〈0|
)
, (4.8)

|φ̂|2 = v2
∑
n=0

f 2n|n〉〈n| , (4.9)

where gn = 2dn
√
n+ 1 − d2n. Consequently, from the Gauss law (4.2), we see that

A0 commutes with |φ̂|2 and can be solved as in eq. (4.3).
The selfdual system (4.5) is then equivalent to the following system of recurrence

relations

dp =
√
p+ 1−

√
p+M

fp

fp+1
, p ≥ 0 ,

f 21 =
(M + 1)f 20

1 + a f 20 (1− f 20 )
,

f 2p+1 =
(p+M + 1)f 2p

1 + a f 2p (1− f 20 ) + (p+M)f 2p−1/f 2p
, p ≥ 1 , (4.10)

where a = v4θ/(2κ2).

For the anti-selfdual case, the ansatz we propose is

φ̂ = v
∞∑
n=0

fn|n+M〉〈n| ,

Âz =
i√
θ

∞∑
n=0

dn|n+ 1〉〈n| . (4.11)

The magnetic field has the same form as in (4.9) while one has for the scalar field

|φ̂|2 = v2
∑
n=0

f 2n|n+M〉〈n+M | . (4.12)

The anti-selfdual recurrence relation take the form

dp+1 =
√
p+M + 1−√p+ 1fp+1

fp
,

f 21 =
(
M + 1− af 20 (1− f 20 )

)
f 20 ,

f 2p+1 =
1

p+ 1
f 2p

(
1− af 2p (1− f 2p ) + p

f 2p
f 2p−1

)
, p ≥ 1 . (4.13)

We have studied systems (4.10) and (4.13) numerically. Given a value for f0 one

can then determine all fn’s from (4.10) or (4.13). The correct value for f0 should

make f 2n → 1 asymptotically so that boundary conditions are satisfied (we are looking

10
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Figure 3: The magnetic field B(r) for the selfdual relativistic solution for different values

of a = v2θ/(2κ2).

for symmetry breaking solutions). The values of these coefficients will depend on the

choice of the dimensionless parameter a = θv4/(2κ2). We have explored the whole

range of a and found a consistent solution for any positive integer M both in the

selfdual and in the anti-selfdual case. In contrast with the non-relativistic model,

there is only one value of f0 leading to the appropriate boundary condition, for each

value of a. For example, for the self-dual case we have

a = 0.5 , f 20 = 0.2168142 . . . ,

a = 1.0 , f 20 = 0.4037747 . . . ,

a = 2.0 , f 20 = 0.6228436 . . . . (4.14)

Once the f ′ns and d
′
ns are determined in this way, the magnetic field can be

computed using eq. (4.8) or Bogomol’nyi equation. As an example, for the selfdual

case, one has

B̂ =
v2

2κ2

∞∑
n=0

f 2n
(
1− f 2n

) |n〉〈n| (4.15)

or, using the explicit formula for |n〉〈n| in configuration space [6]

B(r) =
v2

κ2

∞∑
n=0

(−1)nf 2n
(
1− f 2n

)
exp

(
−r

2

θ

)
Ln

(
2
r2

θ

)
, (4.16)

where Ln are the Laguerre polynomials.

We show in figure 3 (selfdual case) and 4 (anti-selfdual case) the resulting mag-

netic field B as a function of r for different values of θ. For θ = 0 we recover in both

cases the CS vortex solutions found in [29]–[30]. One should note that, as in the non-

11
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Figure 4: The magnetic field B(r) for the anti-selfdual relativistic solution for different

values of a = v2θ/(2κ2).

relativistic case, the magnetic field profile corresponding to the anti-selfdual case is

not the trivial reverse of the selfdual one. This is related, as before, to the presence

of the parity breaking parameter θ. As θ grows, the magnetic field differs more and

more from the annulus-shaped ordinary CS vortex with a value at the origin which

grows till B(0) becomes a maximum. It is important to stress that we have found

vortex solutions in the whole range of θ both in the selfdual and anti-selfdual cases in

contrast with what happens for Nielsen-Olesen vortices where anti-selfdual solutions

do not exist for θ larger than a critical value [17].

The magnetic flux of the solutions can be computed using

Φ = 2πθTr B̂ . (4.17)

One finds,

Φ = 2πM , M = 1, 2, . . . (4.18)

showing that in the relativistic case, the magnetic flux is quantized for all θ. This,

and the expression (4.4) for the hamiltonian allows to write the energy of the selfdual

(α = −1) and anti-selfdual (α = 1) solitons in the form

H = (2πv2)M (4.19)

which coincides with the expression for CS solitons in ordinary space first found

in [29]–[30]

12
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5. Conclusions

In summary, we have constructed exact soliton solutions to non-commutative Chern-

Simons theory coupled to a charged scalar in 3-dimensional space-time. We have

shown the existence of first order Bogomol’nyi equations and we have found, in the

non-relativistic case, that an attractive φ4 interaction guarantees, as in ordinary

space, the existence of regular vortex-like solutions. There is however an important

difference that manifests at finite θ: while non-topological ordinary solitons have, on

regularity grounds, an associated quantized magnetic flux, non-commutative solitons

can have arbitrary flux. Only in the θ → 0 limit, in which these solutions approach
smoothly the ordinary ones, the flux becomes quantized. Remarkably, one can find a

relation between the arbitrary integration constant arising in the solution of the Liou-

ville equation satisfied by the Higgs field in ordinary space and the non-commutative

parameter θ. It should be stressed that because of the presence of θ, anti-selfdual

solutions can not be trivially obtained from selfdual ones by making B → −B. In
fact, we have shown that although solutions exist in both cases, there is a range of

parameters where anti-selfdual solitons cease to exist. Concerning the relativistic

case, as in ordinary space, a φ6 potential guarantees the existence Bogomol’nyi equa-

tions and vortex-like topological solutions which also approach smoothly ordinary

ones when θ → 0. Again, the presence of θ make selfdual and anti-selfdual solutions
not trivially connected. Expressions for the magnetic flux and the energy of the CS

solitons coincide with those in ordinary space for arbitrary θ.

As stressed in the introduction, one of the interests in CS solitons concerns

their possible use in understanding relevant phenomena in planar physics. The

connection between non-commutative field theories and systems in strong magnetic

fields [33]–[34] make them attractive for a field theoretical approach to the Quantum

Hall and Bohm-Aharonov effects [35]–[39]. We hope to report on these issues in

a separate publication.
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