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Abstract: Finite quantum many fermion systems are essential for our current understanding of
Nature. They are at the core of molecular, atomic, and nuclear physics. In recent years, the application
of information and complexity measures to the study of diverse types of many-fermion systems has
opened a line of research that elucidates new aspects of the structure and behavior of this class of
physical systems. In this work we explore the main features of information and information-based
complexity indicators in exactly soluble many-fermion models of the Lipkin kind. Models of this
kind have been extremely useful in shedding light on the intricacies of quantum many body physics.
Models of the Lipkin kind play, for finite systems, a role similar to the one played by the celebrated
Hubbard model of solid state physics. We consider two many fermion systems and show how
their differences can be best appreciated by recourse to information theoretic tools. We appeal to
information measures as tools to compare the structural details of different fermion systems. We
will discover that few fermion systems are endowed by a much larger complexity-degree than many
fermion ones. The same happens with the coupling-constants strengths. Complexity augments as
they decrease, without reaching zero. Also, the behavior of the two lowest lying energy states are
crucial in evaluating the system’s complexity.

Keywords: exactly solvable model; pairing interaction; monopole interaction

1. Introduction

The study of finite many-fermion systems has been enriched in recent years with
the incorporation of new mathematical tools inspired in information theory. In particular,
information measures and information-based complexity measures have been success-
fully applied to elucidate various aspects of the physics of atoms, molecules, and atomic
nuclei [1–14]. Unfortunately, finite many-fermion systems rarely admit exact analytical
treatment, and most studies must rest heavily on the numerical solution of the equations
describing the system. It is therefore desirable to incorporate exactly soluble models to the
ongoing research program of applying information-theoretical tools to finite many-fermion
physics. The aim of the present contribution is to apply information techniques to investi-
gate the properties of exactly soluble many-fermion models akin to the celebrated Lipkin
one. Models of the Lipkin kind play for finite systems a role similar to that of the celebrated
Hubbard model for solid state physics [15]. Having exact solutions at hands helps quite
a lot in understanding what is involved in the variegated approximation invented in the
many body field so as to perform approximate treatments devised for making realistic
situations tractable ones. Information-theoretic treatments of many body behavior at finite
temperature have been lately shown to be a source of insights into the many body problem
as well [16]. We will apply in this effort to exactly solvable fermion models the relatively
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new notions of disequilibrium and statistical complexity. SC-like effects were empirically
detected long ago in microscopic systems (nuclear physics and metal clusters) [13,17–22],
and references therein], being also influenced by mean-field and odd-nucleon blocking
effects [23,24].

Encouraged by the above results we revisit here a similar but not identical scenario to
deal with two different exactly solvable (interacting) finite fermions-model of the Lipkin
kind [see, for instance, [25,26] and references therein] that do not appeal to pairing interac-
tion as in [1]. We will show that the different structural details that characterize the two
distinct systems can be well described by the canonical ensemble methodology.

The accompanying order- disorder interplay is described via Gibbs’ canonical ensem-
ble considerations [27] in which the concomitant probability distribution is proportional to
exp (−βĤ), with Ĥ standing for the Hamiltonian and β for the inverse temperature. Maxi-
mum disorder is associated to a uniform distribution (UD) in which all micro-states are
equiprobable. The distance in probability space between the actual probability distribution
and the UD is called the disequilibrium D that is a statistical quantifier that increases as
order augments. If we multiply D with the entropy S we obtain the statistical complexity
C = SD. We will profusely use D and C below as quantum statistical quantifiers.

We will appeal to the Lipkin Model (LM) [25,26], that has proved to be very useful
in intense research that revolved on the validity and/or usefulness of several theoretical
techniques devised for investigating multiple facets of the fermion many body problem.
The LM is based on an SU(2) algebra and produces easily accessible exact solutions. Lipkin-
like models are arguably the simplest non trivial finite many-fermion systems. They
constitute an ideal testing ground for the application of information theoretical methods to
many-fermion systems so as to gain insights that the study of other, more realistic models,
can not yield. Both, the Lipkin and the AFP models are two-level nuclei, that provide an
extremely simplified model of an atomic nuclei. Any nuclei spectrum displays a complex
discrete spectrum and a continuous one. The model retains only the two lowest lying levels.

2. Lipkin Model

The model [19,25,26] deal with of N = 2Ω fermions distributed between (2Ω)-fold
degenerate single-particle (sp) levels separated by a sp energy gap ε. Two quantum
numbers (µ and p) are assigned to a general single particle state. The first takes the values
µ = −1 (lower level) and µ = +1 (upper level). The p quantum number, often denominated
quasi-spin or pseudo spin, picks out a specific belonging to the N-fold degeneracy. The
couple p, µ may be viewed as a ”site” that is occupied or empty. We have

N = 2J, (1)

where J standing for a kind of angular momentum. In the wake of Lipkin et al. [25] we
define the quasi-spin operators

Ĵ+ = ∑
p

C†
p,+Cp,−, (2)

Ĵ− = ∑
p

C†
p,−Cp,+, (3)

Ĵz = ∑
p,µ

µ C†
p,µCp,µ, (4)

Ĵ2 = Ĵ2
z +

1
2
( Ĵ+ Ĵ− + Ĵ− Ĵ+), (5)

where the eigenvalues of Ĵ2 are of the form J(J + 1). It is convenient to define now the
operators [25,28]

Ĝij =
2Ω

∑
p=1

C†
p,iCp,j. (6)
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The Likpin Hamiltonian reads

ĤL = ε
N

∑
i

Ĝii + (v/2)
N

∑
i<j

(Ĝij + Ĝji). (7)

It commutes with all the Ĵ operators and thus can be easily diagonalized in any Ĵ2-
multiplet [25,26,28,29]. v is the coupling constant of the two-body interacting part of the
Hamiltonian. The effects we wish to study here appealing to information theory quantifiers
depend basically on the v-value, which acts as the control parameter of the system.

Another useful, exactly solvable Hamiltonian that we will use here is the so-called
Abecasis-Faesler-Plastino (AFP)-one [28,29] that reads, using v as the coupling constant
for the two body interaction (control parameter of the system). The great advantage of the
AFP model is that its Hamiltonian is analytically diagonalizable (Lipkin’s is not). Remark
that the AFP model exhibits a level-crossing in the ground state energy (see [29]). The
lowest lying of the Hamiltonian’s eigenvalues is called the ground state level (gsl). As
the coupling constant grows, there is a change in which of the Hamiltonian’s eigenvalues
becomes the gsl. The value of the coupling constant v at which the level-crossing occurs is
loosely referred to as a ”critical coupling constant”. There are several of them. The larger
N, the larger the number of the level crossings [29].

ĤAFP = ε
N

∑
i

Ĝii + v( Ĵx − Ĵ2
x). (8)

Here Ĵx is the exceedingly well known linear combination [ Ĵ+ + Ĵ−]/2. ĤAFP also
commutes, of course, with all the Ĵ operators. Note that below, whenever we state that v is
large or small, this is always in relation to the ε-value.

3. Hamiltonian Matrices

In the case of the Abecasis-Faesler-Plastino (AFP) model we have, from Equation (6)
of [29] the Hamiltonian matrix

〈n′|HAFP|n〉 = (n− J)δn′ ,n +
1
2

v{2(2J2 + J + n2 − 2Jn)δn′ ,n (9)

+2
√
(2J − n)(n + 1)δn′ ,n+1 + 2

√
(2J − n + 1)nδn′ ,n−1

−
√
(2J − n− 1)(n + 2)(2J − n)(n + 1)δn′ ,n+2

−
√
(2J − n + 2)(n− 1)(2J − n + 1)nδn′ ,n−2.

The corresponding Lipkin matrix is [26]

〈n′|HL|n〉 =

{
N
2
− n + 1−

(
Nn− N

2
− n2 + 2n− 1

)
ω

}
δn′ ,n −

−v
2

√
(N − n)(N − n + 1)(n + 1)n δn′ ,n+2 (10)

−v
2

√
(N − n)(N − n + 1)(n + 1)n δn′ ,n−2,

with n = 0, 1, . . . , N for N = 2, 4, 6, . . . and J = N/2. After numerically diagonalizing the
matrices we find energy-eigenvalues En(v, J) for both Hamiltonians. With them we can do
statistical mechnics calculations in the canonical ensemble.

4. Listing the Main Information-Theoretic Thermal Quantifiers

The main thermal quantifiers of any physical system derive from its partition func-
tion Z [27], that in turn is constructed with the probabilities associated to the pertinent
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microscopic states of energies Ei [27]. We mention here the mean energy U, the entropy
S, and the free energy F [27]. The partition function Z [27] and its associated quantifiers
are based upon the canonical probability distributions [27] Pn(v, Jβ),with ′beta the inverse
temperature. As stated above, we speak of the mean energy U(v, J, β), entropy S, and free
energy F. The pertinent expressions read

Pn(v, J, β) =
1

Z(v, J, β)
e−βEn(v,J) (11)

Z(v, J, β) =
N

∑
n=0

e−βEn(v,J) (12)

U(v, J, β) = 〈E〉 = −∂lnZ(v, J, β)

∂β
=

=
N

∑
n=0

En(v, J)Pn(v, J, β) =

=
1

Z(v, J, β)

N

∑
n=0

En(v, J)e−βEn(v,J) (13)

S(v, J, β) = −
N

∑
n=0

Pn(v, J, β) ln[Pn(v, J, β)] (14)

F(v, J, β) = U(v, J, β)− T S(v, J, β). (15)

Complexity Associated Quantum Quantifiers

More sophisticated quantifiers than the above ones were devised around 25 years
ago [30–36] (they use Equations (11)–(15)). We pass here to them, specialized for the Likpin
and AFP models. Remark that they depend upon the coupling constant of the concomitant
two body interaction. They are the disequilibria DAFP and DL, together with the statistical
complexities CL(AFP) and CL(L) . Calling Pu the uniform distribution we have:

DAFP(v, J, β) =
N

∑
n=0

(
PAFP

n (v, J, β)− Pu
n

)2
(16)

DL(v, J, β) =
N

∑
n=0

(
PL

n (v, J, β)− Pu
n

)2
(17)

CL(v, J, β) = S(v, J, β)D(v, J, β), (18)

with a similar expression for CAFP(v, J, β). Remembering now that our J-multiplets contain
2J + 1 = N + 1 possible micro-states, one has

Pu
n =

1
N + 1

∀ n = 0, 1, . . . N. (19)

The disequilibium D is a measure of order [30–37], that is larger the greater its numer-
ical value. D = 0 entails total disorder (randomization) [30] . The statistical complexity
vanishes both for total order and total disorder [30]. It is maximal when the system attains
special kinds of states like those corresponding to ”phase transitions”, more properly
crossing levels.

We will find below, in our numerical results, that sometimes D reaches a minimum
for some specific values of the coupling constant V. This fact entails that for this V-value,
the system attains a maximum of structural looseness, that is, a maximum of randomness.
Let us insist: the disequilibium D is a measure of order [30–37], that is larger the greater
its numerical value. D = 0 entails total disorder (randomization) [30] . The statistical
complexity vanishes both for total order and total disorder [30]. Its is maximal, as stated
above, when there are level-crossings.
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5. First Results

We will depict the behavior of our information-theoretic quantifiers [vertical axis]
vs the interaction strength v [horizontal axis], with β = 0.2 (Figure 1) or β = 5.0 (Figure 2),
and several values for N in Figs. 1-2. We begin with the disequilibria D for our two
models (DAFP (blue cirve) and DL) (red curve). We plot also the free-energies differences
FED = FAFP − FL between them (black curve). The difference between the free energies
of two distinct systems (at the same temperature) has been shown to be a good objective
quantifier of the degree of distinctness between two systems [38]. We see that it grows
uniformly with the interaction strength. For D, one detects some structural changes only
for small coupling constants.

Figure 1. DAFP, DL, and FED vs. v, for N = 16 and the relatively high temperature associated with
β = 0.2. Note that one detects some structural changes only for small v (in relation to the ε-value).

Figure 2. Vertical axis: DAFP, DL, and FED vs. v (horizontal axis), for N = 16 and the relatively low
temperature associated with β = 5, Note that one appreciates structural changes only for small v (in
relation to the ε-value.) See text for their meanings.

In our next plot (Figure 2) we go to much lower temperatures and see more interesting
effects. The free energy divergence (back curve) exhibits a slope-change at v ∼ 0.5. Near
it, the AFP disequilibrium displays a sharp minimum. We associate these to effects for
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the ground state crossing level (CL) taking place in this v-vicinity [29] and correct section
below. The unperturbed ground state becomes mixed with existed states at the CL and
this mixing generates disorder. At a slightly larger v the Lipkin disequilibrium descends,
indicating disorder-growth, which in turn entails the mixing just described above. This is
an original present finding, because these effects was not known previously.

6. Studying the N Dependence of Our Quantifiers

It We focus attention now upon the N dependence of the disequilibrium and the free
energy divergence FED between our two models in Figures 3–6. Figure 3 refers to the
AFP model for β = 0.2, while Fig. 4 is devoted with the same temérature. Figures 4 and 5
are like Figures 3 and 4, but at the lower temperature β = 5. It is clear that D growths
with both v and N. The first type of ordering is easily grasped intuitively, The second is a
surprise. N-growth is an ordering factor. For N > 4 a small two body interaction strength
v is enough for the system to attain D values close to the maximum possible ones. We
will call this effect the N ordering one. It takes place both in the AFP and in the Lipkin
models at moderately high temperatures (Figures 3 and 4). At low T the scenario becomes
richer. In the AFP case (Figure 5) at low T the N ordering effect becomes sharper than at
high T, but with a new ingredient. The effects of the level crossing described above with
reference to Figure 2 become also sharper here. In the Lipkin case at low T (Figure 6) the
N effects reverse thhemselves in relation to what happens with the AFP. Here disorder
rapidly grows with N.

• AFP: order grows with N
• Lipkin: Disorder grows with N.

Our information theory quantifier D is able to show that the two many body systems
at hand are quite different ones.

Figure 3. AFP model: DAFP in the vertical axis vs. v in the horizontal one, for variegated N values
and the relatively high temperature associated with β = 0.2. As N grows, the disequilibrium D
approaches a step function at the origin, for small v in relation to the ε-value. Note that only for small
N one can discern noticeable behavior-change.
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Figure 4. Lipkin model: DL in the vertical axis vs. v in the horizontal one, for variegated N values
and the relatively high temperature associated with β = 0.2. As N grows, the disequilibrium D
approaches a step function at the origin, for small v in relation to the ε-value. Note that only for small
N one can discern noticeable behavior-change.

Figure 5. AFP model: DAFP in the vertical axis vs. v in the horizontal one, for variegated N values
and the relatively low temperature associated with β = 5. D displays a minimum, an interesting
feature. The minimum moves towards the origin as N grows. After this minimum is reached, for
larger coupling constants D grows and stabilizes itself near its maximum possible value of unity,
indicative of large structural order. Again, interesting physics is detected at small v or N.
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Figure 6. Lipkin model: DL in the vertical axis vs. v in the horizontal one, for variegated N values
and the relatively low temperature associated with β = 5. The behavior is quite different from that of
the AFP model. An enormous difference is detected between low and large N curves. Starting at
N = 6, D decreases (as v grows) towards a stable small value, indicative of low structural degree.

7. AFP’s and Lipkin’s Associated Probability Distributions (PDs) versus the Coupling
Constant for N = 14

It is quite instructive to study to analyze the behavior of P0, P1, . . . , P14. We do this
in Figures 7–10. We will see that the Pn are vanishingly small for n > 2. All the dynamics
is dominated by the behavior of P0, P1, and P2, an a priori unexpected result. We will
incorporate in the pertinent graphs the behavior of an, up to this point, not yet employed
information-theoretic quantifier called the statistical complexity CL = SD (red curve in
Figures 7 and 8). For N = 14, in the AFP instance (Figure 7), the minimal DAFP occurs at
v = 0.048586. The graphs below depict just the probabilities fot n = 0, 1, and 2, since the
remaining ones are extremely small.

Figure 7. AFP: Three lowest-lying energy eigenvalue’ probabilities Pn [vertical axis] (n = 0, 1, 2)
versus the interaction coupling constant v [horizontal axis] for β = 5 and N = 14. P0 (left-most black
curve that reaches unity at v = 0) and P1 (black curve that reaches unity at large v). These two curves
cross at v = 0.04822 , which explains the disequilibium minima of DAFP . The associated statistical
complexity CL = SAFPDAFP (red curve) displays at the crossing a typical double maximum with
a minimum in between, well known in the Literature. P2 is very small (bottom black curve). The
interesting physics takes place at small values of the pertinent coupling constant.
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Figure 8. Pn [vertical axis] versus the interaction coupling constant v. This is the same as above, for
P0, P1, and P2, but in the case of the Lipkin model. No probability crossings are detected here. P2

is negligible. We find degeneration instead of the two first probabilities. The statistical complexity
(red curve) grows as we approach the P0 − P1 probability degeneracy, and then stabilizes itself. The
interesting physics takes place at small values of the pertinent coupling constant.

Figure 8 deals with the Lipkin model in the same manner as Figure 7 does it with the
AFP model.

Figure 9. AFP model. Vertical axis: energies pertaining to the two lowest-lying eigenvalues versus
[horizontal axis] the coupling constant v for N = 14. The system’s ground state changes at v ∼ 0.04,
where a level-crossing is detected.
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Figure 10. Lipkin model. Vertical axis: energies pertaining to the two lowest-lying eigenvalues versus
[horizontal axis] the coupling constant v for N = 14. No level-crossings are detected, but, instead,
degeneration of the two lowest lying levels at small v.

8. The Only Pure Quantum Information (at T = 0)

We speak in Figures 9 and 10 about that information referring only to the Hamilto-
nian’s eigenvalues. No statistics is involved and T = 0. As an example, we display below
the behavior of the energies pertaining to the two lowest-lying eigenvalues versus the
coupling constant’s v value for both the AFP (Figure 9) and Likin (Figure 10) instances. On
the basis of this scant quantum information, and with the help of statistical quantifiers, we
might say that one could have built the edifice described above.

9. Conclusions

We have discussed the quantum statistics of two well known exactly soluble finite
many fermion systems that the Literature shows to have been extremely useful in shed-
ding light on the intricacies of quantum many fermion physics. Having exact solutions
at hand has been very helpful in understanding finite many fermion behavior at also
finite temperature.

Indeed, interesting insights have been obtained by appeal to two different but exactly
soluble many fermion systems and we have shown how their differences can be best
appreciated by recourse to information theoretic tools.

The present analysis indicates that complexity tends to increase when the coupling-
constant strengths decrease. A similar trend is observed with regards to the number of
fermions in the system: systems with few fermions are endowed with a much larger
complexity-degree than systems with a large number of fermions. If these circumstances
turn out to be universal features of multi-fermions systems, applicable also to multi-
electrons systems, this may have some bearing on the fact that atoms with a relatively small
atomic number (roughly in the ”north-east” zone of the periodic zone around C, N, and O)
are the ones exhibiting the most varied features and rich chemical properties.

A remarkable benefit of the information-theoretic approach to physics is that it sug-
gests new connections between apparently unrelated problems. For instance, information-
theoretic ideas based on Fisher information helped to establish interesting links between
Schroedinger’s equation and Boltzmann equation [39]. We hope that. in a similar vein,
the present study may stimulate research into the connections between different kinds of
many-fermion systems.

We intend to deal with SU(N) symmetries in a future effort.
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