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Abstract. In the Simulated Annealing (SA) algorithm, the Metropolis
algorithm is applied to generate a sequence of solutions in the search
space, known as the Markov chain. Usually, the algorithms employ the
same Markov Chain Length (MCL) in the Metropolis cycle for each tem-
perature. However, SA can use adaptive methods to compute the MCL.
This work aims to analyze the effect of using different MCL strategies
in SA behavior. This experimentation considers the Water Distribution
Network Design (WDND) problem, a multimodal and NP-hard problem
interesting to optimize. The results indicate that the use of adaptive
MCL strategies improves the solution quality versus the static one.

Keywords: Simulated Annealing, Markov Chain Length, Water Distri-
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1 Introduction

Stochastic search optimization methods are widely used in various disciplines,
such as science, engineering, management, modern statistical, machine-learning
applications, to mention some. Many stochastic algorithms are inspired by a
biological or physical process with some heuristic manners to find the global
optimum [1]. The most common methods are simulated annealing, genetic algo-
rithms, differential evolution, particle swarm optimization, among others [2]. In
this work we focus on Simulated Annealing (SA) [3,4] due to its popularity as
a search procedure because of its simple concepts, good speed, and easy imple-
mentation. SA is applied to solve NP-hard problems where it is difficult to find
the optimal solution or even near-to-optimum solutions [5,6].

The Simulated Annealing algorithm is based on the principles of statistical
thermodynamics. The SA simulates the energy changes in a system subjected to
a cooling process until it converges to an equilibrium state (steady frozen state),
where the material states correspond to problem solutions, the energy of a state
to a solution cost, and the temperature to a control parameter.

The SA cooling process consists of initial and final temperatures, the cooling
function, and the length of the Markov chain established by the Metropolis
algorithm [7]. For each value of the temperature, the SA algorithm achieves
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a certain number of Metropolis decisions. In this way, the SA consists of two
cycles: one external for temperatures and the other internal, named Metropolis.
Most SA literature proposals use a static Markov Chain Length (MCL) in the
Metropolis cycle for each temperature [8]. But adaptive strategies to dynamically
establish each MCL for the SA algorithm are also present in the literature [9,10].

The main contribution of our research is to enlarge the knowledge concerning
the MCL influence on the efficiency and efficacy of a SA when solving optimiza-
tion problems. In particular, we tackle the Water Distribution Network Design
(WDND), which was defined as a multi-period, single-objective, and gravity-
fed design optimization problem [11]. A hybrid SA (HSA), presented in [12], was
used as a starting point to consider the different strategies to compute the MCL.
Accordingly, research questions (RQs) arise out: Can the adaptive MCL strate-
gies modify or improve the HSA performance in contrast with the static one? If
they can, how do variable MC lengths affect the HSA behavior? To answer these
RQs, we conduct experiments by applying HSA with different configurations on
publicly available [13] and real-world [14] instances of the WDND problem. Fur-
thermore, we analyze and compare these results considering the published ones
in the literature.

This article is organized as follows. First, we give in Section 2 a description
of the SA algorithm. In the next section, we address the strategies for computing
MCL. Then, we describe the experimental design and the methodology used in
Section 4. We analyze and compare the HSA behavior when solving the WDND
problems in Section 5. Finally, we summarize our most important conclusions
and sketch out our future work.

2 Simulated Annealing

The Simulated Annealing [3] is an efficient trajectory-based metaheuristic with
the capacity of escape from local optimum. The SA generates a sequence of
changes (chain) between states generated by transition probabilities, which are
calculated involving the current temperature. Therefore, the SA can be modeled
mathematically by Markov chains, and consists of two cycles:

– an external one, named temperature, slowly reduces the temperature to de-
crease defects, thus minimizing the system energy.

– an internal cycle, named Metropolis [7], generates a new potential solution
(or neighbor of the current state) to the considered problem by altering the
current state, according to a predefined criterion.

For each temperature, the Markov chain length usually remains without changes
in the Metropolys cycle.

Figure 1 shows the general scheme of a SA algorithm, highlighting these two
cycles. The SA begins with the initialization of the temperature, T , and the
generation of a feasible initial solution, S0, for the target problem. After that
the two overlapping cycles begin. A new trial solution, S1, is obtained by ap-
plying a move to the current solution, S0, to explore other areas of the search
space. At this point, S1 is accepted with the Boltzmann probability. This process
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Fig. 1. Scheme of the SA algorithm.

generates a Markov chain, which is repeated until a number of steps denomi-
nated as Markov chain length. After that, the temperature in the SA algorithm
is sequentially lowered until the system freezes by a cooling schedule. Finally,
the SA ends the search when the total evaluation number or the temperature
equilibrium (T = 0) is achieved.

The search space exploration is strengthened when the temperature (T ) is
high. But at low temperatures, the algorithm only exploits a promising region
of the solution space, intensifying the search. The annealing procedure involves
taking enough steps at each temperature (internal cycle). The number of steps
aims to keep the system close to equilibrium until the system approaches the
ground state. Traditionally, the equilibrium can be achieved by maintaining the
temperature constant for a limited number of iterations; but adaptive strategies
can be considered. The main objective of this work is to identify how sensitive the
SA can be to the number of these iterations, by considering different strategies
to compute the Markov chain length to solve NP-hard problems.

3 Markov Chain Length

The SA starts by constructing a sequence of temperatures T1, T2 and so on. At
each step of this sequence, SA does a set of k moves to neighboring positions.
Such a stochastic sequence construction is called a Markov chain, and the num-
ber of moves k is denominated Markov chain length. There are few researches
in literature concerning to the effect of the MCL on the solution quality and
annealing speed [9,10].

The MCL can be determined experimentally and considered static through-
out the search, but also MCL can set adaptively depending on the optimization
function variation. The static strategy (MCLs) assumes that each T value is held
constant for a fixed number of iterations, defined before the search starts. In this
work, each T value is held constant for k = 30 iterations, a widely used number
in the scientific community. For the adaptive strategies, which depend on the
characteristics of the search, we consider two different alternatives:
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1. MCLa1. Cardoso et al. [9] consider that the equilibrium state is not neces-
sarily attained at each temperature. Here, the cooling schedule is applied as
soon as an improved candidate (neighbor) solution is generated. In this way,
the computational effort can be drastically reduced without compromising
the solution quality.

2. MCLa2. This strategy, proposed by Ali et al. [10], uses both the worst and
the best solutions found in the Markov chain (inner loop) to compute the
next MCL. MCLa2 increases the number of function evaluations at a given
temperature if the difference between the worst and the best solutions in-
creases. But if an improved solution is found, the MCL remains unchanged.

4 Experimental Design

In this section, we explain the experimental design tests to study the behavior of
the SA introduced in [12], named HSA, using different MCL strategies to solve
the WDND problem. The upcoming paragraphs briefly describe the target test
problem, followed by the methodology and the parameters used.

Multi-Period Water Distribution Network Design. The mathemat-
ical formulation of the WDND is often treated as the least-cost optimization
problem. The decision variables are the diameters for each pipe in the network.
The problem can be characterized as simple-objective, multi-period, and gravity-
fed. Two restrictions are considered: the limit of water speed in each pipe and
the demand pattern that varies in time. The network can be modeled by a con-
nected graph, which is described by a set of nodes N = {n1, n2, ...}, a set of
pipes P = {p1, p2, ...}, a set of loops L = {l1, l2, ...}, and a set of commercially
available pipe types T = {t1, t2, ...}. The objective of the WDND problem is
to minimize the Total Investment Cost (TIC) in a water distribution network
design. The TIC value is obtained by the formula shown in Equation 1.

minTIC =
X

p∈P

X

t∈T

LpICtxp,t (1)

where ICt is the cost of a pipe p of type t, Lp is the length of the pipe, and xp,t

is the binary decision variable that determines whether the pipe p is of type t or
not. The objective function is constrained by: physical laws of mass and energy
conservation, minimum pressure demand in the nodes, and the maximum speed
in the pipes, for each time τ ∈ T .

Methodology and Experimental Setup. To answer the RQs formulated
in Section 1, we need the empirical verification provided by testing the HSA in a
WDND test set of varying complexity. The static (MCLs) and the two adaptive
(MCLa1 and MCLa2) MCL strategies are considered. Therefore, three new HSA
configurations arise. The stop condition is to reach 1,500,000 evaluations of the
objective function to make a fair comparison with the literature algorithms.
The HSA uses the random cooling scheme [15] and 100 as seed temperature
(see [16] for a justification of this parameter selection). Moreover, the testing
includes 50 HydroGen instances [13] of WDND optimization problem grouped
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Table 1. The best known TIC values found by our proposals and ILS.

Network MCLs MLCa1 MLCa2 ILS

HG-MP-1 298000 298000 298000 298000

HG-MP-2 245330 245330 245330 245000

HG-MP-3 310899 310706 310493 318000
HG-MP-4 592048 590837 592036 598000
HG-MP-5 631000 631000 631000 631000

HG-MP-6 617821 609752 614917 618000
HG-MP-7 648372 644568 639932 653000
HG-MP-8 795996 792436 790037 807000
HG-MP-9 716944 715863 712450 725000
HG-MP-10 730916 712847 727818 724000
GP-Z2-2020 355756 366684 358717 347596

by five different distribution networks, named as HG-MP-i with i ∈ [1, 10], and
GP-Z2-2020, a real-world case [14].

Since we deal with stochastic algorithms, we have performed 30 independent
runs per WDND instance and for each HSA configuration. We have carried out
a statistical analysis of the results that consists of the following steps. Before
performing the statistical tests, we first check whether the data follow a normal
distribution by applying the Shapiro-Wilks test. Where the data are distributed
normally, we later apply an ANOVA test. Otherwise, we use the Kruskal–Wallis
(KW) test. These statistical studies allow us to assess whether or not there are
meaningful differences between the compared algorithms with α = 0.05. These
pairwise algorithm differences are determined by carrying out a post hoc test,
as is the case of the Wilcoxon test if the KW test is used.

5 HSA Result Analysis

The result analysis is carried out considering the performance and internal be-
havior of the proposed HSA configurations (MCLs, MCLa1, and MCLa2).

5.1 HSA Performance

The HSA performance is analyzed considering the solutions found by each con-
figuration, the effort required by the search, and the comparison of HSA results
against the ILS ones [17], a well-known WDND solver.

To study the solution quality, we present Table 1 with the minimum TIC
values for the HSA considering the three MCL strategies. Furthermore, the last
column shows the TIC values corresponding to ILS. To complete the solution
quality analysis, we use the relative distance between the best-known TIC value
and the best TIC value of each HSA configuration as the error measure. The
figures 2 and 3.a) show the distribution of the HSA errors grouped by the Hy-
drogen and GP-Z2-2020 networks and MCL strategies. Boxplots with different
colors mean statistically different behaviors. From these results, we observe that
adaptive HSA configurations improve the static one in 7 of 11 network groups.
For HG-MP-i with i ∈ [7, 10] and GP-Z2-2020 networks, the MCLs behavior is
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Fig. 2. BoxPlots of TIC error values found by HSA and each MCL strategies for WDND
networks.
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Fig. 3. BoxPlots of TIC error values, a), and total time, b), required by HSA and each
MCL strategies for WDND real network (GP-Z2-2020).

significantly different (gray boxplot) to MCLa1 and MCLa2, which keep similar
behavior for all cases (white boxplots). In this way, the first RQ is positively
answered because the adaptive MCL strategies improve the HSA performance
versus the static one, regarding efficiency and efficacy.

The following analysis is devoted to study each HSA configuration with more
detail, considering the computational effort measured with the required time to
execute the whole search process. Figures 4 and 3.b) show the distribution of
these measures grouped by Hydrogen and GP-Z2-2020 networks and MCL strate-
gies. First, we observe that the HSA run times grow as the instance complexity
increases for all configurations. Second, MCLs is the quickest strategy for all
networks, whereas adaptive HSA configurations increment significantly the total
runtime. However, the MCLa1 runtimes are significantly less than the required
ones by MCLa2 for HG-MP-i with i ∈ [1, 4] networks.

Finally, we compare our results with ILS (see Table 1) from the quality point
of view. In this sense, we also detect that the three HSA configurations find
better average TIC values than ILS for 7 of 11 networks. Besides, all algorithms
reach the same result in two cases.
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Fig. 4. BoxPlots of the total time (in seconds) required by HSA and each MCL strate-
gies to solve the WDND networks.

5.2 HSA internal behavior

The idea behind the HSA’s internal behavior analysis is to discover if the MCL
strategies affect the solution quality or the temperature schedules.

Figures 5, 6, and 7 show the upper triangular matrix of scatter plots, where
the correlation between the variables TIC values, MC lengths, and temperatures
are graphically presented, for each HSA configuration. The Spearman’s corre-
lation coefficient, R, is calculated in every comparison and measures the linear
correlation between two data sets. R belongs to the range [−1, 1] and expresses
the strength of association between two variables. If R > 0 indicates a positive
relationship between the two variables (as values of one variable increase, values
of the other variable also increase). When R < 0 indicates a negative relation-
ship (as values of one variable increase, values of the other variable decrease). A
R = 0 means that no linear correlation exists between the variables.

The MCLs strategy maintains constant (equal to 30) the MC length during
the whole search process. Consequently, no linear correlation exists between
this length and the solution quality (R = 0), as Fig. 5 shown. Instead, the
temperature reduction is related to the solution quality because the network
costs decrease during the annealing process (R = 0.46).

As we explain in Section 3, the adaptive strategies calculate on runtime the
MC length according to different criteria. The lengths computed by MCLa1
vary in the range [730, 2850] and the calculated ones by MCLa2 belongs to [730,
3320], becoming a factor that impacts positively in the solution quality (R=0.82
and R=0.2, respectively). As figures 6 and 7 show, this impact is different when
the first adaptive strategy is used, because only MCLa1 enable to decrease the
MC length. Consequently, when HSA uses MCLa1 can reduce the temperature
more times during the search process. This situation allows reaching a better
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Fig. 5. Scatter plots of correlation for MCLs strategy.
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Fig. 6. Scatter plots of correlation for MCLa1 strategy.

equilibrium between exploration and exploitation in the search space, leading to
a solution quality improvement.

Finally, we analyze the temperature behavior in more detail. As we can ob-
serve in the above paragraph, the variability of the MC length also affects the
temperature schedule, but this relationship differs according to the adaptive
strategy used. MCLa1 maintains a positive correlation (R=0.62), indicating that
a diminution in the lengths is associated with a temperature reduction. Instead,
these variables are inversely (R=-0.45) correlated when HSA uses MCLa2 be-
cause this strategy never decreases the MC length, but HSA always reduces the
temperature after each MC ends. According to this analysis, the second RQ

is also satisfactorily answered because HSA modifies its behavior with the MC
length variability.
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Fig. 7. Scatter plots of correlation for MCLa2 strategy.

6 Conclusions

The Simulated Annealing algorithms usually employ static Markov chain lengths
in the Metropolis cycle for each temperature. However, adaptive strategies, which
depend on the optimization function variability, to compute this length are also
available. In this work, we contrast the static versus adaptive ones by study-
ing the influence on the efficiency and efficacy of a SA when solving NP-hard
optimization problems.

We enhance the concerning knowledge by solving several instances and real-
world cases of the Water Distribution Network Design problem with a hybrid
SA, in which MCL is computed by a static (MCLs) and two adaptive (MCLa1
and MCLa2) strategies. The experimentation results allowed us affirmatively to
answer our research questions. The adaptive MCL strategies improve the SA
performance versus the static one, modifying its behavior with the MC length
variability. MCLa1 is a good trade-off between efficiency and efficacy.

A future research line consists of finding a new MCL strategy based on
MCLa1 to reduce the execution time for almost all test cases. The analysis
of the parallel SA behavior considering the adaptive MCL strategies for solving
high-dimensional NP-hard problems is another interesting research line.
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