A Comparative Study of the Performance of the
Classification Algorithms of the Apache Spark
ML Library

1,3 1,4

Genaro Camele'? 2/, Waldo Hasperué , Ronchetti Franco and

Quiroga Facundo Manuel'

! Instituto de investigacién en informética (III-LIDI), Facultad de informética -
Universidad Nacional de La Plata
2 Becario UNLP
3 Investigador asociado - Comisién de Investigaciones Cientificas (CIC-PBA)
4 Investigador asistente - Comisién de Investigaciones Cientificas (CIC-PBA)
{gcamele, whasperue}@lidi.info.unlp.edu.ar
http://weblidi.info.unlp.edu.ar/wp/

Abstract. Classification algorithms are widely used in several areas:
finance, education, security, medicine, and more. Another use of these
algorithms is to support feature extraction techniques. These techniques
use classification algorithms to determine the best subset of attributes
that support an acceptable prediction. Currently, a large amount of data
is being collected and, as a result, databases are becoming increasingly
larger and distributed processing becomes a necessity. In this sense,
Spark, and in particular its Spark ML library, is one of the most widely
used frameworks for performing classification tasks in large databases.
Given that some feature extraction techniques need to execute a classi-
fication algorithm a significant number of times, with a different subset
of attributes in each run, the performance of these algorithms should
be known beforehand so that the overall feature extraction process is
carried out in the shortest possible time. In this work, we carry out a
comparative study of four Spark ML classification algorithms, measur-
ing predictive power and execution times as a function of the number of
attributes in the training dataset.

Keywords: Big Data, Machine Learning, Classification Models, Apache
Spark, Spark ML

1 Introduction

As technology becomes faster and more accessible, it is possible to collect much
more information; however, that comes with increasing database volume. This
phenomenon can be observed in various research areas. Astronomy, marketing,
and social, economic, biological and medical sciences, among others, now have
the possibility of storing and analyzing large volumes of information [9] [20] [12]

311


https://orcid.org/0000-0001-6979-9103
https://orcid.org/0000-0002-9950-1563
https://orcid.org/0000-0003-3173-1327
https://orcid.org/0000-0003-4495-4327
http://weblidi.info.unlp.edu.ar/wp/

[8] [6]. This growing data size gives rise to the need for algorithms that allow
extracting useful information in a reasonable time.

Among the tasks carried out in data mining, classification is one of the most
commonly used; there are various works where it is used for some purpose, from
predicting market behavior [7], to image classification [I6] and the detection of
pathologies in functional medicine [IT].

Training a classification model on large volumes of data is a computationally
expensive task, and training time is critical in techniques that require perform-
ing this task multiple times. Attribute or feature selection techniques are some
examples. These techniques consist of selecting a subset of attributes from the
available datasets to obtain with this subset the same predictive power that is
available when using the entire database.

Selecting a subset of attributes that obtain a predictive power similar to that
achieved with the full set of attributes is not a trivial task. There are many
techniques that allow selecting an optimal subset of attributes [I0] [5] [3] 18]
[22]. Most of the techniques for this task consist of an iterative process during
which several subsets of attributes are ranked and the best of them is selected
as the final result. To measure the predictive power of a subset of attributes, a
classification algorithm must be executed with that subset of attributes. There-
fore, feature selection techniques must run these ranking algorithms a significant
number of times until the optimal attribute subset is reached. This is why the
execution time required by a classification algorithm is a critical factor for fea-
ture selection techniques, and it becomes increasingly critical as the number of
attributes in the database increases.

To process large volumes of data, tools are available that allow distributing
computation tasks among different nodes in a cluster of computers, so that the
workload is balanced and processing times decrease. In this regard, tools such
as Apache Hadoop or Apache Spark allow algorithms to be run in a distributed
paradigm, abstracting the developer from all the inconveniences that this entails,
such as synchronization, data transfer, fault tolerance, and so forth. In particular,
Apache Spark has the Spark ML library, which contains the implementation
of several machine learning algorithms such as neural networks, decision trees,
Random Forest, regressions, SVM, and others. It also provides the functionalities
of transformation, filtering and other utilities to pre-process the information that
will be used to train the models.

In this work, a comparison between four of the classification algorithms im-
plemented in Spark ML is presented: Random Forest (RF'), Support Vector Ma-
chine (SVM), Naive Bayes (NB) and MultiLayer Perceptron (MLP). Different
predictive metrics from the models are measured and compared along with the
running time required for training. In the experiments carried out, an ovarian
cancer classification database [14] with 15154 attributes was used. The different
experiments carried out have variations in the number of attributes selected to
measure classification algorithm performance based on the number of attributes
in the database used for training.

312



The remaining sections of this article are organized as follows: in Section 2,
some similar publications that evaluate some of the features of Spark or Spark
ML are mentioned. In Section 3, the experiments carried out are described, and
in Section 4 the results obtained are presented. Finally, in Section 5, conclusions
and possible future works are presented.

2 State of the Art

Several studies have been carried out comparing the performance of the classi-
fication algorithms in MLIib and Spark ML libraries. These investigations focus
on the number of rows in the databases or on specific problems. No studies have
been found that carry out a thorough study on the performance of classifica-
tion algorithms based on the number of columns in the database, which is the
objective proposed in this work.

In [I5] a comparison of the NB, RF, Decision Tree (DT), SVM and Logistic
Regression (LR) classifiers implemented in MLIib (version 1.6.2) is carried out.
The only performance metric evaluated is accuracy. These authors run trials
with different sizes (number of rows) of the training data set. In addition, since
the classification is carried out with Amazon product reviews, they also evaluate
the performance of the classifiers by varying the number of n-grams extracted
from each review. The conclusion of the work in general lines is that logistic
regression is the classifier that achieves the best results.

The experiments carried out in [2I] do not focus on the characteristics of
the database, but rather measure the execution time of the algorithms with 128
different configurations of a 16-node Spark cluster. They evaluate LR, SVM, RF
and Gradient Boosted Trees (GBT) for Decision Trees under different settings
for their hyperparameters. They use variants of the "Higgs” database from the
UCT repository. The conclusions of the work detail the RAM and node vCPUs
configuration that achieves the best execution time with each algorithm, but the
predictive power of the models obtained is not evaluated.

In [I3], the authors carry out experiments to detect which classification al-
gorithm yields the best classification results with databases of patients suffering
from a mental illness. The algorithms studied are LR, DT, RF and MLP using
several sets of values for their respective hyperparameters. F1l-measure, accu-
racy, recall, and precision are measured using two different datasets. The results
obtained show that the RF algorithm is the one that yields the best classification
models for the two databases analyzed.

Very similar to the previous case, but with the aim of predicting stock price
fluctuations in the stock market, the authors of [I9] study NB, RF, DT and LR
measuring accuracy, ROC curves and PR curves together with the execution
time with various configurations of a Spark cluster where the number of worker
nodes is varied. The database used contains information on the United States
market for the last 20 years, with a total volume of information of 1.7 GB. They
determined that RF and DT are the algorithms with the best predictive power.

313



As for computation time, NB was the fastest algorithm followed by DT, while
RF and LR were the algorithms that needed the most time to obtain a model.

In [, the authors analyze tweets to determine patients at risk of heart at-
tacks. They use several hyperparameter settings from the DT, SVM, RF, and LR
algorithms. Since the focus of the work is on the online detection of patients at
risk, only the accuracy to get the best model used in production was measured.
Two experiments were carried out, one with the entire database and another one
with a database with a smaller number of columns as a result of selecting the
best characteristics, resulting in half the attributes. DT and RF turned out to
be the best models using the database with half the characteristics. In the case
of the entire database, RF was the best model, followed by LR and SVM and
lastly DT.

Recently, the authors of [I7] measured the performance of LR, DT and SVM
in a case study of intrusion detection in computer networks. The area under the
ROC and PR curves was measured, as well as accuracy and training times. LR
turned out to be the algorithm that obtained the best models when measuring
the area under the ROC and PR curves, while DT was the one that obtained the
models with the best accuracy. LR also turned out to be the fastest algorithm,
followed by DT and lastly SVM.

In [2], the performance of the LR, RF, SVM and PM algorithms in natural
language processing applied to posts about the COVID-19 pandemic on Twitter
is compared. The variability of the experiments lies in the different number
of records used to train the models. As regards precision, recall, F1-measure,
accuracy and execution time, LR was the fastest algorithm and SVM the slowest.
On average, SVM and LR had better models than RF and PM.

In general terms, it can be seen that RF and SVM are the algorithms that
achieve the best models in terms of prognostic power, while RF and LR are
the fastest ones. In most works, the performance of Spark stands out — it scales
very well in terms of number of rows, thanks to the power offered by its internal
structure (RDD - Resilient Distributed Datasets). Therefore it is interesting to
see how Spark performs when the parameter that is modified is the number of
columns in the dataset, as is discussed below.

3 Experiment

As previously mentioned, the objective of this work is to evaluate the perfor-
mance, in terms of execution time, of four classification algorithms of the Spark
ML library of Spark, Naive Bayes, Random Forest, Support Vector Machine
and MultiLayer Perceptron. In the experiments carried out, different numbers
of columns in the dataset used for training were used, measuring performance as
the number of columns in the dataset increased. In each experiment, the train-
ing time and accuracy, precision, recall and F1-measure metrics were measured.
Since our goal was not finding the best model by tuning the corresponding hy-
perparameters of the classification algorithms, the default values of the library
itself were used, with the exception of the multilayer perceptron whose structure

314



was defined as two 4- and 5-neuron hidden layers. We used predictive power
metrics with the simple purpose of comparing one model against another, being
aware that neither of them might be the best model to allows solve the real
problem.

All the experiments were carried out in a cluster made up of a single master
node and three worker nodes. All four nodes had Ubuntu 20.04 LTS, an Intel(R)
Core(TM) i3-4160 CPU @ 3.60GHz, and 8GB of RAM. As regards the software,
the Hadoop and Spark versions used were 3.2.2 and 3.1.1, respectively. Spark
ML version 3.1.1 was used.

The database used corresponds to expression data of 15,154 genes in 253
patients [I4]. The inference class for this dataset corresponds to Normal if the
patient does not present evidence of an ovarian tumor, or Cancer if the pres-
ence of the tumor has been detected. Each gene corresponds to a column in the
dataset. Experiments were carried out with different numbers of attributes: 10,
50, 100, 500, 750, 1000, 2000, 3000, 4000, 5000 and 10000. For each of the exper-
iments, attributes were selected at random, since as already mentioned, our goal
was not obtaining the best model to solve the problem of tumor detection, but
rather to measure execution time with different numbers of dataset features.

To avoid any bias, a five-fold cross-validation step was performed. To obtain
these folds, stratified sampling [4] was used. Additionally, the entire process of
randomly selecting attributes, dividing into folds, training and evaluating the
models was performed 30 times with each classification algorithm.

The Spark class CrossValidatorEl was used to carry out the measurements.
However, since this class only allows evaluating models with a single metric at a
time, a custom cross-validation executor was developed. This executor ensures
that the four analyzed algorithms share the same random sample of character-
istics extracted from the dataset, in addition to the same samples generated in
each fold of the cross-validation.

The algorithm used is detailed below and the full code, along with the eval-
uated dataset, can be found in a public Github repository EI

Pseudocode for the custom cross-validation executor

program StratisfiedCrossValidator

parameters

num_of_folds, models, metrics, spark_df
begin

for k in 1 .. num_of_folds do

train, validation = generate_stratisfied_subsets(spark_df)

for model in models do
start_time = get_current_time()
trained_model = train_model(model, train)
store_training_time(model, start_time)

! https://spark.apache.org/docs/3.1.1/api/scala/org/apache/spark/ml/tuning/CrossValidator.html

2 https://github.com/midusi/classification-models-spark

315



for metric in metrics do
store_metric_for_model (model, metric, validation)
end
end
end

{Returns, for each model, the best result obtained for each metric
and the training time in all folds}
return get_best_cross_results()
end
end

Pseudocode for the main program

program ClassificationModelComparison
{The previous definition for the models and metrics variables is assumed};
df = read_local_ovarian_dataframe()
ncols = [10, 50, 100, 500, 750, 1000, 2000, 3000, 4000, 5000, 10000]
for n_features in ncols do
x_and_y = extract_random_features(df, n_features)
spark_df = convert_spark_dataframes(x_and_y)

all_results = []

for i in 1..30 do
result = StratisfiedCrossValidator(spark_df, models, metrics)
store_result (result)

end

{Reports the 30 separate values for each model and each metric,
and training time}
report_results(all_results)
end
end

4 Results

Figure [I| shows the average and standard deviation of the execution times for
each algorithm for the different datasets used. As it can be seen, the SVM and
MLP algorithms require the longest execution time as the number of attributes
used for training increases. The RF algorithm also shows increased execution
time in experiments that include thousands of attributes, but it is approximately
10 times smaller than SVM and MLP. Even though this cannot be seen in the
figure, Naive Bayes also has an increase in execution time, reaching 17 seconds
for the dataset with 10,000 attributes.

316



Figure[2]shows the average and standard deviation of the 30 separate runs for
the accuracy (figure [24)), precision (figure b)), recall (figure 2d) and Fl-measure
(figure metrics achieved by each of the algorithms. It can be seen that NB
was the algorithm with the worst models, followed by RF, which achieved very
good results in experiments with large numbers of attributes. SVM and MLP
are the algorithms that best model datasets with fewer attributes. In fact, the
results obtained by both models in the datasets with 10, 50 and 100 attributes
are very similar to each other. In datasets with a larger number of attributes,
SVM begins to differ from MLP and, although RF improves the metrics as the
number of attributes increases, it can be seen that the models obtained with
SVM are the best in all experiments.

The values for the four metrics that were obtained with the MLP executions
using 500 attributes are intriguing. Even though a detailed study of the case
was not done, we believe that these values are the product of the 500 randomly
selected attributes. Apparently, those 500 attributes make up a scenario where
the MLP algorithm finds local minima from which it cannot escape. Out of the
30 runs, it achieved accuracy values higher than 0.96, only in eight runs, the
remaining 22 are below 0.91.

Execution time (seconds)

Mumber of features in training set

Fig. 1: Average and standard deviation of the execution times of the four algo-
rithms studied for the different subsets of attributes used.

5 Conclusions and future work

In this work, execution time, accuracy, precision, recall and F1-measure of four
Spark ML algorithms were measured by varying the number of attributes in the
training dataset. The results obtained show that the algorithms that require the

317



ISBN 978 -987-633-574-4

: w0 W 0o ™ o il 0m nm 0 wnm 10000 : b w0 oo R o il 0m nm 0 o 10000
L B ML mhE mEF L EiL »MLP ENE .EF

(a) Accuracy (b) Precision
(c) Recall (d) F1-Score.

Fig. 2: Average and standard deviation of the accuracy, precision, recall and F1-
measure metrics of the four algorithms studied for the different subsets of attributes
used.

most computing time are SVM and MLP. However, in experiments with a low
number of attributes, these two algorithms obtained the best models. RF turned
out to be the algorithm that required the shortest execution time to achieve
models with a high prediction rate.

In attribute selection algorithms, where a classification algorithm has to be
run hundreds or thousands of times with different numbers of attributes, the
dichotomy presented in this work opens the door to an interesting challenge,
especially considering that, when selecting a subset of attributes with high pre-
dictive power, it is generally expected that the resulting subset is the smallest
possible.

The results obtained show the need for tradeoff between an algorithm with
low execution time while achieving good models with few attributes. On the one
hand, SVM yields very good models, regardless of the number of attributes in
the dataset, but it requires a lot of computation time as the number of attributes
to be analyzed grows. On the other hand, Random Forest requires little execu-
tion time, but to obtain models that resemble those obtained by SVM, it needs
thousands of attributes.

The dataset used in the experiments has a significant number of attributes
(> 15,000), but only a few samples (253). In the future, the same experiments
will be carried out using datasets with more samples, and the performance of
the classification algorithms in scenarios where the volume of data is greater will
be studied. In these scenarios, measuring the volume of data transmitted by the

CACIC 2021 UNSa

318



cluster during the execution of the algorithms is also of interest, since in the
experiments carried out for this work, these times were negligible.

References

10.

11.

12.

13.

14.

Hager Ahmed, Eman MG Younis, Abdeltawab Hendawi, and Abdelmgeid A Ali.
Heart disease identification from patients’ social posts, machine learning solution
on spark. Future Generation Computer Systems, 111:714-722, 2020.

Wafaa S Albaldawi and Rafah M Almuttairi. Comparative study of classification
algorithms to analyze and predict a twitter sentiment in apache spark. In IOP
Conference Series: Materials Science and Engineering, volume 928, page 032045.
IOP Publishing, 2020.

Salem Alelyani, Jiliang Tang, and Huan Liu. Feature selection for clustering: A
review. Data Clustering, pages 29-60, 2018.

Zdravko Botev and Ad Ridder. Variance Reduction, pages 1-6. American Cancer
Society, 2017.

. Jie Cai, Jiawei Luo, Shulin Wang, and Sheng Yang. Feature selection in machine

learning: A new perspective. Neurocomputing, 300:70-79, 2018.

Ashutosh Kumar Dubey, Abhishek Kumar, and Rashmi Agrawal. An efficient aco-
pso-based framework for data classification and preprocessing in big data. Evolu-
tionary Intelligence, 14(2):909-922, 2021.

Uma Gurav and Nandini Sidnal. Predict stock market behavior: Role of machine
learning algorithms. In Intelligent Computing and Information and Communica-
tion, pages 383-394. Springer, 2018.

Eslam M Hassib, Ali I El-Desouky, Labib M Labib, and El-Sayed M El-kenawy.
Woa+ brnn: An imbalanced big data classification framework using whale opti-
mization and deep neural network. soft computing, 24(8):5573-5592, 2020.
Gerardo Herndndez, Erik Zamora, Humberto Sossa, German Téllez, and Fed-
erico Furldn. Hybrid neural networks for big data classification. Neurocomputing,
390:327-340, 2020.

Gang Kou, Pei Yang, Yi Peng, Feng Xiao, Yang Chen, and Fawaz E Alsaadi. Eval-
uation of feature selection methods for text classification with small datasets using
multiple criteria decision-making methods. Applied Soft Computing, 86:105836,
2020.

Konstantina Kourou, Themis P Exarchos, Konstantinos P Exarchos, Michalis V
Karamouzis, and Dimitrios I Fotiadis. Machine learning applications in cancer
prognosis and prediction. Computational and structural biotechnology journal,
13:8-17, 2015.

SK Lakshmanaprabu, K Shankar, M Ilayaraja, Abdul Wahid Nasir, V Vijayaku-
mar, and Naveen Chilamkurti. Random forest for big data classification in the
internet of things using optimal features. International journal of machine learn-
ing and cybernetics, 10(10):2609-2618, 2019.

Dorin Moldovan, Marcel Antal, Claudia Pop, Adrian Olosutean, Tudor Cioara,
Ionut Anghel, and Ioan Salomie. Spark-based classification algorithms for daily
living activities. In Computer Science On-line Conference, pages 69-78. Springer,
2018.

Elnaz Pashaei and Nizamettin Aydin. Binary black hole algorithm for feature
selection and classification on biological data. Applied Soft Computing, 56, 03
2017.

319



15.

16.

17.

18.

19.

20.

21.

22.

Tomas Pranckevicius and Virginijus Marcinkevi¢ius. Comparison of naive bayes,
random forest, decision tree, support vector machines, and logistic regression classi-
fiers for text reviews classification. Baltic Journal of Modern Computing, 5(2):221,
2017.

Franco Ronchetti, Facundo Quiroga, Genaro Camele, Waldo Hasperué, and Laura
Lanzarini. Un estudio de la generalizacién en la clasificacién de peatones. Revista
Cubana de Transformacidn Digital, 2(1):33-45, 2021.

S Saravanan et al. Performance evaluation of classification algorithms in the de-
sign of apache spark based intrusion detection system. In 2020 5th International
Conference on Communication and Electronics Systems (ICCES), pages 443-447.
IEEE, 2020.

Sadl Solorio-Fernandez, J Ariel Carrasco-Ochoa, and José Fco Martinez-Trinidad.
A review of unsupervised feature selection methods. Artificial Intelligence Review,
53(2):907-948, 2020.

Jiang Xianya, Hai Mo, and Li Haifeng. Stock classification prediction based on
spark. Procedia Computer Science, 162:243-250, 2019.

Wenchao Xing and Yilin Bei. Medical health big data classification based on knn
classification algorithm. IEEFE Access, 8:28808-28819, 2019.

Seyedfaraz Yasrobi, Jakayla Alston, Babak Yadranjiaghdam, and Nasseh Tabrizi.
Performance analysis of sparks machine learning library. Trans. MLDM, 10(2):67—
77, 2017.

Rizgar Zebari, Adnan Abdulazeez, Diyar Zeebaree, Dilovan Zebari, and Jwan
Saeed. A comprehensive review of dimensionality reduction techniques for fea-
ture selection and feature extraction. Journal of Applied Science and Technology
Trends, 1(2):56-70, 2020.

10

320



	A Comparative Study

