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Abstract We have classified orbits in a stationary triaxial stellar system created from
a cold dissipationless collapse of 100,000 particles. In order to integrate the orbits, two
potential approximations with different fitting functions were used in turn. We found
that the relative amount of chaotic versus regular orbits does depend on the chosen
approximation of potential, even though both models resulted in very good fits of the
underlying exact potential. On the other hand, the content of regular orbits, i.e., its dis-
tribution among main families, does not strongly depend of the potential approxima-
tion, being therefore a more robust signature of the gravitational system under study.

Keywords Triaxial stellar systems · Stellar orbits · Numerical methods

1 Introduction

In order to study the structure and evolution of stellar systems one can perform
N-body simulations integrating the coupled equations of motion of the constituent
particles, or one can try to construct analytic or numerical equilibrium models from
the Poisson and the collisionless Boltzmann equations.

Self-consistent density distributions obtained from the particle approach can be
of great help in determining the variety of orbits allowed by a certain system that
results from solving the N-body problem. In particular, when dealing with collisionless
systems like galaxies, it is possible to approximate the original (grainy) potential by
a smooth (analytic) representation of it (see, e.g. Hernquist and Ostriker 1992), thus
making it much faster to study the orbital structure of the smoothed system. This strat-
egy relies on the presumable correspondence between characteristics (i.e., trajectories
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in the analytical potential) and the orbits of individual stars, although this point has
never been proved rigorously (Kandrup and Sideris 2003). Anyway, the individual
orbits allowed by a collisionless system constitute the basic building blocks for the
dynamics of that system and by studying the orbital content of a potential we obtain
very important clues about its structure and its relation to the equilibrium state.

The smoothing of N-body potentials has long been applied to stellar dynamics (see,
e.g. Clutton-Brock 1973) allowing to represent a grainy density distribution by means
of a set of functions that fits the overall aspect of that distribution. In this paper,
we are particularly interested in generating a self-consistent N-body system which
resembles an elliptical galaxy and that is in equilibrium in order to fit it by means of
some functional representation. Once the fitting potential is obtained, orbits can be
individually integrated and classified (Muzzio et al. 2005).

One may reasonably conjecture that the functional form of the fitting potential
plays no major role in obtaining the orbital content, as long as the fitting is good.
We will show that this is not the case: the fraction of chaotic orbits found in a given
potential strongly depends on the details of the model. We will also show that, among
regular orbits, the main families (boxes, long- and short-axis tubes) remain almost
unaffected by minor differences in the potential.

2 The model

The N-body model upon which we worked was created by following the procedure
described by Muzzio et al. (2005). First, a set of 100,000 particles were randomly dis-
tributed following a 1/r density law inside a sphere of unit radius. Then the particle
velocities were randomly generated from a Gaussian distribution, the dispersion of
which was chosen so as to get an initial value of the random kinetic energy that was
0.25% of the initial value of the potential energy. Thus, according to Aguilar and
Merrit (1990), such an initial setting would give rise to a highly triaxial system after
the collapse has taken place.

All the particles were of the same mass, summing up a total mass equal to 1.
The gravitational constant G was also chosen to be equal to 1. After eliminating the
unbound particles, the system was evolved for 10 crossing times (Tcr, equivalent to
0.574 time units) in order to let it relax. Rejecting some additional particles that rep-
resented some unrealistic extensions along the semimajor axis direction, the system
was evolved again for another 10 Tcr.

By following this procedure, we ended up with a self-consistent triaxial ellipsoid of
86,818 particles that resembles an elliptical galaxy. In order to characterize its form,
we introduce the usual notation of a, b and c for the major, middle and minor semi-
axes of the distribution, respectively. For the system thus created, we obtained values
of b/a = 0.75 and c/a = 0.52 when taking into account all particles, and b/a = 0.45
and c/a = 0.35 when only the 20% most strongly bound particles were considered
(see Muzzio et al. 2005).

3 Smooth representations of the N-body potential

In order to integrate orbits in a collisionless version of this system, we replaced the
N-body distribution of particles by a smooth representation of the potential generated
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by the mass distribution. To this end we introduced a quadrupolar approximation
(Schwarzschild 1979; Muzzio et al. 2005) to write the smoothed potential:

�(r) = f00(p) + fxx(p) x2 − [
fxx(p) + fzz(p)

]
y2 + fzz(p) z2, (1)

where
p2 = r2 + ε2 (2)

is the (squared) softened radius with softening parameter ε, which we set equal to
0.01. We fitted the functions f00(p), fxx(p) and fzz(p) using two different approaches.
On the one hand we adopted expressions of the form (Muzzio et al. 2005):

f (p) = C
(pκ + qκ )λ

, (3)

with C, κ , q and λ constants to be obtained from the fitting. This model will be referred
to as Model 1. On the other hand, we used different expressions:

f (p) = C exp

{ 4∑

n=1

an
[
ln(p + q)

]n

}

, (4)

with C, an and q constants, also to be obtained from the fitting. This potential model
will be called Model 2.

Once the constants of the fitting functions were determined, we computed the value
of the N-body potential at each point where there was a particle and compared it to
the value obtained by using the smoothed potential representation. We found that
the square root of the mean square percentual difference was 0.51% in the first case
and 0.46% in the second case, so that we conclude that both approximations work
very well, and at the same level of accuracy. On the other hand, the square root of the
mean square percentual differences between the two different interpolating functions
(evaluated at the positions of the particles of the N-body system) is 0.24% and Fig. 1
shows those fractional differences as a function of the potential of Model 1 divided by
its value at the center of the system, so that the outermost particles lay at left and those
closest to the center at right. We notice that the individual differences are of the same
order of the dispersion throughout, except at the innermost and outermost regions
where the differences reach about 1%. (We thank Dr. J. C. Muzzio for providing us
with the data concerning Fig. 1.)

In order to check whether the good fitting of the Model 2 is preserved when the
system evolves, we repeated the procedure applied to Model 1 in Muzzio et al. (2005):
the particles were allowed to move in the smoothed potential, and the fitting functions
were evaluated from the distribution of particles at several times; the results from the
initial instant and two other times were then combined together, the interpolating
equations were fitted to them, and the square roots of the mean square percentual
errors of the fittings, which constitute a measure of the structural changes suffered by
the system in the time intervals considered, were then computed. Table 2 of Muzzio
et al. (2005) shows that there were no significant differences among the dispersions
obtained with Model 1; we found that the differences obtained with Model 2 are even
smaller. Therefore, the system remains indeed stationary with either model.

There is still another question we must address. Even in a system in equilibrium,
as the particles that make it up move, random changes in the density and, thus, in
the potential will arise; these changes will be very small in a galaxy made up of, say,
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Fig. 1 The difference between the potentials of Models 1 and 2, relative to the former as a function
of the potential of Model 1 normalized to its central value

1011 stars, but more important in our system of about 105 particles. This problem was
investigated by Voglis et al. (2002), who found that less than 3% of the orbits in their
system changed their regular or chaotic character when the potential was fitted to
N-body distributions corresponding to different times. With respect to our own sys-
tem, Muzzio (submitted) compared the resulting regular/chaotic classification from
the N-body distributions obtained combining the results at the initial time, 10 Tcr and
20 Tcr and at the initial time, 200 Tcr and 400 Tcr; he found that there are no significant
differences when the same mathematical expression is fitted to potentials determined
at different times.

4 Orbital classification

In order to determine whether an orbit is regular or chaotic, we integrated it, comput-
ing at the same time its Lyapunov characteristic numbers. As in Muzzio et al. (2005),
we regarded an orbit as regular whenever it had its two larger Lyapunov characteristic
numbers smaller than a limiting value of 0.00155 (time units)−1, as partially chaotic
when only its larger Lyapunov characteristic number is smaller than that value, and
as totally chaotic otherwise.

In order to classify regular orbits in their families, we first used the frequency
analysis automatic code of Carpintero and Aguilar (1998), but the frequencies were
extracted with the aid of the algorithm implemented by Wachlin and Ferraz-Mello
(1998). As in Muzzio et al. (2005), this improvement allows to compute the natu-
ral frequencies of the orbits with greater accuracy, at a cost of spectral resolution,
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i.e., two frequencies have to be more separated than a certain threshold �f in order
to be properly identified. Thus, to be on the safe side, we merely discarded as not
classified any orbit which happen to have a pair of frequencies closer than �f . This,
however, led to an undesirable consequence: too many (15.3% in Model 1 and 15.9%
in Model 2) of the orbits could not be classified. In order to reduce those percentages
we reasoned that, on the one hand, one is mainly interested in low-resonant boxes
(i.e., orbits the resonances of which are made up of small integers) and that, on the
other hand, any pair of close frequencies, if in resonance, would yield a high-rank reso-
nance (i.e., a resonance with large integers). Therefore, usually it makes no difference
whether two close frequencies are extracted with high precision or not, because the
orbit will end up being either a (non resonant) box or a high-resonant box, in which
case it will be considered in practice as non resonant. We therefore decided to fed
the unclassified orbits into a version of the code in which the discarding of orbits
was not allowed, resulting that, effectively, all but a handful of orbits (5% of the not
classified, that is, less than 1% of the total) were classified as (non resonant) boxes.
The price to pay, however, is that now we cannot safely assess how many resonances
and independent frequencies are there in each orbit; therefore, again to be in the
safe side, we classified regular orbits only into their main families: boxes and boxlets
(BBL), long-axis tubes (LAT) and short-axis tubes (SAT).

5 Results

In Muzzio et al. (2005), a set of 3,472 initial conditions were chosen to be integrated
in Model 1, in order to study the orbits generated by them. Here, we took the same
set of 3,472 initial conditions and computed their orbits in Model 2. These orbits were
then classified into regular, partially chaotic and totally chaotic as described above.
The results are summarized in Table 1.

The percentage of regular orbits is thus 47.35±0.85% in Model 1 and 40.96±0.83%
in Model 2, a highly significant difference at the 5.4σ level. Alternatively, consider-
ing the chaotic orbits only, the percentages of fully chaotic orbits are, respectively,
83.15 ± 0.88% and 85.37 ± 0.78% for Models 1 and 2, their difference amounts to
just 1.9σ and, thus, is probably not significant. (Here, and in the rest of the paper, the
errors of the percentages are the dispersions derived from the binomial distribution,
i.e., for a percentage p, obtained from a total number of data N, the dispersion is
σ = √

p(100 − p)/N.)
We conclude that the sets of regular and chaotic orbits have effectively changed

in shifting from one potential model to the other, even though the phase space initial
conditions for the orbits were the same. This change can also be assessed by means of

Table 1 Number of regular, partially chaotic and totally chaotic orbits found in Model 1 (rows) and
in Model 2 (columns)

Model 1/Model 2 Regular Partially Chaotic Fully Chaotic Total
Regular 1307 138 199 1644
Partially chaotic 70 118 120 308
Fully chaotic 45 44 1431 1520

Total 1422 300 1750 3472
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a crosstabulation analysis (Press et al. 1992), using Table 1 as a contingency table. In
order to characterize the strength of association we used three different indicators: the
Uncertainty Coefficient (Theil’s) U, the Sakoda’s Adjusted Contingency Coefficient
(Pearson’s) C∗, and the Association Coefficient (Cramer’s) V. U is the percent reduc-
tion in uncertainty in predicting the dependent (nominal) variable based on knowing
the independent (nominal) variable (in our case, either rows or columns can be used
as dependent or independent variables); C∗ and V, on the other hand, may be both
interpreted as percentages of the maximum variation between the variables, although
V tends to be smaller than C∗ when computed from the same sample. The values
obtained for Table 1 were U1 = 0.44, U2 = 0.44, V = 0.61 and C∗ = 0.80, where U1
and U2 are the values considering in turn each potential model as the generator of
the independent variable of the table. As can be seen, whatever indicator we want to
choose, the level of association is relatively low, i.e., there is a non negligible change in
going from one potential model to the other. It may still happen that the low strength
of the observed association is not genuine, i.e., that the (low) association found is not
different from what would be expected due to the chance of random sampling. To
test the significance of the association, a χ2 test suffices; in our case, the probability of
obtaining by chance our value of χ2 = 2592.6 with 4 degrees of freedom is less than
10−5, so the low association found is significant.

Let us now concentrate on the regular orbits, defined as the set of 1,307 orbits
found as regular in both models. Table 2 was obtained classifying these orbits into
the three main regular families, plus an additional category (Other) which includes
not classified orbits as well as orbits classified as irregular by the automatic code. The
percentages of boxes and boxlets, long-axis tubes, short-axis tubes and other orbits
are, respectively, 77.96 ± 1.15%, 2.37 ± 0.42%, 19.20 ± 1.09% and 0.46 ± 0.18% in
Model 1, and 78.12 ± 1.14%, 2.37 ± 0.42%, 19.13 ± 1.09% and 0.38 ± 0.17% in Model
2. The differences between the corresponding percentages of the two models are all
well below the 1σ level and show that, for regular orbits, both models give essentially
the same results. As before, we can confirm these results by means of a crosstabula-
tion analysis. We obtained strengths of association U1 = 0.95, U2 = 0.95, V = 0.86
and C∗ = 0.96, with a probability of obtaining by chance the computed value of
χ2 = 2910.3 with 9 degrees of freedom being less than 10−5. Thus, the two nominal
variables are strongly associated, meaning that the main regular families are robust
against small changes introduced in the potential representation.

As an illustration of the few cases in which a regular orbit shifted family, Fig. 2
shows the orbit 2140, one of the two orbits classified as a box orbit when integrated
with Model 1, and as a SAT when the second model was used; x, y and z correspond,
respectively, to the major, intermediate and minor axes of the potential. Clearly, the
tube is very close to be a box, and a minimal change of the potential was enough to
shift the original box orbit into the tube orbit.

Table 2 Number of orbits into
each main regular family found
in Model 1 (rows) and in
Model 2 (columns)

Model 1 / Model 2 BBL LAT SAT Other
BBL 1017 1 0 1
LAT 0 30 0 1
SAT 2 0 249 0
Other 2 0 1 3
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6 Discussion

We may conclude that, as long as the mathematical expression of the interpolating
function is not altered, the results obtained fitting it to the potential of the N-body
system in equilibrium at different times are essentially the same. Alternatively, adjust-
ing the potential with different mathematical expressions yields significantly different
fractions of regular and chaotic orbits, even when the different expressions give equally
good fittings. This result may be explained by the fact that, as it is well known, the
chaotic behavior is very sensitive to changes in the potential. An extreme example
is that of a fully regular system which becomes chaotic when a small perturbation is
added; a less extreme one is the dependence of the amount of chaos on the energy
in the Hénon–Heiles potential. However, as we have seen, the global structure and
stability of the system are not affected by this effect. This is probably due to the non
uniqueness of the equilibrium states of a stellar system, i.e., several distributions of
stars in the phase space may yield systems with the same global features and the same
global stability.
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Fig. 2 Left: orbit integrated in the potential Model 1. Right: same initial condition integrated in the
potential Model 2
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On the other hand, the distribution of regular orbits into families is robust: a small
change of the potential neither destroys nor mixes families, but maintains the general
regular structure. This result is valid as long as the orbits are well inside the regular
regions; borderline zones, as we have just seen, are prone to switch between regular
and chaotic behaviors. Recalling the KAM theorem, which states that a small, smooth,
conservative perturbation applied to an integrable system produces only slight defor-
mations to most invariant tori, one can conjecture that small perturbations applied to
non integrable potentials will also have the same effect on the deep regular regions:
a simple deformation of the invariant tori, which is precisely what we have found in
our work.

Acknowledgements The comments of an anonymous referee were very useful to improve the
original version of the present paper and are greatfully acknowledged. The authors wish to thank
Dr. J. C. Muzzio for providing the data leading to Fig. 1. This work was supported with grants from
the Universidad Nacional de La Plata, the Consejo Nacional de Investigaciones Científicas y Técnicas
and the Agencia Nacional de Promoción Científica y Tecnológica de la República Argentina.

References

Aguilar, L.A., Merritt, D.: The structure and dynamics of galaxies formed by cold dissipationless
collapse. Astrophys. J. 354, 33–51 (1990)

Carpintero, D.D., Aguilar, LA.: Orbit classification in arbitrary 2D and 3D potentials. Monthly Notices
R. Astronomic. Soc. 298, 1–21 (1998)

Clutton-Brock, M.: The gravitational field of three dimensional galaxies. Astrop. & Sp. Science 23,
55–69 (1973)

Hernquist, L., Ostriker, J.P.: A self-consistent field method for galactic dynamics. Astrophys. J. 386,
375–397 (1992)

Kandrup, H.E., Sideris, I.V.: Smooth potential chaos and N-body simulations. Astrophys. J. 585,
244–249 (2003)

Muzzio, J.C., Carpintero, D.D., Wachlin, F.C.: Spatial structure of regular and chaotic orbits in a
self-consistent triaxial stellar system. Celest. Mech. Dynam. Astron. 91, 173–190 (2005)

Press, W.H., Teukolsky, S.A.,Vetterling, W.T., Flannery, B.P.: Numerical recipes: the art of scientific
computing. Cambridge University Press, Cambridge (1992)

Schwarzschild, M.: A numerical model for a triaxial stellar system in dynamical equilibrium. Astro-
phys. J. 232, 236–247 (1979)

Voglis, N., Kalapotharakos, C., Stavropoulos, I.: Mass components in ordered and in chaotic motion
in galactic N-body models. Monthly Notices R. Astronomic. Soc. 337, 619–630 (2002)

Wachlin, F.C., Ferraz-Mello, S.: Frequency map analysis of the orbital structure in elliptical galaxies.
Monthly Notices R. Astronomic. Soc. 298, 22–32 (1998)


