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Abstract

We advance scale-invariance arguments for systems that are governed (or approximated) by a q-Gaussian distribution, i.e., a power law distri-
bution with exponent Q = 1/(1 − q); q ∈ R. The ensuing line of reasoning is then compared with that applying for Gaussian distributions, with
emphasis on dimensional considerations. In particular, a Gaussian system may be part of a larger system that is not Gaussian, but, if the larger
system is spherically invariant, then it is necessarily Gaussian again. We show that this result extends to q-Gaussian systems via elliptic invariance.
The problem of estimating the appropriate value for the Tsallis’ parameter q is revisited. A kinetic application is also provided.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction and background material

Homogeneous power-laws, such as Newton’s universal law
of gravitational attraction, for instance, abound in nature. They
are, by definition, self-similar and thus true in all scales. Sys-
tems statistically described by power-law probability distrib-
utions are rather ubiquitous [1] and thus of perennial inter-
est [2]. In this Letter we wish to give careful scale-invariance
consideration to systems that are governed (or described) by
a special kind of power-law probability distribution functions
(PDF), namely, the q-Gaussian function. Consider a system S
described by a vector X with n components. We say that X

is q-Gaussian distributed if its probability distribution function
writes as described by (1.6)–(1.7) below.

It is well known that for such S-systems one can appeal
to Jaynes’ maximum entropy principle (MaxEnt) [3] under a
q-covariance constraint with a generalized (or q-) information
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measure

(1.1)Hq(x) = 1

1 − q

Z
Rn

dx
£
f q(x) − f (x)

¤; q ∈ R,

as the protagonist [4]. This measure has been found to be
useful in extracting information pertaining to systems that are
characterized by either (1) fractal nature, (2) long-memory, or
(3) long-range interactions [5]. Employing Hq for other types
of system has generated controversy [6] which is of no rele-
vance to our present purposes. We will focus attention upon
properties of Gaussian systems that remain valid for their q-
Gaussian counterparts as well (as q becomes different from
unity), with emphasis on the dimensional properties of both
kinds of systems. It is well known that if a system “is Gaus-
sian”, any part (subsystem) of it is still Gaussian. This property
holds for q-Gaussian systems as well, as proved in [7]. A more
interesting result is the inverse phenomenon: a Gaussian system
may be part of a larger system that is not Gaussian. However,
if the larger system is spherically invariant, then it is necessar-
ily Gaussian again. Surprisingly enough, this “inverse proper-
ty” has gone largely ignored in the statistical literature. In this
work we will not only provide a simple proof for it but we will
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show that it can be extended to q-Gaussian distributions as well.
These results can be given a physical interpretation within the
framework of the estimation of the parameter q of a given sys-
tem [5]. We will prove that, if spherical symmetry prevails, such
estimation can be performed using only a restricted, observable
part of the system and that the overall parameter q for the entire
system can be retrieved provided the dimension of the system
is known. We begin our considerations by introducing the two
basic notions, namely spherical symmetry and q-Gaussian sys-
tems. We will also apply our results to a simple case of kinetic
theory via the Beck–Cohen superstatistics theory [8–14].

1.1. Spherical symmetry

A really momentous symmetry is that of invariance against
rotations. It is found in the fundamental laws of nature and con-
stitutes one of the most powerful principles in elucidating the
structure of individual atoms, complicated molecules, and en-
tire crystals. Also, it characterizes the shape of many systems.
We can cite self-gravitating systems like stars and planets, that
have quasi-spherical shape if their mass is large enough. Also,
many atomic nuclei are spherical, and many molecules as well,
etc. Conservation of angular momentum, a very frequent occur-
rence, is a result of the isotropy of space itself [15]. We discuss
now some properties of spherical probability distributions.

The characteristic function associated with a random vector
X ∈ R

n is

(1.2)ϕX(U) = EeiUtX; U ∈ R
n.

Under the hypothesis, discussed for instance in the textbook
[16, XV.3], that ϕX ∈ L1(R

n), there is a one-to-one relation be-
tween ϕX and the probability density function fX of X. The
random vector X is said to have a spherical distribution if its
characteristic function ϕX satisfies

(1.3)ϕX(U) = φ
¡kUk¢

for some scalar function φ : R+ → R which is then called the
characteristic generator of the spherical distribution. We will
write X ∼ Sn(φ) in this case. It is well known that an equivalent
definition for a spherical random vector X is

X ∼ AX; ∀A orthogonal,

where ∼ denotes equality in distribution.
Spherical random vectors have, as it is well known, the fol-

lowing properties:

(1) All marginal distributions of a spherical distributed random
vector are spherical.

(2) All marginal characteristic functions have the same charac-
teristic generator.

(3) If X ∼ Sn(φ) then

(1.4)X ∼ rTn,

where Tn is a random vector distributed uniformly on the
unit sphere surface in R

n and r is a positive random vari-
able independent of Tn.
Let us remark that a spherically distributed random vector
does not necessarily possess a density.

A generalization of the concept of spherical distribution is
given by elliptical distributions, to which the multi-normal dis-
tribution belongs. Elliptical distributions have recently gained
a lot of attention in financial mathematics, being of use partic-
ularly in risk management. An n-random vector Y is said to
have an elliptical distribution with so-called characteristic ma-
trix CY (n × n) if Y ∼ AX, where X ∼ Sn(φ) and A is an n × n

deterministic matrix such that AtA = CY and rank(CY ) = n.
We shall write Y ∼ En(CY ,φ).

1.2. q-Gaussian systems

An n-components vector X is q-Gaussian distributed if its
distribution fX maximizes the q-information (1.1) under a gen-
eralized covariance constraint

(1.5)
Z
Rn

dx xxtf q(x) = K

where K is a positive definite matrix.
A classical result is that this PDF writes as follows [2]:

• in the case 1 < q < n+2
n

fX(X)

(1.6)= Aq

µ
1 + q − 1

(n + 4) − q(n + 2)
XtK−1X

¶ 1
1−q

.

In the following, we will use matrix Λ related to the covari-
ance matrix K = EXXt in the fashion [17]

(1.7)Λ = mK,

where the number of degrees of freedom is defined as [17]

(1.8)m = 2

q − 1
− n.

In this way, the quadratic form in (1.6) writes simply
XtΛ−1X. However, form (1.6) reveals more clearly that,
as q → 1+, the q-Gaussian distribution reduces to the clas-
sical Gaussian distribution.
We note that the condition 1 < q < n+2

n
(equivalently

m > 0) ensures convergence of integrals
R

Rn dx fX ,R
Rn dx xxtf q and

R
Rn dx f q while for n+2

n
< q < n

n−2 ,
only the latest integral converges.
Moreover, the partition function Zq = 1/Aq reads [17]

Zq = 0
¡ 1

q−1 − n
2

¢|πΛ|1/2

0
¡ 1

q−1

¢
and the characteristic function is

(1.9)ϕX(U) = 21− m
2

0
¡

m
2

¢z
m
2 Km

2
(z)

with z = √
UtΛU and K is the modified Bessel function

of the second kind.
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• in the case q < 1

fX(X)

(1.10)= Aq

µ
1 − 1 − q

(n + 4) − q(n + 2)
XtK−1X

¶ 1
1−q

+
.

Defining matrix Σ = dK and parameter d as

(1.11)d = 2

1 − q
+ n,

the quadratic form in (1.10) simplifies to XtΣ−1X, but
form (1.10) shows again clearly the fact that as q → 1−,
the q-Gaussian density converges to the Gaussian density.
The partition function is

Zq = 0
¡ 2−q

1−q

¢|πΣ |1/2

0
¡ 2−q

q−1 + n
2

¢
and the characteristic function is

(1.12)ϕX(U) = 2
d
2 −10

µ
d

2

¶Jd
2 −1(z)

z
d
2 −1

where z = √
UtΣU and J is the Bessel function of the first

kind.

We begin in the next section to advance our present results.

2. Size behavior of the q-parameter

Our first result revolves around the behavior of the non-
extensivity parameter q as a function of the dimension of the
system and is embodied in the following theorem, the proof of
which is given in Appendix A.

Theorem 1. Assume that a system Xn ∈ R
n follows a q-

Gaussian distribution with parameter qn; then with 1 6 k 6
n − 1, any k-dimensional subsystem Xk = [x1, . . . , xk]t of Xn

is q-Gaussian distributed with parameter

(2.1)qk = 1 − 2(1 − qn)

2 + (n − k)(1 − qn)

what can be equivalently written as

(2.2)
2

1 − qk

= 2

1 − qn

+ n − k.

Reciprocally, assume that an n-dimensional and spherical
system Xn contains a k-dimensional subsystem Xk that follows
a q-Gaussian distribution with parameter qk ; then system Xn

is itself q-Gaussian distributed with parameter qn defined as in
(2.1).

Recall that for any n-dimensional orthogonal transforma-
tion A, there exists an orthogonal decomposition of R

n as

R
n = E ⊕ F ⊕ G1 ⊕ · · · ⊕ Gk

into stable subspaces, the restriction of A to each subspace be-
ing:
• the identity transformation for subspace E,
• minus the identity transformation for subspace F ,
• a two-dimensional planar rotation of angle θk for sub-

space Gk .

Moreover, n-dimensional q-Gaussian distributions with pa-
rameter qn arise in statistical physics as the canonical distrib-
utions of systems with maximal q-entropy Hq of order qn and
fixed covariance matrix. The result of Theorem 1 can be para-
phrased in this way: if a system of dimension k has maximum
q-entropy of order qk , and is also part of a spherical system
of dimension n > k, then the whole system maximizes the q-
entropy with parameter qn related to qk as in (2.1). Notice that
in (2.1), as qk → 1 then qn → 1 and we deduce that if a spher-
ical system has a Gaussian part, then it is necessarily Gaussian
as well.

We note also that qn < 1 implies qk < 1 while qn > 1 im-
plies qk > 1. This result is natural since cases q > 1 and q < 1
correspond to two different types of distributions: according to
Beck and Cohen’s superstatistics principle [8–14]:

• q > 1 that corresponds to a Gaussian system subjected to
fluctuations that are independent of the state of the system.

• q < 1 that corresponds again to a fluctuating Gaussian sys-
tem for which the amplitude of the fluctuations depends on
the system’s state.

Alternatively, these two cases can be characterized as fol-
lows. Our system is here described by the random vector X: if
q > 1, then X has unbounded support, contrarily to the bounded
support associated to the case q < 1 [17].

A last remark at this step concerns Eqs. (2.1) and (2.2):
in the case q > 1, these equations express the fact that the
number of degrees of freedom m is invariant by marginaliza-
tion. This is again in accordance with the superstatistics theory,
since this parameter m characterizes the strength of the temper-
ature fluctuations to which the n-dimensional Gaussian system
is submitted: any subsystem of this Gaussian system is in turn
submitted to the same fluctuations. We note that Eqs. (2.1) and
(2.2) appear for example in Refs. [18,19]. The first of these
two papers refers, in the context of a generalization of the cen-
tral limit theorem, to the definition of the q-Fourier transform:
a link between such context and the present one remains to be
established.

For the other case, namely, q < 1, Eqs. (2.1) and (2.2) ex-
press the invariance of parameter d defined by (1.11) by mar-
ginalization: for a geometric interpretation and reasons of in-
variance of this parameter, the reader is referred to [17].

Thus, we obtain the following rather natural result: reduc-
tion or enlargement of a q-Gaussian system does not change its
superstatistical nature.

3. A second result: Multi-component systems

3.1. Average behavior

It may happen that measuring the behavior of only one com-
ponent x1 of a large system X ∈ R

n is not physically feasible,
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and one has to content oneself with measuring instead the be-
havior of a superposition of contributions from (or average of)
several components [20], in the form

(3.1)hXi =
nX

i=1

aixi,

where the deterministic coefficients ai ∈ R characterize the
measurement device. The following theorem (see Ref. [21]) al-
lows to give a special characterization of this average value in
the case of spherical systems.

Theorem 2. (See [21, Theorem 2.4].) If X ∈ R
n is spherically

distributed and A = (a1, . . . , an)
t is a deterministic vector then

hXi =
nX

i=1

aixi

is distributed as kAkx1, where kAk is the Euclidean norm of A.

In the next subsection we extract rather interesting physical
conclusions from this theorem.

3.2. Application to the estimation of q

An important problem in non-extensive statistics is the es-
timation of the non-extensivity parameter qn associated to an
n-dimensional system that follows a q-Gaussian distribution
[5]. We provide here some hints about a possible estimation
strategy in the case q > 1, assuming that we have access to av-
eraged measures of the system of the type (3.1).

Assuming qn > 1, then if Xn follows distribution (1.6), the
averaged measure hXi is distributed as

fhXi(x) = Aq1

kAk
µ

1 + x2

λkAk2

¶− m+1
2

with m = 2/(q1 − 1) − 1 and λ = Λ1,1. As a consequence, a
possible estimation strategy of parameter qn follows the three
following steps:

(1) since the “tail-behavior” of the distribution of fhXi is

fhXi(x) ∼ x−(m+1)

(where ∼ means here asymptotic equivalence), parameter
m can be estimated as the Lévy exponent of the distribution
of the average measure of the system,1

(2) the non-extensivity parameter q1 of hXi can be computed
using (1.8) as

q1 = m + 3

m + 1
,

(3) the non-extensivity parameter qn of the n-dimensional sys-
tem Xn can in turn be deduced using (2.1) as

qn = 2 − (n + 1)(1 − q1)

2 − (n − 1)(1 − q1)
.

1 Note that there exist other statistical approaches to the estimation of para-
meter q1: see [26].
As a new result we find that if the dimension n of the system
is known, its non-extensivity parameter qn > 1 can be evaluated
from any measurement of the type (3.1).

3.3. A kinetic application

3.3.1. Theoretical framework
Another application of the latter result can be provided in

the context of the kinematics of collision events. We envision
a scenario in which attention is focused on the particles of a
system interacting with a heat bath (a fundamental problem in
thermodynamics). An elastic collision between (i) a system’s
particle with momentum P , mass M , velocity V , and energy E

and (ii) a particle from the heat bath with momentum p, mass
m, velocity v, and energy ², verifies [22]

E + ² = Ê + ²̂,

P + p = P̂ + p̂

where “hats” refer to quantities after the collision. In the non-
relativistic case, these quantities write

P = MV, p = mv,

E = kPk2

2M
, ² = kpk2

2m
,

where momenta are 3-dimensional quantities. These equations
can be solved as

P̂ (p,P ) =
µ

2M

M + m

¶
p +

µ
M − m

M + m

¶
P,

p̂(p,P ) =
µ

m − M

M + m

¶
p +

µ
2m

M + m

¶
P.

Assuming that P and p are independent random variables, we
look for stationary distributions for p and P , that is, for prob-
ability density functions fp and fP such that if p ∼ fp and
P ∼ fP then after the collision, p̂ ∼ fp and P̂ ∼ fP . An obvi-
ous pair of stationary solutions is given [22] by the independent
Maxwell solutions

fP (P ) = 1

(2πMkBT )3/2
exp

µ
− kPk2

2MkBT

¶
,

(3.2)fp(p) = 1

(2πmkBT )3/2
exp

µ
− kpk2

2mkBT

¶
.

3.3.2. The correlated scenario
Suppose however that the assumption of independence be-

tween momenta p and P does not hold. Such is the case, for
example, when the corresponding particles are subject to the
same fluctuations (an interpretation for this scenario is provided
in the following subsection). In this instance we look for a sta-
tionary joint distribution for p and P , i.e., for a probability
density function fp,P such that if (p,P ) ∼ fp,P then, after the
collision, (p̂, P̂ ) ∼ fp,P again. We note that this in turn implies
p̂ ∼ fp and P̂ ∼ fP .

We need here an extension of Theorem 2 as given below, the
proof of which can be found, for example, in [23].



374 C. Vignat, A. Plastino / Physics Letters A 365 (2007) 370–375
Proposition 3. If X ∼ En(CX,φ) and A is a full-rank (n × n)

matrix then Y = AX ∼ En(CY ,φ) with

CY = ACXAt .

Now assume that

CX =
·

mI3 03
03 MI3

¸
,

A = 1

m + M

·
(m − M)I3 (2m)I3

(2M)I3 (M − m)I3

¸
,

where 03 denotes the (3 × 3) null matrix and I3 the (3 × 3)

identity matrix. Then

CY = ACXAt = CX.

We are now in a position to deduce the following result:

Theorem 4. If
¡
p
P

¢ ∼ E6(CX,φ) with characteristic matrix CX

as above, then the momenta vector after the collision
¡p̂

P̂

¢ ∼
E6(CX,φ). As a consequence, any elliptical joint distribution
with characteristic matrix CX is stationary. In particular, p and
p̂ have the same distribution, as well as P and P̂ .

3.3.3. Superstatistics at work
A more physical interpretation can be given to the preceding

result, using the notion of superstatistics [8]. We know from
[22] that a pair of independent Gaussian momenta are stationary
for the collision process. Now,

• if p ∼ N3(mkBT ) (the 3-dimensional Gaussian distribu-
tion with covariance matrix mkBT I3), and

• if P ∼N3(MkBT ), then
• p̂ ∼N3(mkBT ) and P̂ ∼N3(MkBT ).

Since

P̂ (p,P ) =
µ

2M

M + m

¶
p +

µ
M − m

M + m

¶
P,

choosing any (dimensionless) random variable a independent
of both p and P , and defining the new quantities q = ap, Q =
aP , and Q̂ = aP̂ , we deduce that

Q̂(q,Q) =
µ

2M

M + m

¶
q +

µ
M − m

M + m

¶
Q,

so that, obviously, the pair (q,Q) is another couple of momenta
whose distribution is stationary. Obviously, variables q = ap

and Q = aP are not independent ones, since they share the
same random scale factor a (unless a is almost surely a con-
stant, which reduces to the Gaussian case).

As a special case, if a follows an inverse chi-distribution
with m degrees of freedom, one immediately finds [8] that the
random vector X = ¡

p
P

¢
follows a Tsallis-distribution

(3.3)fX(X) = Aq

µ
1 + q − 1

(n + 4) − q(n + 2)
XtC−1

X X

¶ 1
1−q

,

with non-extensivity index q > 1 related to parameter m as in
formula (1.8) with n = 6. We remark that the random variable
a can be interpreted, in such a context, as representing temper-
ature’s fluctuations, as shown by Beck and Cohen [8]. Thus, the
presence of temperature fluctuations indicates that the momenta
of the incoming colliding particles are correlated. Conversely,
if they are correlated, then temperature fluctuations ensue. This
scenario is a feasible one if the heat bath is a finite one, which,
in turn, establishes a natural connection with an old result of
Plastino and Plastino [24].

4. Conclusions

In this work we have considered physical applications of a
largely ignored result of the statistical literature: a Gaussian
system may be part of a larger system that is not Gaussian.
However, if this larger system is spherically invariant, then it is
necessarily Gaussian again.

We have provided a simple proof for it and we have shown
that it can be extended to q-Gaussian distributions as well.
Our results have been given a physical interpretation within the
framework of the problem of estimation of the q-Gaussian pa-
rameter q . Also, we applied them to a simple instance of kinetic
theory involving Beck and Cohen superstatistics [8].

Appendix A. Proofs

A.1. Proof of Theorem 1

We give here a simple proof of Theorem 1, the principle of
which has been kindly suggested to us by Pr. Wlodek Bryc and
Pr. Jacek Wesolowski. Assuming first that Xk = [x1, . . . , xk]t is
q-Gaussian with parameter qk > 1, we deduce that, with Uk =
[u1, . . . , uk]t ,

ϕXk
(Uk) = φ

¡kUkk
¢

= 21− m
2

0
¡

m
2

¢kUkkm
2 Km

2

¡kUkk
¢

so that

φ(u) = 21− m
2

0
¡

m
2

¢kukm
2 Km

2

¡kuk¢

and

ϕXn(Un) = φ
¡kUnk

¢

= 21− m
2

0
¡

m
2

¢kUnkm
2 Km

2

¡kUnk
¢

and Xn is q-Gaussian with dimension n and m degrees of free-
dom, and thus has non-extensivity parameter qn such that

m = 2

qk − 1
− k = 2

qn − 1
− n.

The same result applies with qk < 1 by considering character-
istic function defined as in (1.12).
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A.2. An alternate proof of Theorem 1

We provide here an alternate proof based on stochastic repre-
sentations, as first used in [25], extending their result to the case
q > 1. Assume that Xk ∈ R

k is q-Gaussian distributed with pa-
rameter qk : a stochastic representation of Xk is (see [21])

Xk = χk

χd

Zk

where χk and χd are independent and chi-distributed random
variables, where d = 2

qk−1 − k and Zk is uniform on the sphere.
We know moreover that if Xn = rZn then

Xk = rd1Zk

where d2
1 ∼ βk

2 , n−k
2

. We deduce that

rd1Zk = χk

χd

or

r2d2
1 = χ2

k

χ2
d

.

But by Luckacs theorem2:

χ̂2
n

χ̂2
d

χ̃2
k

χ̃2
k + χ̃2

n−k

= χ2
k

χ2
d

we deduce that

r = χn

χd

and that Xn = rZn is q-Gaussian distributed with parameter
qn = 1 + 2

d+n
= 1 + 2(qk−1)

2+(n−k)(qk−1)
.
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