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Abstract

We examine the majorization properties of general thermal-like mixed states depending on a set of parameters. Sufficient

conditions which ensure the increase in mixedness, and hence of any associated entropic form, when these parameters are

varied, are identified. We then discuss those exhibiting a power law distribution, showing that they can be characterized by

two distinct mixing parameters, one associated with temperature and the other with the non-extensivity index q. Illustrative

numerical results are also provided.

r 2006 Elsevier B.V. All rights reserved.
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The rigorous concept of disorder derived from the theory of majorization [1–4] has recently received
renewed attention in theoretical physics, particularly in the field of quantum information [5–7]. The essential
reason is that it is stronger than that based on standard entropic considerations. The basic idea is that a given
probability distribution or density matrix can be said to be ‘‘more mixed’’ or ‘‘disordered’’ than another only
when it is majorized by the latter. This implies a higher entropy of the former, although the converse
implication is not necessarily true. Majorization provides a natural partial ordering on probability
distributions [2] and has consequently found many applications not only in mathematics, but also in other
areas such as economy and computer science. Moreover, majorization relations are often naturally satisfied.
For instance, in discrete classical systems, the joint distribution of two random variables is always majorized
by the marginal distributions, while in quantum mechanics, the global density matrix r of a separable (i.e.,
non-entangled) mixed state of a composite system is always more mixed than the local reduced densities ri of
each subsystem [7], a property which can be violated by entangled states. These statements are stronger than
the corresponding entropic inequalities (i.e., SðrÞ4SðriÞ).

The aim of this work is to examine along the previous lines the majorization properties of general thermal-
like mixed states depending on a set of parameters, discussing as application those characterized by a power-
law distribution [8–10]. The latter have in recent years been analyzed and successfully employed in a wide
range of contexts [11–15], and can be derived within a generalized non-extensive thermodynamic formalism
based on the Tsallis entropy [8]. One of the basic physical questions we want to answer is if such states
do become more disordered, in the way determined by majorization, when the temperature (or some other
e front matter r 2006 Elsevier B.V. All rights reserved.
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fundamental parameter characterizing the distribution) is increased, as occurs with the standard
Boltzmann–Gibbs thermal state. Such property would have far reaching consequences, in particular that of
ensuring a universal entropy increase, i.e., an increase in any consistent disorder measure, and not just in that
employed in the construction of the state. It would also imply the increase of the expectation value of any

increasing function of energy, and not just of the energy itself. Here we will prove that such property is indeed
valid.

For this purpose, we first identify the sufficient conditions that ensure the increase in mixedness of a
general thermal-like mixed state when the parameters that characterize it are varied. We then show that
states exhibiting a power-law distribution can be characterized by two distinct mixing parameters, one
associated with temperature and the other with the non-additivity index q. We also discuss the majorization
properties of escort distributions and the mixing conditions for generalized thermal-like states in the presence
of constraints on non-commuting observables. Illustrative numerical results for a simple model are provided
as well. Distributions with correct mixing properties can then be employed to investigate the effects of
randomness in physical systems in a more complete way than that provided by the standard thermal state,
allowing to explore different paths from the ground state to the full random state, all characterized by a proper
disorder increase.

We will consider a quantum system of finite dimension n. The eigenvalues pi of any density matrix r for such
system ðpiX0;

Pn
i¼1 pi ¼ 1Þ will be sorted in what follows in decreasing order ðpiXpj if ðiojÞ. A density r is

then said to be more mixed than a second density r0 ðr � r0Þ if the eigenvalues of r are majorized by those of r0

[2–4]:

r � r03sj �
Xj

i¼1

pips0j �
Xj

i¼1

p0i; j ¼ 1; . . . ; n� 1, (1)

with sn ¼ s0n ¼ 1. In such a case, the probabilities pi are more ‘‘spread out’’ than the p0i’s, and can be written as
a convex combination of permutations of the latter, i.e., p ¼

P
a qaPaðp

0Þ, where Pa are permutations and
qaX0,

P
aqa ¼ 1 [2–4]. The state described by r is then more mixed or ‘‘random’’ than that described by r0.

Accordingly, the completely random state r ¼ I=n (with I the identity) is more mixed than any density, while
any density is more mixed than a pure state, i.e., I=n � r � jFihFj 8 normalized density r and pure state jFi.
It can be also shown that if r � r0, r can be written as a convex combination of unitary transformations of r0,
i.e., r ¼

P
aqaU

y
ar
0Ua, with qa40 and UyaUa ¼ I , and viceversa (Uhlmann’s theorem [3]). If the dimensions of

r and r0 differ, the same definition (1) can be applied after completing with zeros the set of eigenvalues of the
density of lowest dimension.

Let us briefly discuss now the relation with entropy. Consider for instance the general entropic forms
[16–19]

Sf ðrÞ ¼ Tr f ðrÞ ¼
Xn

i¼1

f ðpiÞ, (2)

where f is a smooth strictly concave function ðf 0ðpiÞof 0ðpjÞ if pi4pjÞ defined in the interval ½0; 1�, satisfying
f ð0Þ ¼ f ð1Þ ¼ 0. The von Neumann entropy SðrÞ ¼ �Trr ln r and the Tsallis generalization [8],

SqðrÞ ¼ Trðr� rqÞ=ðq� 1Þ; q40, (3)

which approaches the von Neumann entropy for q! 1, are the most important examples. It can be
shown that if r � r0 ) Sf ðrÞXSf ðr0Þ for any f of the previous form [3,20] (the same holds for the
Renyi entropy SR

q ¼ ln½1þ ð1� qÞSqðrÞ�=ð1� qÞ [21], since it is an increasing function of SqðrÞ, as well
as for any Schur concave function of r [4]). However, for a given f, the converse is not necessarily true,
so that the concept of disorder implied by Eq. (1) is stronger than that based on a particular choice of f.
Nonetheless, the converse holds as follows: if Sf ðrÞXSf ðr0Þ for any f of the previous form ) r � r0 [3,20].
In other words, the hallmark of increasing mixedness is a universal entropy increase. Note, however, that
Eqs. (1) define a partial order relationship, in the sense that given two densities r;r0, it may happen that rEr0

and r0Er.
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Let us now consider a general mixed state rðlÞ depending on a continuous parameter l. We will say that l is
a mixing parameter in a certain interval if rðlÞ becomes more mixed as l increases in this interval:

rðlÞ � rðl0Þ if lXl0. (4)

This is equivalent, in the case of a smooth dependence, to the condition

qsj=qlp0; j ¼ 1; . . . ; n� 1,

within this interval. The generalized entropy Sf ½rðlÞ� is then a non-decreasing function of l for any concave f,
as easily verified:

qSf ½rðlÞ�
ql

¼
Xn�1

j¼1

qsj

ql
½f 0ðpjÞ � f 0ðpjþ1Þ�X0, (5)

since f 0ðpjÞ � f 0ðpjþ1Þp0 for f concave. Such states exhibit then an unambiguous disorder increase for
increasing l.

As a general example, let us consider the escort densities [21]

rq ¼ rq=Zq; Zq ¼ Trrq, (6)

associated with a density matrix r. It is easily seen that for q40, l ¼ 1=q is a mixing parameter for rq, since the
ensuing partial sums satisfy, for jon,

qsj

ql
¼ �q2

Xj

i¼1

Xn

k¼jþ1

pqipqj lnðpi=pjÞp0; l ¼ 1=q40, (7)

where pqi ¼ p
q
i =Zq are the eigenvalues of rqðpqiXpqj 8q40 if ipjÞ. Any other decreasing function of q is of

course a mixing parameter for rq as well. We have therefore rq � rq0 if 0oqpq0 for a given fixed density
matrix r.

Assume now that the system is described by a Hamiltonian H with energies ei, i ¼ 1; . . . ; n, sorted in what
follows in increasing order, and consider densities rðlÞ which satisfy the conditions: (a) they commute with H,
(b) their eigenvalues are non-increasing functions of energy ðpiXpj if eipejÞ and (c) l is a mixing parameter for
rðlÞ in a certain interval. In such a case, another fundamental consequence of Eq. (4) is that not only the
average energy hHir ¼ TrrðlÞH, but also the expectation value of any non-decreasing function w of H

ðwðeiÞpwðejÞ if iojÞ, independent of l, is a non-decreasing function of l:

qhwðHÞir
ql

¼
Xn�1

j¼1

qsj

ql
½wðejÞ � wðejþ1Þ�X0. (8)

This automatically ensures a non-negative generalized ‘‘specific heat’’ cl � qhHir=qlX0. Let us also remark
that if qsj=ql were positive for some j (and pj4pjþ1, ejoejþ1), one could always find functions f and w of the
previous forms such that Eqs. (5) and (8) become negative. In this way, one can in principle always witness the
absence of proper mixing increase.

We may now say that rðlÞ exhibits a thermal-like behavior if in addition, it approaches the ground state
density I1=n1 in some limit l! l0 (I1 denotes the projector onto the ground state energy subspace and n1 its
degeneracy) and the state of maximum disorder I=n in some other limit l! l1, with l a mixing parameter
for l0olol1. The most common example of a state of the previous form is, of course, the standard
Boltzmann–Gibbs (BG) thermal state (we set in what follows Boltzmann constant k ¼ 1)

rðTÞ ¼ exp½�H=T �=ZðTÞ; ZðTÞ ¼ Tr exp½�H=T �; T40, (9)

obtained from the minimization of hHir � TSðrÞ. It is well known that its von Neumann entropy S½rðTÞ� is an
increasing function of temperature, which is usually taken as the basis for the statement that rðTÞ becomes
more disordered as T increases. However, in the present framework this statement can be more rigorously
formulated. It is easily shown that T is a proper mixing parameter for rðTÞ in the interval ð0;1Þ, i.e.,

rðTÞ � rðT 0Þ if TXT 040, (10)
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as the sums of its first j eigenvalues satisfy, for j ¼ 1; . . . ; n� 1,

qsj

qT
¼
Xj

i¼1

Xn

k¼jþ1

pipkðei � ekÞ=T2p0. (11)

Hence, not only its von Neumann entropy, but also its generalized entropy Sf ½rðTÞ�, is an increasing function of

T for any concave f. The average of any increasing function of energy is an increasing function of T as well. It
can be shown that the generalized thermal density obtained from the minimization of hHir � TSf ðrÞ, given by
[18] rf ðTÞ ¼ f 0

�1
ðH=T þ aÞ, where a is a normalization constant and the cutoff f 0

�1
ðuÞ ¼ 0 if u4f 0ð0Þ applies,

also becomes more mixed as T increases [15]. Eq. (11) remains valid replacing pipk by ~Z ~pi ~pk, with ~pi ¼

�½f 00ðpiÞ
~Z��1 for pi40 and ~Z ¼ �

P
pi40½f

00
ðpiÞ�

�1, being both positive for f concave.
Let us now identify the conditions which ensure that l is a mixing parameter for a density of the more

general form

rðlÞ ¼ gðH; lÞ=ZðlÞ; ZðlÞ ¼ Tr gðH ; lÞ, (12)

where gðe; lÞ is assumed to be an arbitrary smooth positive non-increasing function of e for e 2 ½e1; en�

depending on a parameter l, with ½rðlÞ;H� ¼ 0. The variation rate of the associated partial sums can be shown
to be, for jon,

qsj

ql
¼
Xj

i¼1

Xn

k¼jþ1

pipk½ ~glðeiÞ � ~glðekÞ�; ~glðeÞ �
q ln g

ql
, (13)

with pi ¼ gðei; lÞ=ZðlÞ, which generalizes Eq. (11). A sufficient condition which ensures qsj=qlp0 for j ¼

1; . . . ; n� 1 is, therefore, that ~glðeÞ be a non-decreasing function of e for e 2 ½e1; en�, i.e.,

q2 ln g

qe ql
X0)

qsj

ql
p0; j ¼ 1; . . . ; n� 1. (14)

For instance, if

rðlÞ ¼ gðH=lÞ=ZðlÞ, (15)

where l40 and g is here a positive non-increasing smooth real function, ~glðeÞ ¼ �l
�1u½ln gðuÞ�0, with u ¼ e=l,

and Eq. (14) leads to the condition

�fu½ln gðuÞ�0g0X0, (16)

which is not necessarily valid (consider for instance gðuÞ ¼ ½1þ lnðuþ 1Þ��1 for u40). It is, of course, valid in
the BG case for l ¼ T ðgðuÞ ¼ exp½�u�Þ as well as for gðuÞ ¼ expð�urÞ 8r40 if u40 ð�fu½ln gðuÞ�0g0 ¼

r2ur�1
X0Þ. Note also that if gð0Þ40 and gð1Þ ¼ 0, the state rðlÞ ¼ gðH̄=lÞ=ZðlÞ, with H̄ ¼ H � e1I , will

always approach the ground state density I1=n1 for l! 0 and the fully mixed state I=n for l!1. It is,
however, the more stringent condition (16) which ensures that rðlÞ will in addition become monotonously
more mixed as it evolves from the ground state to the fully mixed state.

Note also that if l is a mixing parameter for the density (12), it will remain a mixing parameter for the
associated escort density (6) for q40, which corresponds to gqðH; lÞ ¼ gðH ; lÞq. The sign of q2 ln gq=qe ql is
left unchanged for l independent of q. Eq. (7) also follows from Eq. (13) for gðH; lÞ ! gðHÞ1=l.

As an important example of Eq. (12), we will examine the mixing properties of density operators
characterized by a power-law distribution, which can be written in the form of the Tsallis distribution [8,9]

rðq;T�Þ ¼ ½I � ð1� qÞH̄=T��
1=ð1�qÞ
þ =Zðq;T�Þ, (17)

where T�40 represents an effective temperature, q the non-extensivity index, H̄ ¼ H � e1I the energy
measured from the ground state and ½u�þ � ðuþ jujÞ=2. For q! 1, rðq;TÞ approaches the BG distribution (9).
Eq. (17) is obviously positive and fulfills previous conditions (a) and (b) 8 T�40 and q 2 R. Its eigenvalues pi

are strictly decreasing functions of energy for q41, but just non-increasing functions for qo1 due to the cutoff

that applies in this case (pi ¼ 0 if ð1� qÞēiXT�, where ēi � ei � e1).



ARTICLE IN PRESS
N. Canosa et al. / Physica A 368 (2006) 435–441 439
We will now show that both T� and q are proper mixing parameters for rðq;T�Þ. Defining gðē; q;T�Þ �
½1� ð1� qÞē=T��

1=ð1�qÞ
þ , we obtain

q2 ln g

qē qT�
¼

1

ðT� � ð1� qÞēÞ2
X0;

q2 ln g

qē qq
¼

ē

ðT� � ð1� qÞēÞ2
X0, (18)

for ē40 and ð1� qÞē=T�o1, so that according to Eq. (14), rðq;T�Þ becomes more mixed as either T� or q

increases:

rðq;T�Þ � rðq;T 0�Þ if T�XT 0
�40; rðq;T�Þ � rðq0;T�Þ if qXq0. (19)

The role of T� and q as proper mixing parameters constitutes then another fundamental property of the
distribution (17). Any entropy Sf ½rðq;T�Þ� (in particular Sq0 ½rðq;T�Þ� for any q040) is a non-decreasing
function of both T� and q in any system, as illustrated in Fig. 1 for a truncated harmonic oscillator.

Let us remark that Eq. (17) exhibits a proper thermal-like behavior with respect to both q and T�, since in
addition it approaches the ground state density I1=n1 both for T� ! 0 at fixed q and for q!�1 at fixed T�,
and the random state I=n both for T� ! 1 at fixed q as well as for q!1 at fixed T�. Actually, due to the
cutoff for qo1;rðq;T�Þ ¼ I1=n1 already for T�oð1� qÞD at fixed qo1, and qo1� T�=D at fixed T�, where D
is the lowest non-zero excitation energy. Note also that rðq;T�Þ � I=n behaves linearly with H̄ for large
T� ðgðē; q;T�Þ � 1� ē=T� for T�bj1� qjēÞ but logarithmically for large q ðgðē; q;T�Þ � 1� ln½1þ qē=T��=
q for qb ln½1þ qē=T�� and qb1Þ.
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Fig. 1. Top left: the von Neumann entropy of the Tsallis distribution (17) (scaled to the maximum value Sm � SðI=nÞ) for n ¼ 100 equally

spaced levels with spacing _o, showing that it is a non-decreasing function of both T� and q. Remaining panels: The scaled Tsallis entropy

Sq0 ½rðq;T�Þ�=Sm
q0 in the same system, as a function of T� at fixed q (right panels) and as a function of q at fixed T� (bottom left panel), for

different values of q0, ranging from q0 ¼ 0:25 to q0 ¼ 2 in steps of 0.25. Dashed (dotted) lines correspond to q041 ðq0o1Þ, solid lines to

q0 ¼ 1 (von Neumann entropy). They are all increasing functions of T� and q.
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Eq. (17) can also be characterized by other mixing parameters. For example, rewriting Eq. (17) as
rsðg;mÞ ¼ ½1� sH̄=m�s=gþ =Zðg; mÞ, with g ¼ j1� qj40, m ¼ T�=j1� qj40 and s ¼ Signð1� qÞ, both m and g are
as well independent mixing parameters for both signs of s (despite the increase of g with decreasing q for qo1),
since q2 ln g=qē qm ¼ ½gðm� sēÞ2��1X0, q2 ln g=qē qg ¼ ½g2ðm� sēÞ��1X0 for sē=mo1. Thus, rsðg;mÞ � rsðg; m

0Þ if
mXm0 and rsðg;mÞ � rsðg

0; mÞ if gXg0. These properties also follow from Eq. (16) in the case of m (for

gðuÞ ¼ ½1� su�
s=g
þ ) and from Eqs. (6)–(7) in the case of g. Again, we obtain a thermal-like behavior with respect

to both g and m for s ¼ �1, with the ground state density approached for m! 0 or g! 0 and the full random
state approached for m!1 or g!1 (provided m4ēn if s ¼ 1).

The actual thermal state derived from the non-extensive thermodynamic formalism based on the Tsallis
entropy and the minimization of the free energy F q ¼ hHirq

� TSqðrÞ [10,13], where q40 and rq is the escort

density (6), is also of the form (17) but with T� related to the actual T by T ¼ ½T� � ð1� qÞhH̄irq
�=Zq

(following Ref. [13]). For q41, T is a direct increasing function of T�, as in this case qT=qT� ¼

ðZq� 1Þ=½ðq� 1ÞZq�X0 (with Z ¼ 2hOirq
hO�1irq

� 1X1 and O ¼ I � ð1� qÞH̄=T�), so that T will also be a

proper mixing parameter. It will remain so for 0oqo1 provided the absolute minimum of the free energy Fq at
each T is considered [22], as in this case the entropy (and hence T�) cannot decrease with increasing T.

So far all previous expressions are applicable in both the quantum and the classical discrete case. Let us
finally briefly examine the majorization properties of density matrices constructed from constraints on two or
more non-commuting observables. We may for instance consider two observables H0, H1, with ½H0;H1�a0,
and a density of the form

rðl0; l1Þ ¼ gðH0=l0 þH1=l1Þ=Zðl0; l1Þ, (20)

where gðuÞ is a positive non-increasing function and ln40 for n ¼ 0; 1, generalizing Eq. (15). In this case, Eq.
(13) should be replaced, for jon, by

qsj

qln
¼
Xj

i¼1

Xn

k¼jþ1

pipk½ ~g
n
i � ~gn

k�; ~gn
i ¼

q ln gðuiÞ

qln
¼ �

g0ðuiÞ

l2ngðuiÞ
hijHnjii, (21)

where ui denotes the eigenvalues (sorted in increasing order) of
P

n¼0;1Hn=ln and jii the corresponding
eigenstates (in case of degeneracy we assume in (21) Hn diagonal within each eigenspace). Hence, we can
ensure that ln will be a mixing parameter for (20) if ~gn

i does not decrease for increasing values of ui.
For a single observable H0, ~g

0
i ¼ �l

�1
0 uig

0ðuiÞ=gðuiÞ and the previous condition reduces to Eq. (16). This is
also the case when hijHnjii is proportional to ui (hijHnjii ¼ aui, with a40 and independent of i), as occurs in
simple systems such as a harmonic oscillator H ¼ ½p2=mþ kx2

�=2. In this case hijp2jii ¼ mEi, hijx
2jii ¼ Ei=k,

with Ei ¼ _oði þ 1=2Þ the oscillator energies ðo ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
Þ, so that both the mass m and the inverse oscillator

strength k�1 are also mixing parameters in r ¼ gðH=TÞ=ZðTÞ, provided T is a mixing parameter too (for
l0 ¼ m, l1 ¼ k�1, we would have gn

i ¼ �ð1=2Þl
�1
n ½uig

0ðuiÞ=gðuiÞ�, with ui ¼ Ei=T). In the general case, however,
hijHnjii=ui may depend on i in a non-trivial way, so that the mixing properties of r will require a careful
analysis of the behavior of ~gn

i .
In conclusion, we have applied the theory of majorization to identify the rigorous sufficient mixing

conditions, as well as their main physical implications, for general mixed states of the form (12), which are
summarized in Eqs. (14), (16), (5) and (8). As application, we have examined those characterized by a power
law distribution, and shown that they can be expressed in terms of two fundamental mixing parameters, which
can be taken as T� and q in the representation (17). We have in particular identified the role of q in (17) as a
rigorous mixing parameter. The actual thermal state derived in the Tsallis non-extensive thermodynamic
formalism was also shown to become more mixed for increasing T (with the above remarks applying for
0oqo1), as occurs with the standard BG thermal state, ensuring in particular a universal entropy increase,
i.e., qSf ½rðq;TÞ�=qTX0 for any concave f. These results strengthen thus the robustness of the generalized non-
extensive thermodynamic formalism. We have also discussed the majorization properties of escort
distributions (Eq. (6)) and derived sufficient conditions for mixedness increase in the presence of non-
commuting observables (Eq. (21)).
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Majorization theory enables then to derive very general inequalities with deep implications by simple means.
Generalized thermal-like distributions with proper mixing parameters may also help to provide a more
complete description of the behavior of a correlated quantum system with increasing randomness, revealing
aspects which could be hidden in standard BG statistics [15]. For instance, any system possessing a limit
temperature Tc in standard statistics for some property present in its ground state and absent in the vicinity of
the completely random state, will also possess a limit value of the mixing parameter in a generalized thermal-
like distribution. Knowledge of such boundaries (like a critical curve T�c ðqÞ in (17)) may provide a new
perspective for the classification of order-disorder transitions or crossovers.
The authors acknowledge support from CIC (RR), CONICET (NC,MP) and ANPCYT (MP) of Argentina.
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[1] G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1978.

[2] A.W. Marshall, I. Olkin, Inequalities: Theory of Majorization and its Applications, Academic Press, New York, 1979.

[3] A. Wehrl, Rev. Mod. Phys. 50 (1978) 221.

[4] R. Bhatia, Matrix Analysis, Springer, Berlin, 1997.

[5] M. Nielsen, I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000.

[6] M.A. Nielsen, Phys. Rev. Lett. 83 (1999) 436.

[7] M.A. Nielsen, J. Kempe, Phys. Rev. Lett. 86 (2001) 5184;

T. Hiroshima, Phys. Rev. Lett. 91 (2003) 057902.

[8] C. Tsallis, J. Stat. Phys. 52 (1988) 479.

[9] E.M.F. Curado, C. Tsallis, J. Phys. A 24 (1991) L69.

[10] C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261 (1998) 534.

[11] M. Gell-Mann, C. Tsallis, Nonextensive Entropy-Interdisciplinary Applications, Oxford University Press, New York, 2004.

[12] S. Abe, Y. Okamoto, Non Extensive Statistical Mechanics and its Applications, Lecture Notes in Physics, Springer, Heidelberg, 2001.

[13] C. Tsallis, Physica D 193 (2004) 3.

[14] S. Abe, A.K. Rajagopal, Phys. Rev. Lett. 91 (2003) 120601.

[15] R. Rossignoli, N. Canosa, Phys. Lett. A 323 (2004) 22.

[16] R.S. Mendes, Physica A 242 (1997) 299.

[17] A. Plastino, A.R. Plastino, Phys. Lett. A 226 (1997) 257.

[18] R. Rossignoli, N. Canosa, Phys. Lett. A 264 (1999) 148;

N. Canosa, R. Rossignoli, Phys. Rev. Lett. 88 (2002) 170401.

[19] E.M.F. Curado, Braz. J. Phys. 29 (1999) 36.

[20] R. Rossignoli, N. Canosa, Phys. Rev. A 67 (2003) 042302;

R. Rossignoli, N. Canosa, Physica A 344 (2004) 637.
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