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By means of Monte Carlo simulations of extensive air showers (EAS), we have performed a comprehen-
sive study of the shower to shower fluctuations affecting the longitudinal and lateral development of EAS.
We split the fluctuations into physical fluctuations and those induced by the thinning procedure custom-
arily applied to simulate showers at EeV energies and above. We study the influence of thinning on the
calculation of the shower to shower fluctuations in the simulations. For thinning levels larger than
Rthin = 10�5 � 10�6, the determination of the shower to shower fluctuations is hampered by the artificial
fluctuations induced by the thinning procedure. However, we show that shower to shower fluctuations
can still be approximately estimated, and we provide expressions to calculate them. The influence of fluc-
tuations of the depth of first interaction on the determination of shower to shower fluctuations is also
addressed.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction The calculation of shower to shower fluctuations can in princi-
Extensive air showers (EAS) have been studied over the last
70 years [1]. They result from the interaction in the atmosphere
of high-energy protons and nuclei arriving from space. The product
of these collisions are a set of secondary particles carrying a frac-
tion of the primary energy. These secondaries move through the
atmosphere and interact again generating new secondaries. The
process continues, increasing the number of secondary particles,
until their energies are too low to contribute to the generation of
new particles. Particles reaching ground are sampled with arrays
of detectors, and their properties are used to infer the properties
of the primary initiating the shower. Measurements of the electron
and muon density, of the arrival time of the particles at ground,
and of the depth at which the shower has the maximum number
of particles (Xmax), give information on the arrival direction, pri-
mary energy, and on the mass of the primaries [1].

The complexity of the cascade phenomena, and the poor knowl-
edge of the hadronic interactions at very high energy [2], make the
experimental determination of the properties of the primaries very
difficult. Moreover, primary particles with the same energy, mass
and direction produce secondary particles with parameters that
vary from shower to shower. This feature is called ‘‘shower to
shower fluctuations’’. An understanding of the shower to shower
fluctuations will help to improve the interpretation of cosmic-ray
data.
ll rights reserved.
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ple be addressed with Monte Carlo simulations of extensive air
showers. However, the number of particles that are produced in
an air shower at ultra high energy (above �1018 eV) is so large
(�1010), that it is almost impossible to follow the propagation to
ground level of all the secondaries in the Monte Carlo in a reason-
able amount of time, or even to store the large amount of informa-
tion produced. For this reason, a statistical sampling procedure
called ‘‘thinning’’ [3] is used in the simulations. Thinning algo-
rithms typically consist on propagating only a small, representative
fraction of the total number of particles in the shower, assigning
statistical weights to the sampled particles to compensate for the
rejected ones. However, thinning algorithms introduce artificial
fluctuations in the simulated showers, hampering the determina-
tion of the intrinsic, physical shower to shower fluctuations with
Monte Carlo simulations. For this reason the study of fluctuations
using Monte Carlo simulations is quite difficult and uncertain. This
is of utmost importance in cosmic-ray physics, since an incorrect
assumption on the shower to shower fluctuations can lead to sys-
tematic errors on the determination of the parameters of the pri-
mary particles.

In this work we address the problem of determining the true,
physical shower to shower fluctuations in Monte Carlo simula-
tions, and quantify the effect of thinning on their determination.
We give expressions that allow the estimation of physical fluctua-
tions from Monte Carlo simulations, even in the case of relatively
strongly thinned showers. Other recent approaches which study
the effect of artificial fluctuations due to the thinning procedure
are given in [4,5]
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The paper is organized as follows: in Section 2 we describe the
simulations performed in this work, and the thinning algorithm
adopted. In Section 3 we identify the different sources of fluctua-
tions in shower simulations. In Section 4 we perform a comprehen-
sive study of the fluctuations in the longitudinal and lateral shower
development, and give expressions that allow to separate physical
shower to shower fluctuations from the artificial fluctuations in-
duced by the thinning procedure, and we quantify for which thin-
ning levels these expressions can be applied. In Section 5 we apply
our results to study the behaviour of the physical fluctuations at
ground. In Section 6, we quantify the influence on the shower to
shower fluctuations of the depth of first interaction of the primary
initiating the shower. Finally, we summarize our conclusions in
Section 7. In the Appendix we give an explicit mathematical deri-
vation of the expressions presented in Section 4.
Table 1
Classification of the fluctuations in a shower, arising from the physical processes in
the shower and the measurement process, and those that appear only in shower
simulations.

Physical fluctuations - Depth of first interaction
- Multiplicity, inelasticity, etc., in first interaction
- Secondary interactions

Experimental
fluctuations

- Detector response
- Sampling fluctuations

Artificial fluctuations - Thinning
- Un-thinning
2. The simulations

In this work we have used the air shower simulation program,
AIRES [6,7], along with the hadronic model QGSJET01 [8] to simu-
late proton and iron-induced showers with primary energy
1019 eV. As explained above, due to the large number of particles
that are created in the simulation, AIRES includes a statistical sam-
pling algorithm, that consists on propagating a small, representa-
tive fraction of the total number of particles, assigning a
statistical weight w to the sampled particles to compensate for
the rejected ones. The weight is adjusted in such a way that both
the total energy and the average number of particles is guaranteed
to be conserved.

Before the simulation starts, the user indicates, as an input to
AIRES, the relative thinning level Rthin. The thinning energy Ethin –
the energy below which the thinning process starts – is defined
as Ethin = Rthin � Ep where, Ep is the primary energy. For ultra high
energy cosmic ray shower simulations convenient values for the
relative thinning are Rthin = 10�5 � 10�9, but the actual choice de-
pends on the purpose of the simulation. The thinning level affects
both the simulation CPU time and the size of the output produced
in the simulation, both typically behaving linearly with R�1

thin. If we
increase Rthin by a factor of 10 the simulation speeds up by a sim-
ilar factor, and the output is reduced accordingly, but the price to
pay is an enhancement of the artificial fluctuations in the simu-
lated showers as discussed below.

We describe here the thinning algorithm implemented in the
AIRES code [7], originally due to Hillas [3]. At the beginning of
the simulation, the primary particle is assigned a weight w = 1.
Then the primary is propagated and interacts in the atmosphere
producing n secondary particles. Before incorporating any second-
ary particle in the simulation, the energy of the primary Ep which
has generated that secondary is compared to Ethin. If Ep > Ethin, then
all the secondaries with energy greater or equal than Ethin are kept,
and their weight is equal to the weight of the primary particle. Sec-
ondaries with energy less than Ethin are kept with a probability
pi = Ei/Ethin (Ei is the energy of ith secondary), and their weight is
adjusted so that wi = (1/pi) � w, with w being the weight of the
mother particle producing that secondary. On the other hand if
Ep < Ethin, it means that the particle came from a previous thinning
operation. Then, one and only one of all the produced secondaries –
say the jth – is kept, with probability pj ¼ Ej=

Pn
i¼1Ei. Again, the

weight of this particle is increased by a factor wj = (1/pj) � w.
To avoid confusion between particles and weights, we identify

an entry with a particle explicitly followed in the simulation which
is associated a weight w. Hence, an entry represents w particles. It
is important to stress that once the thinning energy is reached, the
number of entries Ne is no longer increased in the shower pro-
cesses (only one secondary particle is followed in each interaction),
while the number of particles N does however increase, since the
weight of each entry typically increases in the showering process.
When evaluating a physical observable, each entry must be
weighted with its corresponding statistical weight.

In AIRES, the thinning algorithm is complemented with an
‘‘extended thinning algorithm’’ [7], designed to ensure that all
the statistical weights are always smaller than a certain positive
number (other algorithms based on this same idea are possible,
see for instance [9]). To ensure this, an external parameter called
statistical weight factor W is available in the simulation, which
limits the maximum weight wmax of the particles. To further opti-
mize the procedure of sampling, different weight factors for elec-
tromagnetic and heavy particles are defined. These translate into
different maximum weights wmax for different particle species,
which also depend on the primary energy and the thinning energy.
For instance, for a primary energy of 1019 eV, and a thinning level
Rthin = 10�6 the maximum weight for electrons is approximately
wmax � 106 while for muons wmax � 104.

We have simulated proton and iron-induced showers with pri-
mary energy Ep = 1019 eV, zenith angle h = 0�, 30�, 45� and 60� and
relative thinning Rthin = 10�5, 10�6, 10�7 and 10�8 (the two latter
Rthin for proton only). We have also simulated showers with rela-
tive thinning of Rthin = 10�7 but with weight factor for electrons
W(EM) = 0.1 which translates into a smaller maximum weight than
the default value given above. Finally, we have also simulated two
sets of proton and iron-induced showers at h = 0�, with fixed depth
of first interaction, starting at the corresponding mean interaction
depth for protons and iron at 1019 eV.
3. Fluctuations in EAS

In a real shower or in a simulation of an EAS, there are a number
of different fluctuations that can occur. Rather generally, we can
make a simple classification as shown in Table 1.

‘‘Physical fluctuations’’ are those due to physical processes in
the shower. Here we split them into those due to the first interac-
tion, and those occurring in the secondary interactions, as is
customary, and because it has recently been suggested that ‘‘uni-
versal’’ shower properties may emerge when considering only
the fluctuations in the first interaction point [10]. Physical fluctua-
tions occurring in the first interaction are further divided into
those affecting the depth of the first interaction, and those that
arise from fluctuations of multiplicity or inelasticity also in the first
interaction.

In the case of real data, fluctuations are enlarged due to the
detector response, and to the fact that the detector usually only
samples a small fraction of the shower front. This ‘‘sampling fluc-
tuation’’ is a statistically well known problem, and sampling fluc-
tuations are rather well studied [11,12]. We will not consider
them in this work. Also the detector response introduces an addi-
tional source of fluctuations, which are detector dependent, and
will not be considered here.
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On the other hand, Monte Carlo simulated data is affected by
artificial fluctuations due to the thinning and un-thinning (re-sam-
pling) procedures. For the purposes of this work we do not need to
consider the effect of fluctuations induced by the unthinning pro-
cedure [11].

4. Fluctuations of the longitudinal and lateral shower
development

4.1. Fluctuations of the longitudinal profile

In Fig. 1 we show the average longitudinal profile of the number
of electrons (left panels) and muons (right panels) N, obtained in
simulations of 100 proton-induced showers with Ep = 1019 eV, for
thinning levels Rthin = 10�6 and 10�7 and h = 0�, 60�. Also shown
are the relative shower to shower fluctuations r=N for electrons
and muons. As it is well known [13], the relative fluctuation has
a minimum close to the depth of shower maximum. Also and as
it is apparent from the figures, the dependence of the relative fluc-
tuation on the thinning is small, at least for depths close to the
depth of maximum.

In Fig. 2 we show for the same showers in Fig. 1, the skewness
and the kurtosis of the distribution of the number of particles N at
different depths. It is worth recalling that the skewness of the dis-
tribution of a variable x is defined as

c3 ¼
hðx� �xÞ3i

r3
x

; ð1Þ

where �xðrxÞ is the average (standard deviation) of x. The kurtosis is
defined as:

c4 ¼
hðx� �xÞ4i

r4
x

� 3: ð2Þ

where the ‘‘�3’’ in the definition is a convention to make c4 = 0 for a
Gaussian distribution. Both the kurtosis and the skewness can be
positive or negative. The skewness is a measure of the asymmetry
of the distribution with respect to the mean value. A negative sign
implies that the distribution is ‘‘deformed’’ towards values of x
smaller than the mean. The contrary applies for a positive sign.
103
104
105
106
107
108
109

1010
1011

 0  500  1000  1500  2000

N

Depth (g cm-2)

0o, 10-6

0o, 10-7

0o, 10-8

60o, 10-6

60o, 10-7

 0

 0.5

 1

 1.5

 2

 0  500  1000  1500  2000

σ /
N

Depth (g cm-2)

0o, 10-6

0o, 10-7

0o, 10-8

60o, 10-6

60o, 10-7

Fig. 1. Upper panels: longitudinal development of the average number of electrons (l
fluctuations r=N as a function of the slant depth for electrons (left) and muons (right). In
simulated with relative thinning Rthin = 10�6, 10�7 and 10�8.
The kurtosis is a measure of the length of the tails of the distribu-
tion. Positive values imply that the distribution has tails longer than
those of a Gaussian, while negative values imply that the tails are
shorter (for instance a flat distribution, a box, has kurtosis �1.2).
A Gaussian distribution has c3 = c4 = 0.

Several remarks can be made from Fig. 2. Firstly, it is apparent
that both, the skewness and the kurtosis of the distribution of
the number of particles depend strongly on the thinning level, con-
trary to what happens to the mean N and to the relative fluctua-
tions r=N. Close to the depth of shower maximum both the
skewness and the kurtosis have local extrema very different from
zero, implying that the distribution is strongly non-Gaussian. The
skewness is negative and this implies that the distribution is asym-
metric towards smaller values of N than average. The positive val-
ues of the kurtosis imply that the distribution of N has tails longer
than those of a Gaussian, at least close to shower maximum.
Remarkably, the log-Gaussian distribution, widely used to param-
eterize fluctuations in the number of electrons, has both c3 > 0 and
c4 > 0, while the fluctuations predicted by Monte Carlo simulations
near the maximum of the shower, have negative skewness. For
muons and at large depths the skewness is close to zero, so that
a Gaussian or a log-Gaussian distribution is a good approximation.
For electrons, this is never the case.
4.2. Fluctuations of the lateral profile at ground

Of special importance for cosmic-ray physics performed with
arrays of detectors is the study of fluctuations in the number of
particles at ground.

In Fig. 3 we show the relative fluctuations ðr=NÞ of the total
number of electrons (left panels) and muons (right panels) at
ground (upper panels), and in a ring of width Dr at a distance
r = 1000 m from the shower axis (lower panels). In both cases the
fluctuations are shown as a function of the number of showers
simulated. The ring was taken from rmin = 912 m to rmax = 1092 m,
i.e. Dr = 180 m corresponding to a symmetric interval in the loga-
rithm of r around r = 1000 m, chosen so that it compensates the
decreasing density of particles with a larger area as r increases. As
expected, fluctuations in the ring Dr are larger than the fluctuations
103

104

105

106

107

108

 0  500  1000  1500  2000

N

Depth (g cm-2)

0o, 10-6

0o, 10-7

0o, 10-8

60o, 10-6

60o, 10-7

 0

 0.5

 1

 1.5

 2

 0  500  1000  1500  2000

σ/
N

Depth (g cm-2)

0o, 10-6

0o, 10-7

0o, 10-8

60o, 10-6

60o, 10-7

eft) and muons (right) as a function of the slanted depth. Lower panels: Relative
all panels: 100 proton-induced showers with Ep = 1019 eV and h = 0� and 60�, were
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Fig. 2. Upper panels: skewness of the distribution of the number of electrons (left) and muons (right) as a function of the slant depth. Lower panels: Same as the upper panels
for the kurtosis. In all panels: 100 proton-induced showers of Ep = 1019 eV with h = 0� and 60� were simulated with relative thinning Rthin = 10�6, 10�7 and 10�8.
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in the whole ground. Also, the fluctuations in the ring have a stron-
ger dependence with the thinning level used than those in the
whole ground. This is easy to understand. An entry of weight w fall-
ing in the ring represents w particles, so that by losing or gaining
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just a single entry, one would lose or gain w particles and the fluc-
tuations are enlarged. This effect is not so strong when accounting
for all the particles falling anywhere on the ground. In Fig. 3 it can
also be clearly seen that no reliable evaluation of the fluctuations
can be done with less than about 20 simulated showers, especially
in the case of fluctuations in the ring. It can also be seen that a thin-
ning level of Rthin = 10�6 or larger, introduces large artificial fluctu-
ations, so that the shower to shower physical fluctuations cannot be
evaluated reliably. This is however no obstacle to approximately
estimate the physical shower to shower fluctuations as will be
shown in the following.

4.2.1. Physical shower to shower fluctuations at ground
In the Appendix we prove that the distribution of the number of

particles N as obtained in thinned Monte Carlo simulations of
extensive air showers has a mean N and a standard deviation r
given by:

N ¼ Ne �w; ð3Þ

and

r2 ¼ NeX
2 þ �w2s2; ð4Þ

where,

� Ne and s are respectively the mean and the standard deviation of
the distribution of the number of entries Ne falling in a given
ring around shower axis in each shower, i.e., the distribution
of the number of non-thinned (explicitly sampled) particles in
the simulation. The standard deviation of Ne is simply the
RMS of the distribution of Ne over many showers.
� �w and X are respectively the mean and the standard deviation

of the distribution of weights assigned to the entries. The stan-
dard deviation of w can be calculated from the RMS of the dis-
tribution of weights in a single shower (provided there are
enough entries in that particular shower falling in the region
of interest at ground), or from the RMS of the distribution of
weights over many showers.

Of course Eq. (3) is exact since the thinning algorithm is
designed to reproduce it. For Eq. (4), the proof only assumes that
the probability for an entry to have a given weight w is independent
of the probability of a shower to have a given number of entries Ne.
This is only approximate since the total number of entries and their
weights are constrained by energy conservation.

One can interpret Eq. (4) as follows. If all entries (sampled par-
ticles) had the same weight equal to �w in all the simulated show-
ers, then the distribution of weights would not fluctuate from
shower to shower and we would get X = 0. In this limit we would
obviously have r ¼ �ws. This special case of Eq. (4) was also found
in [14]. In the particular case in which all weights are equal to
�w ¼ 1, i.e. the shower is fully simulated and the thinning procedure
is not applied, then clearly N = Ne, r = s and the fluctuations would
be obviously dominated by the true, physical shower to shower
fluctuations. In the opposite limit, if we imagine that showers
always have the same number of entries equal to Ne, i.e. there
are no physical shower to shower fluctuations, then we would
get s = 0, and the fluctuation in the number of particles would be
solely due to the fluctuations of the weight of the entries, i.e., the
fluctuations would be dominated by the thinning procedure and
r2 ¼ NeX

2. Clearly in these limits the first term of Eq. (4) can be
identified with the artificial fluctuations introduced by the thin-
ning procedure r2

thin ¼ NeX
2

� �
, and the second term with the true

(physical) shower to shower fluctuations r2
phys ¼ �w2s2

� �
.

In the following, and by means of our Monte Carlo simulations,
we numerically study to which extent the two terms in Eq. (4)
allow us to split the shower-to-shower fluctuations into artificial
and true ones (as the limiting cases suggest), and hence allow us
to estimate the effect of thinning in a particular set of simulations.
This will clearly depend on the thinning level as shown below.
Before that, we numerically demonstrate that Eq. (4) accounts for
all the fluctuations (artificial and physical) appearing in simula-
tions of EAS with thinning.

To see this in detail, we have calculated in our Monte Carlo sim-
ulations the average weight �w and the sigma of the distribution of
weights X, the average number of entries Ne and the correspond-
ing sigma of its distribution s, as well as the average number of par-
ticles N and the sigma of its distribution r, both for electrons and
muons, and compared them to what is predicted by Eq. (4).

Firstly, we have verified that the average number N of electrons
and muons at different distances to the shower axis r are rather
independent of the thinning level, as expected since the thinning
algorithm is designed to reproduce the average values of the num-
bers of particles in the shower. This is however not the case for the
relative fluctuations r=N shown in Fig. 4, which depend strongly
on the thinning level used in the simulations. For both electron
and muons r=N has a minimum at the distance at which the num-
ber of particles is largest. Also, as expected, the fluctuations can be
seen to converge to a common value at each distance as the thin-
ning level decreases, because the effect of thinning is increasingly
less important, fluctuations are increasingly dominated by the
physical shower to shower fluctuations. The artificial fluctuations
introduced by thinning in the case of electrons, do not contribute
equally to the total fluctuation at all distances from the core as
expected. It can be seen for instance that the relative fluctuation
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rises with r but the increase gets smaller for the smallest thinning
levels used in this work.

From our simulations we also obtain, as expected, that the aver-
age weight �w assigned in the process of thinning to electrons and
muons is simply proportional to the thinning level �w / Rthin. In
Fig. 5 we plot the relative fluctuations of the distribution of
weights X= �w for electrons, and muons as a function of distance
to the shower core. As expected the fluctuation of the weight de-
creases as Rthin decreases and the showers are less thinned. Also,
for values of Rthin < 10�5 the relative fluctuation X= �w is roughly
independent of the thinning level, and as a consequence we have
that approximately X / Rthin.

Regarding the average number of entries Ne, we have verified in
the simulations that Ne / R�1

thin, as imposed by the constraint in Eq.
(3) that the average number of particles N should be independent
of Rthin, together with the fact that �w / Rthin. In Fig. 6, we show the
relative fluctuation in the number of entries s=Ne. For small thin-
ning levels (Rthin < 10�6), we find that the relative fluctuation is
approximately independent of the thinning level, implying that
s / R�1

thin.
Finally, in Fig. 7, we compare the relative fluctuation of the

number of particles r=N obtained directly in Monte Carlo simula-
tions, with that predicted by Eq. (4), using the values of �w, X, Ne

and s obtained in the same simulations. The comparison is shown
for thinning levels Rthin = 10�5, 10�6 and 10�7. The agreement be-
tween the r=N obtained in Monte Carlo simulations, and that pre-
dicted by Eq. (4) is at the level of <20% for electrons and <5% for
muons, confirming that Eq. (4) accounts for all the fluctuations
(artificial and physical) appearing in the simulations of EAS with
thinning.
In Fig. 8 we plot the two terms in Eq. (4) as a function of the dis-
tance to the shower core for different thinning levels. For thinning
level Rthin � 10�7 (and smaller) the artificial fluctuations intro-
duced by thinning are very small, and we approach the limiting
case explained above in which the identification of the second term
of Eq. (4) with the physical fluctuations is exact. For intermediate
thinning levels Rthin � 10�6 the artificial fluctuations are a factor
of 3 larger than those at Rthin = 10�7, however the second term of
Eq. (4) predicts that the fluctuations rphys are very similar to those
obtained with smaller thinning levels, despite the fact that the arti-
ficial fluctuations are not negligible – as a matter of fact they are of
the same order of the physical fluctuations. This gives support to
our identification of rphys with the true physical fluctuations even
for a relatively large thinning level such as 10�6 which is com-
monly used in shower simulations. Finally, for thinning levels
Rthin � 10�5 or larger, artificial fluctuations dominate, the physical
fluctuations are almost completely erased, and the second term in
Eq. (4) cannot reproduce them.

From the scalings with Rthin of the different magnitudes in-
volved in Eq. (4) obtained before, it is straightforward to deduce
that rthin / Rthin, while rphys should be approximately independent
of Rthin for thinning levels 10�6 and smaller. This is also seen in
Fig.8.

To further check the conclusions above, we have run full simula-
tions (i.e. with no thinning) of air showers and we have compared
the shower-to-shower fluctuations obtained in this case – which
are solely due to the physics fluctuations since the thinning proce-
dure is not applied – with the fluctuations predicted by the second
term of Eq. (4) in simulations with different thinning levels. Given
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that it is impractical to run full simulations at an energy of 1019 eV,
we have instead run 100 proton showers at lower energies, namely
1015 eV. Our results are shown in Fig. 9 where it can be seen that the
physics fluctuations predicted by the second term of Eq. (4) repro-
duce the fluctuations in showers with no thinning – at the 25% level
or better – for thinning levels�10�6 and smaller, in agreement with
our previous conclusions.
After having shown that the second term in Eq. (4) reproduces
the physical shower-to-shower fluctuations for thinning levels
Rthin � 10�6 and smaller, in the next two sections we study the
behaviour of physical fluctuations.

5. Dependence of fluctuations at ground on the number of
particles

Let us now consider the dependence of fluctuations on the size
of the ring around a distance to the shower core r, where particles
are collected in the simulation. Let us first consider how the den-
sity of particles is evaluated. If Nðr;DrÞ is the average number of
particles at distance r in a small bin Dr (here we assume cylindrical
symmetry around the shower axis, but the argument does not de-
pend on this simplification), then the density of particles q(r) can
be defined as:

qðrÞ ¼ limDr!0
Nðr;DrÞ
2prDr

: ð5Þ

In the limit Dr ? 0, q(r) is finite, at least for r – 0. However, the
same is not true for the fluctuations, so that in general one can
not define a ‘‘density of fluctuations’’ qr(r). We can see this in a sim-
ple example. Assume that r(r,Dr) is the standard deviation of the
distribution of the number of particles in a bin of size Dr and at a
distance r. One could try to define the density of fluctuations as

qrðrÞ ¼ limDr!0
rðr;DrÞ
2prDr

: ð6Þ

If the fluctuations in the number of particles at ground were purely
Poissonian, we would have

rðr;DrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðr;DrÞ

p
; ð7Þ

and therefore,

qrðrÞ ¼ limDr!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðr;DrÞ

p
2prDr

¼ limDr!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2prDrqðrÞ

p
2prDr

¼ limDr!0

ffiffiffiffiffiffiffiffiffi
qðrÞ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2prDr
p !1; ð8Þ

i.e., we can not define a density of fluctuations for Poissonian
shower to shower fluctuations in the number of particles. The
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dependence on bin-size has been identified with the fractal struc-
ture of showers [15]. In the case of Poissonian fluctuations in the
number of particles, the deduced behaviour is qr(r) / Dra with
a = �1/2, and we would be tempted to identify the coefficient a
with a fractal exponent. However notice that for a Poissonian pro-
cess no fractal structure is implied at all and it would be erroneous
to call it a fractal exponent.

On the other hand, in the case in which the fluctuations behave
as:

rðr;DrÞ ¼ f ðrÞDr þ OðDr2Þ; ð9Þ

where f(r) is a function that does not depend on Dr, one can define a
density of fluctuations as can be shown trivially applying Eq. (6).
Remarkably, this is precisely the case of Furry’s fluctuations [16],
in which r � N = 2prq(r) Dr and then qr would be independent of
D r, i.e. a = 0. Recall that Furry statistics appears as a extremely sim-
plified model of shower fluctuations [16], but it does take into
account the branching structure of the shower (and therefore has
an implicit fractal structure included).

To our knowledge, the actual behaviour of the fluctuations of
showers and its dependence with the bin size is an open theoreti-
cal problem, with the theoretical prejudice ranging between those
two extremes: purely Poissonian fluctuations r �

ffiffiffiffi
N
p

, and Furry
fluctuations r � N. For instance, for the longitudinal development
of showers one can show that in fact both types of behaviour occur
[17], i.e.,

r2 ¼ a N2 þ b N; ð10Þ
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Fig. 10. Relative fluctuations r=N of the distribution of the number of electrons
(upper panel) and muons (lower panel) in a ring of width Dr, centered at r = 100 m
at ground, as a function of the logarithm of size of the bin Dr. The simulations were
performed with relative thinning level Rthin = 10�6. The two terms in Eq. (4)
corresponding to fluctuations induced by thinning rthin and physical fluctuations
rphys are also shown, see insets.
where a and b vary slowly with primary energy [17]. Near the max-
imum of the shower, the first term dominates and fluctuations are
not Poissonian. For the lateral distribution no such result exists but
one would expect a similar conclusion.

In Fig. 10 we show the relative fluctuations in the number of
particles as predicted by the two terms in Eq. (4) for thinning level
Rthin = 10�6 for which we have shown before that the two terms in
Eq. (4) predict the physical and artificial fluctuations. It can be seen
that r phys=N is consistent with being flat with Dr, while rthin=N be-
haves as a power law (a fit gives rthin=N / Dr�1=2). These results
suggest that the artificial fluctuations are Poissonian, while physi-
cal fluctuations behave as rphys / N.
6. Dependence of shower to shower fluctuations on
composition and depth of first interaction

In this Section we study the influence of the fluctuations in the
depth of first interaction on the overall shower to shower fluctua-
tions of the number of particles. In Fig. 11 we plot the relative fluc-
tuations r=N in 1019 eV proton and iron-induced showers. In all
panels we show the results of our regular simulations, together
with the results of a special set of simulations performed by fixing
the depth of first interaction of the primary particle (proton or
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Fig. 11. Relative fluctuations r=N of the distribution of number of electrons at
ground, as a function of the logarithm of the distance to the core, for 1019 eV proton
showers (upper panel) and iron showers (lower panel) with h = 0�, and relative
thinning level Rthin = 10�6. We show (squares) the result of fixing the first
interaction depth at 44.9 g/cm2 (mean interaction depth of 1019 eV proton-air
collisions predicted by the QGSJET01 model – upper panel) or 10.7 g/cm2

(corresponding to the mean interaction depth of 1019 eV iron-air collisions
predicted by the QGSJET01 model – lower panel), and also the case in which the
depth of first interaction fluctuates (triangles). The two terms in Eq. (4) corre-
sponding to fluctuations induced by thinning rthin and physical fluctuations rphys

are also shown in all cases, see insets.
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iron) at the value of its mean interaction depth predicted by the
QGSJET model (namely 44.9 g/cm2 for proton at 1019 eV and
10.7 g/cm2 for iron at the same energy). In all cases we use Eq.
(4) to split the fluctuations into artificial and physical fluctuations,
and we also show them in the figures.

Firstly, it is interesting to see that the artificial fluctuations in
the number of electrons in iron showers are approximately equal
to those in proton showers, while the physical fluctuations are
smaller in iron than in proton-induced showers. The latter observa-
tion is a well-known effect which is attributed to the fact that
showers initiated by a nuclei can be considered, in a first approxi-
mation, as a superposition of A (atomic mass) nucleons, each with
an energy E/A with E the energy of the primary nucleus.

It is rather remarkable that the relative fluctuations in the num-
ber of particles r=N in the two different sets of simulations (fixing
or varying the depth of the first interaction point), are essentially
the same. One could think that this is due to the fluctuations in-
duced by thinning which mask the effect of the fluctuations of
the depth of first interaction, however this does not seem to be
the case, since as can be seen in Fig. 11 neither the first term of
Eq. (4) (the thinning fluctuations), nor the second term (the phys-
ical fluctuations) change much when varying or fixing the depth of
first interaction. We conclude that the relative shower to shower
fluctuations of the number of particles at ground r=N are rather
insensitive to the physical fluctuations of the depth of first interac-
tion, and that these are of the same order as the fluctuations occur-
ring in the subsequent secondary interactions in the shower. This is
related to the fact that the maximum of a shower at h = 0�, where
the fluctuations are minimum [13], occurs near the ground. For
other zenith angles a small difference appears in the physical fluc-
tuations of the simulations performed with fixed and fluctuated
first interaction point.
7. Conclusions

In this work we have performed a comprehensive study of
shower to shower fluctuations by means of Monte Carlo simula-
tions of extensive air showers. An understanding of the shower
to shower fluctuations will help to improve the interpretation of
cosmic-ray data.

The determination of the true, physical shower to shower fluc-
tuations is hampered by the thinning procedure necessary to sim-
ulate in a practical manner air showers at EeV energies and above.
However, we have shown that the artificial fluctuations induced by
thinning (rthin) can be identified and splitted from the physical
fluctuations (rphys) with the aid of Eq. (4), provided thinning levels
Rthin � 10�6 or smaller are used in the simulations. It is important
to remark that for Rthin = 10�6 the artificial fluctuations are not
negligible, in fact they are of the same order as the physical fluctu-
ations, and hence Eq. (4) is able to reproduce them for a thinning
level commonly used in shower simulations. We have also shown
that Eq. (4) accounts for all, true and artificial fluctuations appear-
ing in the simulations for thinning levels Rthin < 10�5. Moreover,
Eq. (4) reproduces the expectation that as the thinning level de-
creases Rthin ? 0, and showers are less thinned, then the artificial
fluctuations decrease, the physical ones become dominant, and
they do not depend on Rthin.

We have shown in Section 5 that the physical shower to shower
fluctuations of the number of particles at ground behave propor-
tionally to the number of particles N, while the artificial fluctua-
tions are Poissonian, i.e., behave as

ffiffiffiffi
N
p

.
We have also shown that the size of the relative fluctuations

due to the depth at which the first interaction initiating the shower
occurs, is smaller or of the same order as the fluctuations occurring
in the subsequent secondary interactions in the shower.
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Appendix A

In this Appendix, we calculate the probability distribution of the
number of particles N in a given bin of r distance to shower core, or
of energy making some simplifying assumptions. We want to cal-
culate the probability distribution of particles, possibly in a given
bin of r or of energy. We will assume that the probability for an en-
try (a non-thinned particle) to have a weight wi is given by Pw(wi).
In addition the number of entries, Ne in a given shower is a random
variable with probability distribution Pe(Ne). Our main simplifying
assumption is the following: we will assume that Pw and Pe are
independent of each other. This assumption is only approximate,
because in a shower simulated with thinning both the entries
and the weight assigned to each particle are controlled by the
branching of the shower and therefore they must be related. How-
ever, as we will see a posteriori, the approximation is good enough
for our purposes here, and it serves to clarify the role of thinning.

Under this approximation we can write the probability P(N) of
having N particles as:

PðNÞ ¼
X

Ne

PeðNeÞ
Z

dw1 � � �dwNe Pwðw1Þ � � � PwðwNe Þdðw1 þ � � �
�

þwNe � NÞ
�
: ð11Þ

where the d-function expresses the constraint that the sum of
weights is equal to the total number of particles.

In what follows we evaluate this expression first by making fur-
ther assumptions about the shape of Pe and Pw, and afterwards in
the general case using the characteristic function, related to the
probability distribution. The definitions of cumulants and of the
characteristic function can be found in any text book on statistics,
for instance [18].

We start with the integral

IðNe;NÞ ¼
Z

dw1 � � � dwNe Pwðw1Þ � � � PwðwNeÞdðw1 þ � � � þwNe

� NÞ; ð12Þ
and introduce the Fourier representation for the delta function.

IðNe;NÞ ¼
Z

dw1 � � � dwNe Pwðw1Þ � � � PwðwNeÞ
1

2p

Z
dkeikðw1þ���þwNe�NÞ

:

ð13Þ
Changing the order of integration gives

IðNe;NÞ ¼
1

2p

Z
dke�ikN

Z
dw1Pwðw1Þeikw1 � � �

Z
dwNe PwðwNe ÞeikwNe

¼ 1
2p

Z
dke�ikN

Z
dwPwðwÞeikw

� �Ne

: ð14Þ

To further continue with the evaluation of P(N) we need to make
additional approximations. We assume that Pw is a Gaussian distri-
bution with average �w and rms X

PwðwÞ ¼ Ae�ðw��wÞ2=ð2X2Þ
; ð15Þ
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where A ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
2pX2

p
is the probability normalization. Its Fourier

transformation is given byZ
dweikwPwðwÞ ¼ eik �we�k2X2=2: ð16Þ

Therefore,

IðNe;NÞ ¼
1

2p

Z
dke�ikðN�Ne �wÞe�Nek2X2=2; ð17Þ

For large values of Ne, the sum in Eq. (11) can be approximated by
an integral

PðNÞ ¼
X

Ne

PeðNeÞIðNe;NÞ �
Z

dNePðNeÞIðNe;NÞ: ð18Þ

If we assume that Pe(Ne) is also a Gaussian with average Ne and
standard deviation s and inserting Eq. (17) in Eq. (18) gives

PðNÞ ¼ 1
2p

Z
dke�ikN

Z
dNe

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2
p e�ðNe�NeÞ2=ð2s2ÞeikNe �we�k2NeX

2=2:

ð19Þ

The integral over Ne can be done analytically

PðNÞ ¼ 1
2p

Z
dke�ikN exp iNe �wk� 1

2
ðNeX

2 þ s2 �w2Þk2 þ Oðk3Þ
� �

:

ð20Þ

where we neglect in the exponential powers of k larger than two,
after applying the saddle point approximation. We arrive at the
final expression

PðNÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2
p e�ðN�NÞ2=ð2r2Þ; ð21Þ

where

N ¼ Ne �w;

r2 ¼ NeX
2 þ �w2s2: ð22Þ

Notice that the above expressions have the correct asymptotic
behaviour. If the particles have no weight, �w! 1 and X ? 0, then
the average number of particles is equal to the average number of
entries (non-thinned particles) N ¼ Ne and r = s. On the extreme
case of a strongly thinned shower in which all particles are grouped
together in a single entry ðNe ¼ 1; s ¼ 0Þ then N ¼ �w and r = X, as
expected.

The above result is general and valid for any probability distri-
bution for Pw and Pe. The only requirement is the ‘‘factorization’’
property given in Eq. (11). From Eq. (14), we introduce the charac-
teristic function for the probability distribution Pw,

ePwðkÞ ¼
Z

dwPwðwÞeikw; ð23Þ

which, in general can be written as:

ePwðkÞ ¼ exp ika1 �
1
2

a2k2 þ � � �
� �

¼ eigðkÞ; ð24Þ
where the coefficients of the expansion of g(k) are related to the
cumulants of the distribution of Pw. For instance a1 ¼ �w; a2 ¼ X2,
etc. Then Eq. (11) reads

PðNÞ ¼ 1
2p

Z
dke�ikN

Z
dNePeðNeÞeiNegðkÞ: ð25Þ

We define

ePeðqÞ ¼
Z

dNePeðNeÞeiqNe ¼ exp ib1q� 1
2

b2q2 þ � � �
� �

; ð26Þ

where as before b1 ¼ Ne and b2 = s2. Then we get

PðNÞ ¼ 1
2p

Z
dke�ikNePeðgðkÞÞ

¼ 1
2p

Z
dke�ikN exp ib1gðkÞ � 1

2
b2gðkÞ2 þ � � �

� �
;

where the function gðkÞ ¼ k �wþ i=2k2X2 þ � � �. Then after some
algebra

PðNÞ ¼ 1
2p

Z
dke�ikN exp ik �wNe �

1
2

k2ðs2 �w2 þ NeX
2Þ þ � � �

� �
ð27Þ

The coefficients of the expansion around k = 0 are again the cumu-
lants of the distribution P(N), therefore we simply read the result gi-
ven above in Eq. (22). But, as a bonus, we obtain also all the other
cumulants. For instance for the skewness we obtain

c3 ¼
M3

r3 ¼
1
r3 � ðm3Ne þ 3 �ws2X2 þ �w3MeÞ; ð28Þ

where m3 is the third central moment ðm3 ¼ hðw� �wÞ3ÞiÞ of the
weight distribution and Me is the third central moment of the distri-
bution of the number of entries. In the same way, one can easily ob-
tain other cumulants from the above expressions.

References

[1] M. Nagano, A. Watson, Rev. Mod. Phys. 72 (2000) 689.
[2] C.A. Garcı́a Canal et al., Phys. Rev. D 79 (2009) 054006.
[3] A.M. Hillas, Proc of the Paris Workshop on Cascade simulations, in: J. Linsley,

A.M. Hillas (Eds.), 1981, pp. 39.;
A.M. Hillas, Nucl. Phys. B (Proc. Suppl.) 52B (1997) 29.

[4] V.A. Kuzmin, G.I. Rubtsov, JETP Lett. 85 (2007) 535.
[5] D.S. Gorbunov, G.I. Rubtsov, S.V. Troitsky, Phys. Rev. D 76 (2007) 043004.
[6] S.J. Sciutto, Proc. 27th ICRC (Hamburg) 1 (2001) 237.
[7] S.J. Sciutto, AIRES User’s Manual and Reference Guide; version 2.6.0, 2002.

<www.fisica.unlp.edu.ar/auger/aires>.
[8] N.N. Kalmykov, S.S. Ostapchenko, Yad. Fiz. 56 (1993) 105;

N.N. Kalmykov, S.S. Ostapchenko, Phys. At. Nucl. 56 (1993) 346;
N.N. Kalmykov, S.S. Ostapchenko, A.I. Pavlov, Bull. Russ. Acad. Sci. (Physics) 58
(1994) 1966.

[9] M. Kobal et al., Pierre Auger collaboration, Astropart. Phys. 15 (2001) 259.
[10] F. Schmidt, M. Ave, L. Cazon, A.S. Chou, Astropart. Phys. 29 (2008) 355.
[11] P. Billoir, Astropart. Phys. 30 (2008) 270.
[12] M. Ave et al., Nucl. Instrs. Methods Phys. Res. A 578 (2007) 180.
[13] T.K. Gaisser, Cosmic Rays and Particle Physics, Cambridge Univ. Press, 1992.
[14] M. Risse, et al., Proc. of 27th ICRC, Hamburg, Germany, 2001, pp. 522.
[15] J. Kempa, M. Samorski, J. Phys. G: Nucl. Part. Phys. 24 (1998) 1039.
[16] W.H. Furry, Phys. Rev. 52 (1937) 569.
[17] R.A. Vazquez, Astropart. Phys. 6 (1997) 411.
[18] See for instance W.T. Eadie et al., Statistical Methods in Experimental Physics,

North-Holland, Pub., Amsterdam, 1971.

http://www.fisica.unlp.edu.ar/auger/aires

	A comprehensive study of shower to shower fluctuations
	Introduction
	The simulations
	Fluctuations in EAS
	Fluctuations of the longitudinal and lateral shower development
	Fluctuations of the longitudinal profile
	Fluctuations of the lateral profile at ground
	Physical shower to shower fluctuations at ground


	Dependence of fluctuations at ground on the number of particles
	Dependence of shower to shower fluctuations on composition and depth of first interaction
	Conclusions
	Acknowledgements
	Appendix A
	References


