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1. Introduction

The aim of this work is to study local minimal curves in homogeneous reductive
spaces of the unitary group of a finite von Neumann algebra, where we define a
Riemannian metric in terms of the reductive structure and the trace of the algebra.

Let M be a finite von Neumann algebra with a fixed trace τ . Denote by
Mah the real Banach subspace of antihermitic elements of M, which identifies
with the Lie algebra of the unitary group UM of the algebra. Let L2(M, τ) be
the completion of M with the norm ‖x‖2 = τ(x∗x)1/2. Consider P an (eventually
infinite dimensional) homogeneous reductive space of UM. For each ρ ∈ P , there
is defined in the tangent space (TP)ρ the coordinate map Kρ of the reductive
structure taking values on Mah. Then, we can introduce a metric: for X ∈ (TP)ρ,

‖X‖ρ = ‖Kρ(X)‖2 .

In general, this quadratic metric does not induce a complete norm in the tangent
spaces. The homogeneous spaces treated here fit in the context of what is usually
known as weak Riemannian manifolds (see [15]). Therefore the classical theory of
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Riemann-Hilbert manifolds is not available, so it makes sense to ask about the
local minimality of the geodesics. We give a sufficient condition to demonstrate
a result on minimality of geodesics of the Levi-Civita connection in the general
setting of homogeneous reductive spaces: τ -orthogonality of the supplements in
Mah with the Lie algebras of the structure groups.

Metric geometry in homogeneous spaces in the context of operator algebras is
an area of current research. We can cite the remarkable works [8], [9] of C. Durán,
L. Mata-Lorenzo and L. Recht, where they study the problem of finding minimal
curves with a quotient metric induced by the operator norm. In the case of a finite
algebra, metric and differentiable properties of several examples are treated in [1],
[3], [7] and the references given there.

The contents of the paper are the following. Section 2 contains basic facts
about homogeneous reductive spaces and the metric. In section 3 we state and
prove our main result concerning the minimality of the geodesics. In section 4
we give examples of homogeneous spaces satisfying the orthogonality condition.
This condition naturally arises in several homogeneous spaces related to oper-
ator algebras: unitary orbits of states, normal elements, spectral measures, ∗-
homomorphisms, conditionals expectations and partial isometries. Finally, we give
an example of an homogeneous space related to some particular C∗-dynamical
systems.

2. Homogeneous reductive spaces

We recall the definition of homogeneous reductive spaces and establish basic facts.
For a deeper discussion of homogeneous reductive spaces we refer the reader to
[6], [12] and [13]. In this work by a homogeneous reductive space we mean:

• A C∞ Banach manifold P .
• A smooth transitive action of the unitary group UM on P . We denote it by
Luρ, where u ∈ UM, ρ ∈ P .

• For each ρ ∈ P the map

Πρ : UM −→ P , Πρ(u) = Luρ

is a principal bundle with structure group Gρ = { u ∈ UM : Luρ = ρ }
(called the isotropy group of ρ).

• There is a smooth distribution of horizontal spaces {Hρ : ρ ∈ P } which are
supplements for the Lie algebra of Gρ:

Hρ ⊕ Lie(Gρ) = Mah, ρ ∈ P .
These supplements are invariant under the inner action of Gρ:

uHρu
∗ = Hρ, ρ ∈ P , u ∈ Gρ.

From now on P stands for a homogeneous reductive space. We call a homogeneous
reductive space P orthogonal if for each ρ ∈ P the supplements Hρ are τ -orthogonal
to Lie(Gρ) . For brevity, we shall frequently just say that P is orthogonal.
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Remark 2.1. Let us denote by L2(Mah, τ) the real Hilbert space obtained by
completion of Mah in the 2-norm. One can easily check that if P is orthogonal,
then for all ρ ∈ P the orthogonal projection

Pρ : Mah −→ Lie(Gρ)
‖ ‖2

satisfies Pρ(Mah) ⊆ Lie(Gρ).
Moreover, the converse is also true in the following sense: if the above pro-

jection preserves bounded elements for some ρ ∈ P (and hence for all), then
Hρ := (I − Pρ)(Lie(Gρ)), defines a smooth distribution of norm closed supple-
ments of Lie(Gρ) which are invariant under the inner action of Gρ. Indeed, the
distribution is smooth since

PLuρ = Ad(u) ◦ Pρ ◦Ad(u∗),
where Ad(u) : M −→ M, Ad(u)(x) = uxu∗. In order to show that each Hρ is
norm closed, let xn be a sequence in Hρ such that ‖xn − x‖ → 0, then

‖(I − Pρ)(x) − xn‖2 ≤ ‖x− xn‖2 ≤ ‖x− xn‖ → 0.

Therefore, (I −Pρ)(x) = limxn = x, so we obtain x ∈ Hρ. On the other hand, the
invariance of the supplements is automatically verified. We have

Hρ = { y ∈ Mah : τ(yx) = 0, ∀x ∈ Lie(Gρ) }.
It is easily seen that u∗Lie(Gρ)u = Lie(Gρ), for all u ∈ Gρ. Therefore, we obtain
for y ∈ Hρ, x ∈ Lie(Gρ) ,

τ((uyu∗)x) = τ(y(u∗xu)) = 0.

Thus, uyu∗ ∈ Hρ, and our assertion is proved.

Now we introduce the Riemannian metric as follows. The differential at the identity
of Πρ gives the map δρ := (dΠρ)1 : Mah −→ (TP)ρ that induces the isomorphism

Kρ :=
[
δρ

]−1 : (TP)ρ −→ Hρ .

We endow P with an inner product on each tangent space, in order that these
maps become isometric isomorphisms, i.e. for X,Y ∈ (TP)ρ ,

〈X,Y 〉ρ = τ(Kρ(Y )∗Kρ(X)). (2.1)

Therefore,
‖X‖ρ = ‖Kρ(X)‖2 .

It is apparent that this defines an invariant metric under the action of UM.

Remark 2.2. Since P is a homogeneous space i.e. a quotient, it would be natural
to put in P a quotient metric. One can define it by means of the 2-norm: for
X ∈ (TP)ρ ,

‖X‖ρ , 2 = inf{ ‖z + y‖2 : y ∈ Lie(Gρ)
‖ ‖2 },

where δρ(z) = X . The infimum is attained in the element z−Pρ(z) ∈ L2(Mah, τ),
and it belongs to Mah when P is orthogonal. Notice that when P is orthogonal,
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then Pρ is actually the extension to L2(Mah, τ) of the projection I − Kρ ◦ δρ.
Then, we have

‖X‖ρ = ‖Kρ(X)‖2 = ‖(Kρ ◦ δρ)(z)‖2 = ‖z − Pρ(z)‖2 = ‖X‖ρ , 2 .
Thus the quotient metric coincides with the metric given in equation (2.1).

Let us recall the definition of the reductive connection ∇k introduced in [13].
Suppose that X,Y are tangent fields in P , then the value of ∇k

XY at ρ ∈ P is
characterized by the following equation

Kρ(∇k
XY ) = X(Y ) + [Kρ(Y ),Kρ(X)],

whereX(Y ) indicates the derivative of Y alongX . On the other hand, we introduce
as in [13] the classifying connection as follows:

Kρ(∇c
XY ) = (Kρ ◦ δρ)(X(Y )).

When P is orthogonal we shall demonstrate that the mean between ∇k and ∇c is
the Levi-Civita connection of the metric defined by equation (2.1), and compute
its geodesics.

Proposition 2.3. Let P be an orthogonal homogeneous reductive space. Then the
Levi-Civita connection of the metric 〈 , 〉ρ is given by

∇ =
1
2
(∇k + ∇c).

Moreover, γ(t) = LetKρ(X)ρ is the geodesic adapted to X ∈ (TP)ρ at γ(0) = ρ.

Proof. It is easy to show that the reductive connection ∇k is compatible with
the metric. In order to prove that ∇c is compatible, let us consider X(t), Y (t)
two tangent fields along a curve α(t) in P . Since P is orthogonal, I − Pρ is an
orthogonal projection in L2(Mah, τ) which extends Kρ ◦ δρ. Then

〈
DcX

dt
, Y

〉

α

= τ(Kα(Y )∗(I − Pα)(K̇α(X)) = τ(Kα(Y )∗K̇α(X)).

We can proceed analogously with the term
〈
X, D

cY
dt

〉
α
. Then

d

dt
( 〈X,Y 〉α ) =

d

dt
( τ(Kα(Y )∗Kα(X)) )

= τ(Kα(Y )∗K̇α(X)) + τ(K̇α(Y )∗Kα(X))

=
〈
DcX

dt
, Y

〉

α

+
〈
X,

DcY

dt

〉

α

.

Thus ∇c is compatible. In [13] was proved that the connection ∇c has the same
geodesics as ∇k, but with opposite torsion. Therefore ∇ = 1

2 (∇k + ∇c) is the
Levi-Civita connection. The geodesics of the reductive connection, and hence of
our Levi-Civita connection, were also computed in [13]. �
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We end this section recalling a useful notion. For any curve γ ∈ P (not necessarily
a geodesic) with γ(0) = ρ, there is an horizontal lifting Γ to the unitary group
UM, which is characterized by the following properties:

1. Πρ(Γ) = γ.
2. Γ(0) = 1.
3. Γ̇ ∈ HγΓ.

Moreover, it is also characterized as the unique solution of the linear differential
equation:

{
Γ̇ = Kγ(γ̇)Γ
Γ(0) = 1.

3. Geodesics as minimal curves

We prove several lemmas in the direction of Theorem 3.8 given at the end of this
section. The main idea is to compare the lengths of a curve and its horizontal
lifting in different norms, and then use a local convexity result given in [3].

Let us first introduce some notation. The length of a curve γ in P measured with
the metric given in (2.1) will be denoted by

L(γ) =
∫ 1

0

‖ γ̇(t) ‖γ(t) dt.

While the length of a curve α in UM measured with the 2-norm will be denoted
by

L2(α) =
∫ 1

0

‖ α̇(t) ‖2 dt.

Lemma 3.1. Let γ be a piecewise smooth curve in P, and let Γ be its horizontal
lifting. Then,

L(γ) = L2(Γ).

Proof. Using the definition of horizontal lifting we have:

L2(Γ) =
∫ 1

0

‖ Γ̇(t) ‖2 dt =
∫ 1

0

‖Kγ(t)(γ̇(t))Γ(t) ‖2 dt

=
∫ 1

0

‖Kγ(t)(γ̇(t)) ‖2 dt =
∫ 1

0

‖ γ̇(t) ‖γ(t) dt = L(γ). �

Now we need to introduce another quotient metric, which is defined in [8] by

‖X‖ρ ,∞ = inf{ ‖z + y‖ : y ∈ Lie(Gρ) },
where δρ(z) = X . Note that it is also invariant under the action of UM. The length
of a curve γ in P measured with this metric will be indicated by

Lq ,∞(γ) =
∫ 1

0

‖ γ̇(t) ‖γ(t),∞ dt.
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While the length of a curve α in UM measured with the operator norm will be
denoted by

L∞(α) =
∫ 1

0

‖ α̇(t) ‖ dt.

The next step is to compare the lengths of a curve and its horizontal lifting with
these two metrics. In an orthogonal homogeneous space we have Pρ(Mah) ⊆ Mah

for all ρ ∈ P , then we can restrict Pρ to Mah obtaining an idempotent with
range Lie(Gρ), that we still denote by Pρ. Moreover, we can define this norm
continuous idempotent in any homogeneous reductive space since Lie(Gρ) is closed
and complemented in the norm topology. Given ρ ∈ P , set M := ‖I − Pρ‖. Then,
observe that this constant is independent of the choice of ρ. Indeed, one computes

‖I − PLuρ‖ = ‖I −Ad(u) ◦ Pρ ◦Ad(u∗)‖ = ‖I − Pρ‖.

Lemma 3.2. Let γ be a piecewise smooth curve in P, and let Γ be its horizontal
lifting. Then,

L∞(Γ) ≤MLq ,∞(γ).

Proof. Fix ρ ∈ P . For z ∈ Hρ such that δρ(z) = X and y ∈ Lie(Gρ) , we have

‖z‖ = ‖(I − Pρ)(z)‖ ≤M‖z + y‖.
Then,

‖z‖ ≤M‖δρ(z)‖ρ ,∞ .

Therefore,
‖Kρ(X)‖ ≤M‖δρ(Kρ(X))‖ρ ,∞ = M‖X‖ρ ,∞ .

Using this inequality, and the fact previously noted that M is independent of the
point, one finally obtains

L∞(Γ) =
∫ 1

0

‖ Γ̇(t) ‖ dt =
∫ 1

0

‖Kγ(t)(γ̇(t))Γ(t) ‖ dt

=
∫ 1

0

‖Kγ(t)(γ̇(t)) ‖ dt ≤M

∫ 1

0

‖γ̇(t)‖γ(t) ,∞ = MLq ,∞(γ). �

We need some facts about the geometry of the unitary group UM. The curves
δ(t) = uetz, where u ∈ M and z ∈ Mah such that ‖z‖ < π, have minimal length
along their paths when one measures lengths with the p-norm, p ≥ 2 (see [1]).
Based on this fact, in Theorem 2.1 of [3] it was proved that if F2 denotes the
energy functional

F2(α) =
∫ 1

0

‖α̇‖2
2 dt =

∫ 1

0

τ(α̇∗α̇) dt,

where α is a piecewise smooth curve in UM and αs(t) is a smooth variation of α,
i.e.

αs(t) ∈ UM , s ∈ (−r, r), t ∈ [0, 1], α0 = α,
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then the first variation of the energy functional is given by

1
2
d

ds
F2(αs)

∣
∣∣
∣
s=0

= τ(x0y0)
∣
∣∣
∣

t=1

t=0

−
∫ 1

0

τ(
d

dt
[x0]y0 ) dt, (3.1)

where xs(t) = αs(t)∗ ddtαs(t) and ys(t) = αs(t)∗ d
dsαs(t).

Our result relies in the main theorem of [3].

Proposition 3.3. (Theorem 4.5 of [3]) Let u0 , u1 , u2 ∈ UM, such that ‖ui − uj‖ <√
2−√

2
2 . Let δ(t) = u1e

tz be the minimal geodesic joining u1 and u2 . Then f(s) =
dp(u0 , δ(s))p, s ∈ [0, 1] (dp = geodesic distance induced by the p-norm) is a convex
function, for p an even integer.

We shall use this result when p = 2.

Remark 3.4. If we compute the differential at 0 ∈ Mah of the exponential map at
ρ, i.e.

expρ : Hρ −→ P , expρ(z) = Lezρ

we obtain
(d expρ)0 : Hρ −→ (TP)ρ , (d expρ)0(z) = δρ(z),

which is an isomorphism. Therefore by the inverse function theorem there exists
r > 0 such that in a ball Br(0) we have that

expρ : Br(0) −→ expρ(Br(0))

is a diffeomorphism. Let us write Vr(ρ) = expρ(Br(0)) for short. Then, for each
ρ1 ∈ Vr(ρ), there exists a unique geodesic given by expρ(tz) = Letzρ joining ρ and
ρ1 inside Vr(ρ), where z satisfies Lezρ = ρ1.

Remark 3.5. Now consider the following map

F : Hρ ⊕ Lie(Gρ) −→ UM , F ( (z, x) ) = ezex.

Differentiating one obtains

(dF )(0,0) : Mah −→ Mah, (dF )(0,0)(z, x) = z + x,

which is an isomorphism. Then there exists a neighborhood V of (0, 0) and an
ε > 0 such that

F : V −→ Bε(1) ∩ UM ,

is a diffeomorphism. Moreover, we can choose V ⊆ Bε1(0) × Bε2(0) for ε1, ε2 so
small as we want if we just adjust ε. In the remainder of this section we require ε,
ε1, ε2 to satisfy:

i) ε <
√

2−√
2

2 .
ii) εi < π

9 , for i = 1, 2.
iii) ε1 < r.
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Lemma 3.6. Let γ be a piecewise smooth curve in P such that γ(0) = ρ and
Lq ,∞(γ) < ε/M . Then there exists z ∈ Hρ satisfying:

i) Γ(1) = ezex, where x ∈ Lie(Gρ).
ii) z ∈ Br(0) is unique such that Lezρ = γ(1).

iii) The elements 1, ez and Γ(1) lie closer than
√

2−√
2

2 in norm.

Proof. i) If we write d∞ for the geodesic distance in UM with the Finsler metric
given by the operator norm, then using the Lemma 3.2 we obtain

‖1 − Γ(1)‖ ≤ d∞(1,Γ(1)) ≤ L∞(Γ) ≤MLq ,∞(γ) < ε.

By Remark 3.5 there exists a unique (z, x) ∈ Hρ ⊕ Lie(Gρ) such that ‖z‖ < ε1,
‖x‖ < ε2 and ezex = Γ(1).
ii) Note that Lezρ = Lezexρ = LΓ(1)ρ = γ(1). Moreover, it is unique because
‖z‖ < ε1 < r and expρ is one to one on the ball of radius r.

iii) We just have shown ‖1 − Γ(1)‖ < ε <

√
2−√

2
2 . On the other hand, our choice

of ε2 implies

‖ez − Γ(1)‖ = ‖1 − ex‖ =
√

2 − 2 cos(‖x‖) <
√

2 −√
2

2
.

Analogously, our choice of ε1 gives

‖1 − ez‖ =
√

2 − 2 cos(‖z‖) <
√

2 −√
2

2
. �

Proposition 3.7. Let P be an orthogonal homogeneous reductive space. Consider
γ a piecewise smooth curve in P such that γ(0) = ρ and Lq ,∞(γ) < ε/M . Then
there exists a geodesic δ(t) = Letzρ satisfying δ(1) = γ(1) and L(δ) ≤ L(γ).

Proof. In view of Lemma 3.6 we have γ(1) = Lezρ, where Γ(1) = ezex, ez and 1

lie at distance less than
√

2−√
2

2 in norm. Consider now µ(s) = ezesx, s ∈ [0, 1],
the minimal geodesic joining ez and Γ(1) = ezex. Therefore by Proposition 3.3 the
function f(s) = d2(1, µ(s))2 is convex.
Claim: f ′(0) = 0.
Note the following:

‖µ(s) − 1‖ ≤ ‖ezesx − esx‖ + ‖esx − 1‖ ≤ ‖ez − 1‖ + ‖ex − 1‖

= ‖ez − 1‖ + ‖Γ(1) − ez‖ <
√

2 −
√

2 < 2.

Then the antihermitic logarithm

log : {u ∈ UM : ‖u− 1‖ < 2 } −→ { y ∈Mah : ‖y‖ < π }
is well defined and smooth. Let us call εs(t) = et log(µ(s)), which is a smooth
variation of ε0(t) = etz. For each s, these curves are minimal geodesics in UM as
a consequence of the inequality ‖ log(µ(s))‖ < π. Therefore,

f(s) = L2(εs)2 = ‖ log(µ(s))‖2
2 = F2(εs).
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Following the notation adopted in equation (3.1) one notes that xs(t) = log(µ(s))
is constant with respect to t. Thus, the derivative reduces to

f ′(0) = 2
(
τ(zy0(1)) − τ(zy0(0))

)
.

Then observe that y0(0) = ε0(0)∗ d
ds

∣∣
s=0

εs(0) = 0. On the other hand, we have to
compute y0(1) = ε0(1)∗ d

ds

∣
∣
s=0

εs(1) = x, and using that Hρ and Lie(Gρ) are τ -
orthogonal, we finally obtain

τ(zy0(1)) = τ(zx) = 0.

Thus our claim is proved. From this fact and the convexity of f we deduce that it
has a global minimum at s = 0. Therefore,

L2(ε0) = d2(1, ez) = f(0)1/2 ≤ f(1)1/2 = d2(1,Γ(1)) ≤ L2(Γ).

Calling δ the unique geodesic with the same initial and final endpoints as γ, note
that ε0 is the horizontal lifting of δ. Then by Lemma 3.1 we can conclude

L(δ) = L2(ε0) ≤ L2(Γ) = L(γ). �

We call a piecewise smooth curve a geodesic polygon if it is a continuous path in
P , and consists of geodesics paths glued together. As an immediate consequence
of Proposition 3.7 we give the following result.

Corollary. Let P be an orthogonal homogeneous reductive space and γ a piecewise
smooth curve in P. Then there exists a geodesic polygon ν such that ν(0) = γ(0),
ν(1) = γ(1) and

L(ν) ≤ L(γ).

Proof. Clearly we can suppose that γ is smooth. Consider a partition 0 = t0 <
t1 < ... < tn = 1 such that Lq ,∞(γ|[ ti , ti+1 ]) < ε/M . We use Proposition 3.7
to find geodesics δi with the same endpoints as γ|[ ti , ti+1 ] for i = 0, . . . , n − 1
satisfying

L(δi) ≤ L(γ|[ ti , ti+1 ]).
Then the curve ν obtained by gluing the geodesics δi is a geodesic polygon shorter
than γ. �

In the next result we shall take R := min{ r , ε/2M }.
Theorem 3.8. Let P be an orthogonal homogeneous reductive space and ρ ∈ P.
Given any ρ1 ∈ VR(ρ), there exists a unique geodesic inside VR(ρ) which has
minimal length among all the piecewise smooth curves inside VR(ρ), joining the
points ρ and ρ1.

Proof. Let γ be a piecewise smooth curve inside VR(ρ). We can take a partition of
the unit interval 0 = t0 < t1 < ... < tn = 1 such that Lq ,∞(γ|[ ti , ti+1 ]) < ε/2M .
Therefore,

Lq ,∞(γ
∣
∣
[ t0 , t2 ]

) = Lq ,∞(γ
∣
∣
[ t0 , t1 ]

) + Lq ,∞(γ
∣
∣
[ t1 , t2 ]

) < ε/2M + ε/2M = ε/M.
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By Lemma 3.6 there is a unique z2 ∈ Br(0) ⊆ Hρ such that Lez2ρ = γ(t2).
Applying Proposition 3.7, the geodesic δ2(t) = Letz2ρ satisfies L(δ2) ≤ L(γ

∣∣
[ t0 , t2 ]

).
On the other hand, since we have γ(t2) ∈ VR(ρ), by Remark 3.4 there exists a
unique z2 ∈ BR(0) such that Lez2ρ = γ(t2). Using our assumption that R ≤ r, we
have z2 = z2, and then δ2 is the unique geodesic in VR(ρ) joining ρ and γ(t2). An
easy computation shows that Lq ,∞(δ2) = ‖z2‖. Therefore, if we use the symbol #
to denote a path obtained by adjoining two consecutive paths, we get

Lq ,∞(δ2#γ
∣
∣
[t2 , t3]

) = Lq ,∞(δ2) + Lq ,∞(γ
∣
∣
[t2 , t3]

) < ‖z2‖ + ε/2M < ε/M.

Thus by the same argument as before, there exists a unique geodesic δ3 in VR(ρ)
such that L(δ3) ≤ L(δ2#γ

∣
∣
[t2 , t3]

). Moreover, we can also estimate

L(δ3) ≤ L(δ2#γ
∣
∣
[t2 , t3]

) = L(δ2) + L(γ
∣
∣
[t2 , t3]

)

≤ L(γ
∣∣
[t0 , t2]

) + L(γ
∣∣
[t2 , t3]

) = L(γ
∣∣
[t0 , t3]

).

It is clear that we can finish the proof by an inductive argument. �

Remark 3.9. Our choice of R > 0 works for any ρ ∈ P . To show this, first observe
that R depends only on r, M and ε.

1. r is independent of the point because the action is isometric.
2. The independence of M was shown before the Lemma 3.2.
3. If we considerer the map Fu : HLuρ ⊕ Lie(GLuρ) −→ UM , it is straightfor-

ward to verify that Fu = F ◦Ad(u). Then, using that Ad(u) is an isometric
isomorphism we obtain that Fu is a local diffeomorphism if and only if F is
also a local diffeomorphism.

Remark 3.10. All the work of this section could be carried out in C∗-algebra with
a faithful trace. However, as we shall see, in the following examples we need to
work in a finite von Neumann algebra to prove the orthogonality condition.

4. Examples

We give several examples of orthogonal homogeneous reductive spaces. In these
examples, the fundamental step to ensure that Theorem 3.8 holds, consists in
proving the orthogonal condition. The following situation frequently arises: we
have an algebraic subgroup G (in the sense of [6], [11]) of the Banach-Lie group
UM and we want to check that G is actually a Banach-Lie subgroup to give a
smooth manifold structure in the quotient UM/G. In view of Theorem 4.18 of [6]
we only have to prove that Lie(G) is complemented in Mah. On the other hand,
to obtain the minimality of geodesics, we must prove the orthogonality condition.
So we can obtain both properties if we check that the orthogonal projection

P : L2(Mah, τ) −→ Lie(G)
‖ ‖2
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satisfies P(Mah) ⊆ Lie(G). Moreover, as we observe in Remark 2.1, this gives
invariant supplements under the inner action of UM, and therefore, a reductive
structure in UM/G.

4.1. Unitary orbit of a state

This first example is concerned with the unitary orbit of a state. Let SM be the
set of normal faithful states of M. Consider the action

L : UM × SM −→ SM
given by

Luϕ = ϕ ◦Ad(u∗), u ∈ UM, ϕ ∈ SM.

For ϕ ∈ SM, we denote by Uϕ the unitary orbit of ϕ, i.e.

Uϕ = {ϕ ◦Ad(u∗) : u ∈ UM }.
The isotropy group under this action

Gϕ = { u ∈ UM : ϕ(uy) = ϕ(yu), ∀ y ∈ M}
is an algebraic subgroup of order ≤ 1 of the Lie-Banach group UM. Actually this
is verified by taking the polynomials

py : M×M −→ C , py((a, b)) = ϕ(ay) − ϕ(ya) , y ∈ M.

The Lie algebra

Lie(Gϕ) = { x ∈ Mah : ϕ(xy) = ϕ(yx), ∀ y ∈ M},
consists in the antihermitic elements of the centralizer of ϕ, which is a von Neu-
mann subalgebra of M. It is a well known fact that in a finite algebra there exists
a unique trace invariant conditional expectation onto any von Neumann subal-
gebra (see for instance [16]). This gives that Lie(Gϕ) is complemented in Mah,
and therefore, the set UM/Gϕ has a smooth manifold structure. Then we endow
Uϕ with the manifold structure such that the bijection [u] �→ ϕ ◦ Ad(u∗) is a
diffeomorphism.

Observe that the hypothesis of Theorem 3.8 is verified because this condi-
tional expectation extends to the orthogonal projection over the respective comple-
tions with the 2-norm. Thus, we can conclude that the curve γ(t) = ϕ◦Ad(e−tzu∗)
has minimal length among all the curves contained in a neighborhood of ϕ◦Ad(u∗)
that start at this point.

4.2. Unitary orbit of a normal element

Let a be a normal element of M. We can study the unitary orbit of a, that is the
set

U(a) = { uau∗ : u ∈ UM }.
The isotropy group at a of the natural action of UM is given by

Ga = { u ∈ UM : ua = au }.
Clearly, it is an algebraic subgroup of UM of order ≤ 1. The polynomials are
defined by p : M×M −→ M, p((c, d)) = ca− ac. As in the previously example,
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the Lie algebra of the isotropy group is the antihermitic elements of a von Neumann
subalgebra

Lie(Ga) = { x ∈Mah : xa = ax, } = { a }′ ∩Mah .

Thus U(a) ∼= UM/Ga is a smooth manifold, and the geodesics γ(t) = etzae−tz are
locally minimizing.

4.3. Unitary orbit of a spectral measure

Let Σ be a σ-algebra of subsets of some set. Let E : Σ −→ M be a spectral
measure whose values are selfadjoint projections in M. The unitary orbit of E is

U(E) = { uE( . )u∗ : u ∈ UM }.
We take as subgroup of order ≤ 1 the isotropy group under the natural action of
UM as in the preceding examples, i.e.

GE = { u ∈ UM : uE(S) = E(S)u, ∀S ∈ Σ }.
The polynomials are

pS : M×M −→ M, pS((a, b)) = aE(S) − E(S)a.

The Lie algebra of this group is

Lie(GE) = { x ∈ Mah : xE(S) = E(S)x, ∀S ∈ Σ },
which consists of the antihermitic elements of a von Neumann subalgebra. Then
we can use Theorem 3.8 to show that in the orthogonal homogeneous reductive
space U(E) ∼= UM/GE the geodesics γ(t) = etzE( . )e−tz are locally minimizing.

4.4. Unitary orbit of a ∗-homomorphism

Consider ψ : M −→ M a ∗-homomorphism. Again we take the unitary orbit of ψ,
i.e.

U(ψ) = { uψ( . )u∗ : u ∈ UM }.
The algebraic subgroup of order ≤ 1 is the isotropy at ψ under the natural action
of the unitary group

Gψ = { u ∈ UM : uψ(y) = ψ(y)u, ∀ y ∈M }.
The polynomials used to prove this fact are

py : M×M −→ M, py((a, b)) = aψ(y) − ψ(y)a.

The Lie algebra consists in the antihermitic elements of the von Neumann algebra
given by the commutant of ψ(M). Therefore, U(ψ) ∼= UM/Gψ is an orthogonal
homogeneous reductive space where the Theorem 3.8 holds.
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4.5. Partial isometries

This example is concerned with partial isometries in M. The set of partial isome-
tries is

I = { v ∈ M : v∗v is a projection }.
We can give an action of the unitary group UM × UM of M×M on I by acting
both on the initial and the final spaces. The action is given by

L : (UM × UM) × I −→ I, L(u,w)v = uvw∗.

This action is locally transitive, i.e. if two partial isometries lie closer than 1/2
in the operator norm, then they are conjugate by a pair of unitaries. In [2] was
proved that each connected component, which as a consequence of local transitivity
coincides with an orbit, is a homogeneous space of UM×UM and a C∞ submanifold
of M. Hence, by Remark 2.1, to give a reductive structure we just have to prove
the orthogonality condition.

Fix v ∈ I, we shall study its orbit O(v). The isotropy group at v is

Gv = { (u,w) ∈ UM × UM : uv = vw }.
Note that if (u,w) ∈ Gv, then u commutes with the final projection vv∗ and w
commutes with the initial projection v∗v. One can compute the Lie algebra of this
group

Lie(Gv) = { (x, y) ∈ Mah ×Mah : xv = vy }

= { (
(
x11 0
0 x22

)
,

(
v∗x11v 0

0 y22

)
)

: x11 , x22 , y22 antihermitic },

where the matrix decomposition is respect to vv∗ in the first coordinate and to v∗v
in the second coordinate. Note that in this case the Lie algebra does not consist
of the antihermitic elements of a von Neumann algebra. In a finite von Neumann
algebra, the orbits have the following particular property.

Claim: Let M be a finite von Neumann algebra, then O(v) = O(v∗v). In particular,
there is a projection in each orbit.

To prove our claim, consider the set of partial isometries with fixed initial space.
In other words, if p is a projection, we look at the set

Ip = { v ∈ M : v∗v = p }.
First let us demonstrate that { up : u ∈ UM } = Ip. One inclusion is trivial, for
the other take v ∈ Ip, and let q = vv∗, which is a projection that is equivalent
with p. Since M is finite, there exists u ∈ UM such that uqu∗ = p. Note that the
element 1− p+ uv is unitary, and therefore, the element w = u∗(1− p) + v is also
unitary. Finally, we obtain wp = vp = v.

Then our claim follows easily. Indeed, since v ∈ Iv∗v = { uv∗v : u ∈ UM },
there is u ∈ UM such that v = u(v∗v) = u(v∗v)1. Thus, we obtain O(v) = O(v∗v).
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As a corollary of the above claim, it suffices to study the isotropy at a projection
p. In this case, the expression of the Lie algebra reduces to

Lie(Gp) = { (
(
x11 0
0 x22

)
,

(
x11 0
0 y22

)
)

: x11 , x22 , y22 antihermitic },

where the matrix decompositions are both respect to the projection p. Let us define
a real bounded projection onto Lie(Gp) by

P : Mah ×Mah −→ Lie(Gp) ,
(
(

x11 x12

−x∗12 x22

)
,

(
y11 y12
−y∗12 y22

)
) �→ (

(
x11+y11

2 0
0 x22

)
,

(
x11+y11

2 0
0 y22

)
)

Observe that the kernel of this projection is

ker(P) = { (
(

w c12
−c∗12 0

)
,

( −w d12

−d∗12 0

)
)

: w, c12 , d12 antihermitic }.

Using the trace τ of M, we can define a finite trace in M×M by

τ̃((x, y)) =
τ(x) + τ(y)

2
, x, y ∈ M.

This gives an inner product on M×M such that ker(P) is orthogonal to Lie(Gp).
Indeed, for (x, y) ∈ Lie(Gp) , (c, d) ∈ ker(P), one obtains

2τ̃((x, y)(c, d)) = −τ(xc) − τ(yd)

= −τ(
(
x11 0
0 x22

) (
w c12

−c∗12 0

)
)−

− τ(
(
x11 0
0 y22

) ( −w d12

−d∗12 0

)
)

= −τ(
(
x11w 0

0 0

)
) + τ(

(
x11w 0

0 0

)
) = 0.

By the orthogonality of ker(P) with its range, P extends to the real orthogonal

projection onto Lie(Gp)
‖ ‖2 . Thus, we obtain that O(v) = O(v∗v) is an orthogonal

homogeneous reductive space. Therefore the geodesics γ(t) = etz1uvw∗e−tz2 have
minimal length among all the curves inside a neighborhood of uvw∗.

4.6. Unitary orbit of a conditional expectation

Let N be a von Neumann subalgebra of M and E : M −→ N the unique trace
invariant conditional expectation. Our next example is about the unitary orbit
of E. For a treatment of geometric properties of this example in a more general
setting than finite algebras, we refer the reader to [4] and [5].

Let us define an action of UM on the algebra B(M) of bounded operators on M
by

L : UM × B(M) −→ B(M), LuT = Ad(u) ◦ T ◦Ad(u∗).
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Consider the unitary orbit of E with this action

U(E) = {LuE : u ∈ M}.
The isotropy group at E is usually called the normalizer of E,

NE = { u ∈ UM : E(uyu∗) = uE(y)u∗, y ∈ M}.
Let us show that NE is an algebraic subgroup of UM of order ≤ 2. For each y ∈ M
define the following bilinear maps

ψy : (M×M) × (M×M) −→ M, ψy((a, b), (a′, b′)) = E(ayb′) − aE(y)b′.

Then take the polynomials

py((a, b)) = ψy((a, b), (a, b)) = E(ayb) − aE(y)b.

In [5] was proved that for any faithful normal conditional expectation, its unitary
orbit is a homogeneous reductive space of UM. In the finite algebra case we shall
prove the orthogonality condition restricting to the unique trace invariant condi-
tional expectation E. The arguments involved are adapted from Proposition 4.5
in [5], to this easier case.

The Lie algebra of NE is the kernel of the differential of the natural fibration

ΠE : UM −→ U(E), ΠE(u) = LuE.

In [5] was pointed out that

Lie(NE) = ker((dΠE)1) = (N + ME) ∩Mah ,

where ME is the von Neumann subalgebra of M given by

ME = { x ∈ N ′ ∩M : E(xy) = E(yx), ∀ y ∈ M}.
Let us call F : M −→ ME the unique conditional expectation such that τ ◦F = τ .
Denote by Z(M) the center of M. Note that E(ME) = Z(N ), then we have a
conditional expectation E ◦ F : M −→ Z(N ) satisfying τ ◦ (E ◦ F ) = τ ◦ F = τ .
Therefore there exist three orthogonal projections e, f , g in L2(M, τ), respectively
associated with E, F , E ◦ F such that ef = g. Thus we obtain ef = fe. Let us
call

∆ = E + F − EF

which a projection onto ME+N satisfying ∆(Mah) ⊆ Mah. Then ∆|Mah
projects

onto (ME + N ) ∩Mah = Lie(NE) and extends to the orthogonal projection

∆|Mah
: L2(Mah, τ) −→ Lie(NE)

‖ ‖2
,

since e commutes with f . Thus Theorem 3.8 applies.
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4.7. An homogeneous space related to C∗-dynamical systems

This example justifies in part Remark 3.10. Let A be a C∗-algebra with a faithful
trace τ and (A, G, α) a C∗-dynamical system. This means that G is a locally
compact group and α is a continuous homomorphism of G into the group Aut(A)
of ∗-automorphisms of A equipped with the pointwise convergence topology. Let
us assume that G is compact and α is trace invariant, in the sense that

τ(αt(x)) = τ(x)

for all t ∈ G and x ∈ A. Consider the C∗-subalgebra of A given by

AG = { x ∈ A : αt(x) = x, ∀ t ∈ G }.
Denoting by µ the left Haar normalized measure on G, we can define

E : A −→ AG, E(x) =
∫

G

αt(x) dµ(t).

It is apparent that E is a norm one projection, and therefore a conditional expec-
tation. We can easily show that E is trace invariant:

τ(E(x)) =
∫

G

τ(αt(x)) dµ(t) =
∫

G

τ(x) dµ(t) = τ(x).

Then, the Lie algebra of the unitary group UAG which identifies with AG
ah is closed

and complemented. In proving that UAG is actually a Lie-Banach subgroup of UA,
it remains to show that UAG is endowed with a structure of Banach-Lie group
whose underlying topology is the norm topology of UA. By Proposition 4.4 of [6]
it suffices to find an open neighborhood V of 0 ∈ Aah and an open neighborhood
W of 1 ∈ UA such that the exponential map exp |V : V −→W is a diffeomorphism
and

exp(V ∩AG
ah) = W ∩ UAG . (4.1)

Since the exponential map is the usual exponentiation of operators to prove the
equation (4.1) we only have to note that if u = ex ∈ UAG with u close to 1,
x ∈ Aah, then x ∈ AG

ah. This follows since

x = log(u) =
∞∑

n=1

(−1)n+1 (u− 1)n

n
,

then

αt(x) =
∞∑

n=1

(−1)n+1 (u− 1)n

n
= x.

Thus UAG is a Lie-Banach subgroup of UA, so we can consider the homogeneous
space UA/UAG . Moreover, this is an orthogonal homogeneous reductive space since
E is trace invariant.



Vol. 62 (2008) Local Minimal Curves in Homogeneous Reductive Spaces 381

Acknowledgment

The author wishes to express his gratitude to Professor Esteban Andruchow for
suggesting the problem and for many helpful conversations during the preparation
of the paper.

References

[1] E. Andruchow, L. Recht, Grassmannians of a finite algebra in the strong operator
topology. Internat. J. Math. 17 (2006), no. 4, 477-491.

[2] E. Andruchow, G. Corach, M. Mbekhta, On the geometry of generalized inverses.
Mathematische Nachrichten 278 (2005), no. 7-8, 756-770.

[3] E. Andruchow, L. Recht, Geometry of unitaries in a finite algebra: Variations for-
mulas and convexity. Int. J. Math. (to appear).

[4] M. Argerami, D. Stojanoff, The Weyl group and the normalizer of a conditional
expectation. Integral Equations and Operator Theory 34 (1999), no. 2, 165-186.

[5] M. Argerami, D. Stojanoff, Orbits of conditional expectations. Illinois J.Math. 45
(2001), no. 1, 243-263.

[6] D. Beltita, Smooth homogeneous structures in operator theory. Chapman and
Hall/CRC, Monographs and Surveys in Pure and Applied Mathematics 137, 2006.

[7] C. Durán, L. Mata-Lorenzo, L. Recht, Natural variational problems in the Grassmann
manifold of a C∗-algebra with trace. Adv. Math. 154 (2000), no. 1, 196-228.

[8] C. Durán, L. Mata-Lorenzo, L. Recht, Metric geometry in homogeneous spaces of
the unitary group of a C∗-algebra. Part I: Minimal curves. Adv. Math. 184 (2004),
no. 2, 342-366.

[9] C. Durán, L. Mata-Lorenzo, L. Recht, Metric geometry in homogeneous spaces of the
unitary group of a C∗-algebra. Part II: Geodesics joining fixed endpoints. Integral
Equations and Operator Theory 53 (2005), no. 1, 33-50.

[10] P. Halmos, J. McLaughlin, Partials isometries. Pacific J. Math. 13 (1963), no. 2,
585-596.

[11] L.A. Harris, W. Kaup, Linear algebraic groups in infinite dimensions. Illinois J.
Math. 21 (1977), no. 3, 666-674.

[12] S. Kobayashi, K. Nomizu, Foundations of differential geometry. Vol. I. Reprint of
the 1969 original, Wiley Classics Library, John Wiley & Sons, 1996.

[13] L. Mata-Lorenzo, L. Recht, Infinite-dimensional homogeneus reductive spaces. Acta
Cient. Venezolana 43 (1992), 76-90.

[14] G. Pedersen, C*-algebras and their automorphism groups. Academic Press, 1979.

[15] A. Stacey, Variations on a theme: Riemannian geometry in infinite dimensions. Al-
gebraic topology special session, BMC 2007.

[16] M. Takesaki, Theory of Operator Algebras I. Springer-Verlag, 1979.



382 Chiumiento IEOT

Eduardo Chiumiento
Dto. de Matemática
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