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Abstract
We improve the results for the β−-decay rates obtained within the context of the Gross Theory of Beta Decay (GTBD)
by using new values of the parameter σN related to the standard deviation for the Gamow-Teller resonance: we include
experimental data when they are available and, if not, we adopt the value of the nearest neighbor previous (that is, with
less mass) that has experimental data. We evaluate the β−-decay rates using a Gaussian energy distribution function with
the axial-vector weak coupling constant |gA| = 1, considering updated experimental mass defects and also an improved
approximation for the Fermi function. Our sample consists of 94 nuclei with mass in the range 46 < A < 70, all of them
decaying by means of allowed transitions, which are of interest in the pre-supernova phase and have experimental data in
terrestrial conditions available in the Letter of Nuclides. We compare our result with those obtained within the same GTBD
but using values of σN adjusted in Possidonio (Braz. J. Phys. 48:485, 2018) by minimizing the χ2-function, and also with
systematic microscopic calculations. We have shown that the substitution of the adjusted parameters by experimental data
in GTBD improves the results for β−-decay rates by 6.4%.
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1 Introduction

One of the great challenges of nuclear physics has been to
develop theoretical models that can reproduce as faithfully
as possible the experimental results of the various naturally
occurring reactions. Among them, β-decay and electron
capture are of particular interest since they are relevant in
astrophysical processes in the pre-supernova stage. Among
the various nuclear models existing in the literature for β-
decay, we choose to use the Gross Theory of Beta Decay
(GTBD) in this work because it has advantages when
working with a large number of nuclei, thus facilitating
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the computational work (see Refs. [1–3] and references
therein).

The GTBD is a nuclear model that takes into account
rough approximations of the final energy states of the
decaying nucleon, and it is essentially a parametric model
for nuclear disintegration rates, which combines arguments
of independent particle associated with the Fermi gas
model. Thus, the GTBD is a model which associates two
other major nuclear models with statistical arguments in a
phenomenological way. This is done when the β-amplitude
function of the independent particle model is combined
with the density levels of the Fermi gas model corrected
to take into account the pairing and shell effects. The
contributions in the final part of the resonance (Gamow-
Teller) are included in a parametric way. The model was
developed originally by Takahashi and Yamada in 1969
[4] and has undergone several modifications over the
years. The many improvements in the model motivated
us to look for other ways to contribute to obtaining even
more accurate theoretical results when compared with the
experimental ones. In this context, we remark that the
adjustment parameter σN related to the standard deviation
for the Gamow-Teller resonance and used so far in Ref. [1,
2], was obtained by minimization of the χ2-function. The
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values obtained in this way correspond to an average value
for each N − Z parity. They were calculated for the data
sample composed of 94 isotopes of the families of iron,
cobalt, nickel, manganese, chromium, copper, titanium and
scandium, including all isotopes of these families that decay
spontaneously via β−-decay through allowed transitions
(we imposed the condition log f t < 6) with mass in the
range 46 < A < 70, which are of interest in astrophysical
studies. The results obtained in this way for σN were shown
in Table 1 from [1]: 8.14 for odd-odd nuclei, 7.48 for
odd-even, 7.7 for even-even and 6.6 for even-odd ones.

The arguments mentioned above motivate us to analyze
in the present work how the substitution of the adjustment
parameters σN by their experimental values modifies the
β−-decay rates when they are evaluated in the context of
the same version of the GTBD from Ref. [1]. The paper is
organized as follows. The formalism is briefly summarized
in Section 2, our results are presented and discussed in
Section 3, and final remarks are drawn in Section 4.

2 Formalism

We have adopted the GTBD version from Ref. [1]. We
have evaluated the β−-decay rates considering the new
relevant modifications within the GTBD scheme, namely:
for the Q-values we used the updated experimental data
present in the Letter of Nuclides [5], the Fermi function has
been calculated following the improved approximation from
Aufderheide et al. [6], we have used the Gaussian energy
distribution function and for the axial-vector weak coupling
constant we have used |gA| = 1 [1]. We have selected
only the value |gA| = 1 for the axial-vector coupling
constant because we have shown in Ref. [1] that other
values of |gA| in the interval [0.76, 1.26], with the σN values
determined by minimization of the χ2-function (shown in
Table 1 from Ref. [1]) lead to worst results for the decay
rates when compared with experimental data. Similarly, we
have selected the Gaussian form for the energy distribution
function, D�(E), because we have shown that this one
leads to better results than the Exponential, Lorentzian and
Modified Lorentzian forms. Thus, when only allowed Fermi
(F ) and Gamow-Teller (GT ) transitions are considered, the
Fermi golden rule allows to evaluate the total β−-decay rate
as (in natural units � = c = me = 1)

λBD = G2
F

2π3

� 0

−Q

�
g2

V DF (E) + 3g2
ADGT (E)

�

× N1

�
1 −

�
1 − Q + E

εF

� 3
2
�

f (Z + 1, −E)dE, (1)

where GF = (3.034545±0.00006)×10−12 n.u. is the weak
Fermi coupling constant, gV = −gA = 1 are the vector

and axial-vector effective coupling constants, respectively,
−E > 0 appears because we integrate over the final energy
states, εF is the nucleon Fermi energy (see Eq. (8) from [1])
N1 is the number of neutrons of the parent nuclei, and Q =
MP −MD −1 with MP and MD being the masses of parent
and daughter nuclei, respectively, and f (Z + 1, −E) is the
integrated Fermi function defined in Eq. (2) from [1]. For
the energy distribution function D�(E), which measures
the probability that a nucleon undergoes a β-transition, we
assume here a Gaussian form [1, 4]

D�(E) = 1√
2πσ�

e

−(E−E�)2

2σ2
� , � = F, GT (2)

where E� is the resonance energy and σ� the standard
deviation. Following the original work from Ref. [4], we
assume the nuclei as an uniform charged sphere with radius

1.2 × A
1
3 fm, which allows to consider the Coulombian (c)

displacement of independent particle such as

EF = Ec = ±(1.44Z1A
− 1

3 − 0.7825)MeV, (3)

σF = σc = 0.157Z1A
− 1

3 , (4)

where Z1 is the proton number of the parent nuclei. For the
GT resonance, we use the approximation [7, 8]

EGT = EF + 26A− 1
3 − 18.5(N − Z)

A
MeV, (5)

and

σGT =
	

σ 2
F + σ 2

N, (6)

with σN being a parameter which comes from the energy
propagation produced by the forces dependent of the nuclear
spin. In order to set this parameter, we have used here two
different methods:

– Method I: We follow the procedure of Refs. [1, 9] to
determine σN through the minimization of the function
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where τ cal
1/2 represents the theoretical value for the half-

life calculated with our GTBD, τ exp

1/2 is the experimental
value taken from the Letter of Nuclides [5], N0 is the
number of experimental β−-decaying nuclei, fulfilling
the conditions: (i) the branching ratio of the allowed
transitions exceeds ∼ 50% of the total β−-decay
branching ratio and (ii) the ground-state Q-value is
≥ 10A−1/3 MeV,
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with δτ
exp

1/2 (n) being the experimental error. This χ2-
function reinforces the contributions of data with small
experimental errors. Moreover, we perform different
fittings for even N-even Z (N0 = 17), odd N- odd
Z (N0 = 28), odd N-even Z (N0 = 29) and even
N-odd Z (N0 = 20) nuclei. Needless to say that for
τ

exp

1/2 we use recent data from [5], instead of those that
were available when the GTBD was formulated [4]. The
results obtained with the GTBD using the σN values
determined by means of this method will be hereinafter
referred to as GTBD1.

– Method II: In the second case, we use experimental
information on GT resonance to fix the parameter σN

thorough the (6). In this way we have obtained the
σN values for those elements of our sample that had
experimental data available and only for some excep-
tions we used data from their nearest neighbors previous
(that is, with less mass) that has data. We remark that
a subset of 65 nuclei of our sample has experimental
data, which corresponds to ∼ 70% of the complete set,
and for the remaining 29 elements we have used data
from their closest neighbors. We consider that this is a
subset representative of the total sample. Specifically,
the nuclei with experimental data were: 47,49,50Ca,
60−69Co, 55−58,60,61,64Cr, 59,61−65,68Fe, 56−62,64Mn,
65,67,69,70Ni, 46−52,54Sc, 51−55,57Ti, 52−58,61V and

Fig. 1 Values of the σN parameter within Method I (red circles) and Method II (blue squares)
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Fig. 2 Comparison of β−
half-lives for two different
calculations within GTDB
model (red circles correspond to
GTBD1 and green crosses to
GTBD2) for the complete
sample of 94 nuclei.
Experimental data from Letter
of Nuclide [5]

GTBD 1
GTBD 2

66,68−70Cu. Additionally, the nuclei for which we use
data from their closest neighbors were: 70Co, 59Cr,
66,67,69,70Fe, 63,65−68Mn, 68Ni, 53,55−60Sc, 56,58−60Ti,
59,60,62−65V. The results obtained with the GTBD using
experimental information to fix the parameter σN will
be hereinafter referred to as GTBD2.

3 Results and Discussions

Firstly, we show in Fig. 1 the values for the parameter
σN obtained within both methods previously described. As
mentioned, they have been obtained for a set of 94 nuclei
belonging to the cobalt, chrome, copper, iron, manganese,
nickel, scandium, titanium, and vanadium families, of
interest in astrophysics, in the region mass 46 ≤ A ≤ 70.
The values obtained with Method I, already given in Table
1 from [1] and repeated above, correspond to an average
value (remember that they were obtained by minimizing the
χ2-function for each group of nuclei with the same parity
separately, which gives a different constant value for each
group). On the contrary, the values of σN within Method
II vary for the different nuclear species within each parity
group, according to the experimental information available
for the Gamow-Teller resonance, and for that reason we

hope it will lead us to an improvement in the results for the
theoretically calculated half-lives.

In Fig. 2 we compare the experimental data for the half-
lives, τ

exp

1/2 , with the calculated ones, τ cal
1/2, both for the

GTBD1 and GTBD2 calculations, for the complete set of
94 nuclei of our sample. The results between the lines
corresponding to the values −1 and 1 in the graph indicate
those nuclei in which the theoretical value differs from
the experimental one in less than one order of magnitude.
Therefore, GTDB1 gives 73 isotopes within this range and
21 outside while GTDB2 shows 79 isotopes within the
range of the same magnitude order as the experimental
data and 15 outside, which represents an improvement of 6
isotopes compared with GTDB1. This shows that there is
a significant gain of 6.4% in the results when we include
experimental data in the parameter σN , which indicates that
is better to employ available experimental values instead of
adjusted theoretical estimations.

For completeness, we present in Fig. 3 our results for
the β− half-lives obtained with the GTBD1 and GTBD2
methods, for the cobalt and manganese families as an
example. Our results are compared with experimental data
and also with results obtained within microscopic models
like shell model (SM) and quasiparticle random phase
approximation (QRPA) from Ref. [10], and the extended
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Fig. 3 Comparison of β− half-lives for manganese (left panel) and cobalt (right panel) families: GTBD1 (red circles), GTBD2 (green crosses),
QRPA and SM from Ref. [10], and ETFSI+CQRPA from Ref. [11]. Experimental data (blue squares) from Letter of Nuclide [5]

Thomas-Fermi plus Strutinsky integral method combined
with continuum QRPA (ETFSI + CQRPA) from Ref. [11].
We observe that for both, cobalt and manganese families,
the GTBD2 gives sometimes better than the GTBD1,
although for other nuclei within that same family it gives
worse or sometimes very similar results to those of GTBD1.
From the right panel in Fig. 3 we observe that the GTBD
gives better results than QRPA for cobalt. Besides, they are
similar and still better than those obtained within the SM.
For manganese, we observe that the half-lives evaluated
within the ETFSI + CQRPA for the isotopes 63 ≤ A ≤ 69
are better than our results obtained with the GTBD model.

4 Conclusions

We improved the results obtained for the β−-decay rates
within the Gross Theory of Beta Decay by using new
values of the parameter σN related to the standard deviation
for the Gamow-Teller resonance. We have shown that
the substitution of the parameters adjusted in Ref. [1]
by minimization of the χ2-function by experimental data
in GTBD improves the results for β−-decay rates by
6.4%. Also, they are sometimes better and sometimes very
similar to those obtained with some systematic microscopic
calculations. Despite this, we have shown that the results
obtained for some particular isotopes may not be as
satisfactory. Search for new improvements it will remain a
motivation for our future resssearch.
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