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Abstract In this paper we study discrete second-order vakonomic mechanics, that is,
constrained variational problems for second-order lagrangian systems. One of the main appli-
cations of the presented theory will be optimal control of underactuated mechanical control
systems. We derive geometric integrators which are symplectic and preserve the momentum
map. Additional, we show the applicability of the proposed theory in an example, the planar
rigid body.
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1 Introduction

One of the most important problems in engineering are related with planning and control
of robotic devices. The applications include the optimal design of autonomous vehi-
cles and of minimalist manipulators. In this sense, for fully actuated mechanical sys-
tems a broad range of powerful techniques were developed in the last decades. These
techniques are possible because fully actuated systems possess a number of strong prop-
erties that facilitate control design, such as feedback linearizability, passivity, matching
conditions, and linear parametrizability. For underactuated systems one or more of the
above structural properties are usually lost. For these reasons, control design becomes
much more difficult and there are correspondingly less results available. The class
of underactuated mechanical systems include spacecraft, underwater vehicles, satellites,
mobile robots, helicopters, wheeled vehicles, mobile robots, underactuated manipulators,
etc.

With this motivation in mind, we will develop in this paper the study of discrete second-
order vakonomic mechanics showing its applicability for optimal control of underactuated
mechanical systems. This study is motivated by the importance of the design of structure-
preserving algorithms for numerical simulation of controlled systems.

A main idea for this paper will be the design of variational integrator using discrete var-
iational calculus adapted to second-order theories. For this type of systems it is possible
to construct discretization schemes which preserve an appropriate symplectic form and the
momentum map associated with a Lie group action. The variational integrators have shown,
in explicit examples, an exceptionally good long-time behavior and this research is of great
interest from numerical and geometrical considerations (see [4,9]).

The paper is organized as follows. In Sect. 2, we consider an optimal control problem
for an underactuated mechanical system and we reduce it to an equivalent second-order
variational problem using standard tools from riemannian geometry. In Sect. 3, we recall
some basic elements of discrete vakonomic mechanics [2]. In Sect. 4, we develop discrete
variational calculus for second-order dynamics. Using this formulation we derive varia-
tional integrators for optimal control problems for underactuated mechanical systems. As
an example, we use this geometric integrator to the optimal control of the planar rigid
body.

2 Optimal control of underactuated mechanical systems

In this section we consider a particular class of mechanical control systems, underactuated
system; that is, systems in which the number of control inputs is less than the dimension of
the configuration space. We assume that these systems are controllable, that is, for any two
points x0 and x f in the configuration space, there exists an admissible control u(t) defined
on some time interval [0, T ] such that the system with initial condition x0 reaches the point
x f in time T (see for more details [4,5]).

Let Q be a differentiable manifold of dimension n with local coordinates (q A) and G
a riemannian metric specifying the kinetic energy of the mechanical system. The metric is
locally written as G = GABdq A ⊗ dq B .

Denote also by �G : T Q → T ∗Q the induced vector bundle isomorphism and by #G :
T ∗Q → T Q the inverse isomorphism. We can construct the Levi-Civita connection ∇G on
Q as the unique affine connection which is torsion-less and metric with respect to G. It is
determined by the standard formula
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2G(∇G
X Y, Z) = X (G(Y, Z)) + Y (G(X, Z)) − Z(G(X, Y ))

+G(X, [Z , Y ]) + G(Y, [Z , X ]) − G(Z , [Y, X ])
for all X, Y, Z ∈ X(Q).

Fixed a potential function V : Q → R, the mechanical system is defined by the mechanical
Lagrangian L : T Q −→ R,

L(vq) = 1

2
G(vq , vq) − V (q), where vq ∈ Tq Q (1)

and the corresponding equations of motion are

∇G
ċ(t)ċ(t) + gradGV (c(t)) = 0. (2)

Here, gradGV is the vector field on Q characterized by

G(gradGV, X) = X (V ), for every X ∈ X(Q).

In local coordinates the Eq. (2) are

d2qC

dt2 = −Γ C
AB(q(t))

dq A

dt

dq B

dt
− G AB ∂V

∂qC
. (3)

where (G AB) are the entries of the inverse matrix of (GAB) and where Γ C
AB are the Christoffel

components of the Levi-Civita connection.
Adding control forces in our picture, given by {θm+1, . . . , θn}, where θa are independent

1-forms on Q, m +1 ≤ a ≤ n; if we denote by Y a = �Gθa the corresponding input sections,
the Eq. (2) are modified as follows:

∇G
ċ(t)ċ(t) + gradGV (c(t)) = ua(t)Y a(c(t)). (4)

where (um+1, . . . , un) ∈ U ⊂ R
n−m . Denote by D = span{Y a}, m + 1 ≤ a ≤ n, and by

{Zα}, 1 ≤ α ≤ m a basis of D⊥. An alternative way of writing Eq. (4) is the following one

CabG
(
∇G

ċ(t)ċ(t) + gradGV (c(t)), Y b
)

= ua, m + 1 ≤ a ≤ n (5)

G
(
∇G

ċ(t)ċ(t) + gradGV (c(t)), Zα
)

= 0, 1 ≤ α ≤ m (6)

where Cab = G(Y a, Y b).
Given a cost function C : T Q × U → R, a solution of the optimal control problem

consists on a trajectory (q A(t), ua(t)) of the state variables and control inputs satisfying
Eqs. (5) and (6) with given initial and final conditions (q A(t0), q̇ A(t0)) and (q A(t f ), q̇ A(t f ))

respectively, extremizing the cost functional

A =
t f∫

t0

C
(

q A, q̇ A, ua
)

dt.

This optimal control problem is equivalent to the following second order constrained
problem (see [6] for an intrinsic point of view):

Extremize the functional:

Ã =
t f∫

t0

L̃
(

q A(t), q̇ A(t), q̈ A(t)
)

dt
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subjected to the second-order constraints given by

�α(q A, q̇ A, q̈ A) = G
(
∇G

ċ(t)ċ(t) + gradGV (c(t)), Zα
)

= 0, with α = 1, . . . , m,

where L̃ : T (2)Q → R is defined as

L̃(q A, q̇ A, q̈ A) = C
(

q A, q̇ A, CabG
(
∇G

ċ(t)ċ(t) + gradGV (c(t)), Y b
))

.

Notice that T (2)Q denotes the second order tangent bundle of Q (see [10]).

3 Dicrete vakonomic mechanics

In this section we recall some basic elements for discrete vakonomic mechanics using dis-
crete variational calculus with constraints (see [2]). The solutions of the vakonomic problem
are the critical sequences of a discrete action sum subjected to some constraint functions.

Consider a continuous vakonomic system defined by a Lagrangian L : T Q → R and
a constraint submanifold M of T Q locally defined by the vanishing of m-independents
constraints �α : T Q → R with 1 ≤ α ≤ m.

For a discretization of this systems, we substitutes the velocity space T Q by the carte-
sian product Q × Q, and then the lagrangian L by a discrete lagrangian function Ld :
Q × Q → R (this discrete Lagrangian may be considered as an approximation of the con-
tinuous Lagrangian L).

In the same way, the discrete constraint submanifold Md ⊂ Q × Q defined, locally, by
the vanishing of m-independent constraints functions �α

d : Q × Q → R, 1 ≤ α ≤ m.
Fixed q0, qN ∈ Q (for some integer N > 2) consider the sequences (q0, q1, . . . , , qN ) ⊂

QN+1. We also assume that the sequences verify the discrete constraints if �α
d (qk, qk+1)= 0,

∀k = 0, . . . , N − 1.
Define the discrete action sum by

Ad(q0, q1, . . . , qN ) =
N−1∑
k=0

Ld(qk, qk+1).

The discrete constrained variational problem is defined by
{

ext Ad(q0, q1, . . . , qN ) with q0 and qN fixed
suject to �α

d (qk, qk+1) = 0, 1 ≤ α ≤ m and 0 ≤ k ≤ N − 1.
(7)

We construct the augmented Lagrangian Ld : Q × Q × R
m → R:

Ld(x, y, λ) = Ld(x, y) + λα�α
d (x, y).

From the classical Lagrange multiplier Lemma [1], we deduce that the solutions of the prob-
lem (7) coincides with the solutions of the discrete variational problem

{
ext Ad

(
q0, q1, . . . , qN , λ0, λ1, . . . , λN−1

)
with q0 and qN fixed ,

qk ∈ Q, λk ∈ R
m k = 0, . . . , N − 1, qN ∈ Q,

(8)

where

Ad

(
q0, q1, . . . , qN , λ0, λ1, . . . , λN−1

)
=

N−1∑
k=0

Ld

(
qk, qk+1, λ

k
)
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and λk is a m-vector with components λk
α with 1 ≤ α ≤ m.

Therefore, applying standard discrete variational calculus we deduce that the solutions of
problem (7) verify the following set of difference equations

⎧⎪⎨
⎪⎩

D1Ld(qk, qk+1) + D2 Ld(qk−1, qk) + λk
α D1�

α
d (qk, qk+1)

+λk−1
α D2�

α
d (qk−1, qk) = 0, 1 ≤ k ≤ N − 1,

�α
d (qk, qk+1) = 0, 1 ≤ α ≤ m and 0 ≤ k ≤ N − 1

where D1Ld and D2 Ld denote the derivatives of the discrete lagrangian Ld respect to the
first and the second arguments, respectively. This equations are called discrete vakonomic
equations.

For all function F ∈ C∞(Q × Q) we denote by D12 F the n × n-matrix

(
∂2 F

∂xA∂yB

)
.

Then, if the matrix
⎛
⎜⎜⎝

D12 Ld(x, y) + λα D12�
α
d (x, y)

∂�α
d

∂x
(x, y)

(
∂�α

d

∂y
(x, y)

)T

0m×m

⎞
⎟⎟⎠ ∈ M(n+m)×(n+m)(R)

is regular, by a direct application of the implicit function theorem, we deduce that, in a
neighborhood of the point (x, y, λ), exists a unique local application

Υd : Md × R
m −→ Md × R

m

(x, y, λ) �−→ (y, z,�),

such that for all solutions (q0, q1, . . . , qN , λ0, λ1, . . . , λN−1) of the discrete vakonomic equa-
tions, we have that locally

Υd

(
qk−1, qk, λ

k−1
)

=
(

qk, qk+1, λ
k
)

.

The application Υd is called the discrete flow of the discrete vakonomic problem.

Remark 1 In [2], the authors have shown that, under the regularity condition, the discrete
flow Υd preserves a symplectic form naturally defined on Md × R

m given locally by

ωd(x, y, λ) = −
[

∂2 Ld

∂xA∂yB
(x, y) + λα

∂2�α
d

∂xA∂yB
(x, y)

]
dxA ∧ dyB

+∂�α
d

∂xA
(x, y)dλα ∧ dxA

and if the discrete Lagrangian Ld and the constraint �α
d are invariant under the action of a

Lie group G on Q, the flow preserves the momentum map, that is

Jd

(
Υd(qk−1, qk, λ

k−1)
)

= Jd

(
qk−1, qk, λ

k−1
)

.

where Jd : Q × Q × R
m → g∗ is given by

(x, y, λ) �→ Jd(x, y, λ) : g → R

ξ �→ 〈D2 Ld(x, y) + λα D2�
α
d (x, y), ξQ(y),

where ξQ is the infinitesimal generator of ξ and g is the Lie algebra of G.
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4 A variational integrator for optimal control of underactuated mechanical systems

In this section we extend the results of the previous section to the case of constrained
second-order lagrangian dynamics. As a consequence of the previous sections, the derived
numerical methods are directly applied to our initial objective: geometric integrators for
optimal control problems for underactuated mechanical systems. In particular, we design
numerical methods preserving an appropriate symplectic form and they are momentum pre-
serving.

4.1 Discrete second-order vakonomic mechanics

Given a second order vakonomic mechanical system with Lagrangian L̃ : T (2)Q −→ R

and a second order constraint submanifold M of T (2)Q, locally defined by the vanishing
of m−independent constraints �α : T (2)Q → R, a natural discretization of this system
consists on a discrete Lagrangian function L̃d : Q × Q × Q → R and a constraint submani-
fold Md of Q × Q × Q which is locally defined by the vanishing of m-constraint functions
�α

d : Q × Q × Q → R.
Fixed q0, q1 and qN−1, qN (for some integer N > 4), we consider the discrete sequences

on Q, (q0, q1, . . . , , qN ) ⊂ QN+1 verifying the discrete constraints �α
d (qk−1, qk, qk+1)= 0

∀k = 1, . . . , N − 1.
Define the discrete action sum by

Ad(q0, . . . , qN ) =
N−2∑
k=0

L̃d(qk, qk+1, qk+2).

We are looking for solutions of the following discrete variational problem with constraints

⎧
⎨
⎩

ext Ad(q0, q1, . . . , qN ), with q0, q1 and qN−1, qN fixed

subject to �α(qk, qk+1, qk+2) = 0 with 1 ≤ α ≤ m and 0 ≤ k ≤ N − 2.

⎫
⎬
⎭ (9)

As in the previous section, consider the augmented Lagrangian Ld : Q×Q×Q×R
m →

R defined by

Ld(x, y, z, λ) = Ld(x, y, z) + λα�α
d (x, y, z).

The solutions of the problem (9) coincide with the solutions of the following problem

{
extremize Ad (q0, q1, . . . , qN , λ0, λ1, . . . , λN−2) with q0, q1 and qN−1, qN fixed
qk ∈ Q, λk ∈ R

m, k = 0, . . . , N ,

(10)

where

Ad

(
q0, q1, . . . , qN , λ0, λ1, . . . , λN−2

)
=

N−2∑
k=0

Ld

(
qk, qk+1, qk+2, λ

k
)

and λk is a m-vector with components λk
α with 1 ≤ α ≤ m.
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Hence, the extremality conditions are

0 = D3 L̃d(qk−2, qk−1, qk) + D2 L̃d(qk−1, qk, qk+1)

+D1 L̃d(qk, qk+1, qk+2) + λk−2
α D3�

α
d (qk−2, qk−1, qk)

+λk−1
α D2�

α
d (qk−1, qk, qk+1) + λk

α D1�
α
d (qk, qk+1, qk+2), 2 ≤ k ≤ N − 2

0 = �α
d (qk−2, qk−1, qk)

0 = �α
d (qk−1, qk, qk+1)

0 = �α
d (qk, qk+1, qk+2).

If the matrix

(
D13 L̃d(x, y, z) + λα D13�

α
d (x, y, z) D3�

α
d (x, y, z)(

D1�
α
d (x, y, z)

)T 0

)
(regularity condition) (11)

is regular for all (x, y, z) ∈ Md and λα ∈ R, 1 ≤ α ≤ m, then by a direct application of the
implicit function theorem, we deduce that there exists a (local) unique application

Υd : Md × R
2m −→ Md × R

2m

(
q0, q1, q2, q3, λ

0
α, λ1

α

) �−→ (
q1, q2, q3, q4, λ

1
α, λ2

α

)

which univocally determines q4 and λ2
α, 1 ≤ α ≤ m from the initial conditions

(q0, q1, q2, q3, λ
0
α, λ1

α). Here, Md denotes the submanifold of Q4 = Q × Q × Q × Q

Md = {(q0, q1, q2, q3) ∈ Q4 | �α
d (q0, q1, q2) = 0,�α

d (q1, q2, q3) = 0, 1 ≤ α ≤ m}.

The mapping Υd will be called the discrete second-order vakonomic flow.

Remark 2 (See [7]).
Using similar techniques than in [2] and [3] it is possible to show that, under the reg-

ularity assumption, the discrete second-order vakonomic flow is symplectic and preserves
momentum when we have an action preserving the discrete lagrangian Ld and the constraint
submanifold Md .

Let �−
d ,�+

d be the discrete canonicals one forms on Q4 × R
2m given by

�+
d (q0, q1, q2, q3, λ

0, λ1) = −
1∑

i=0

⎛
⎝

i+1∑
j=1

D j Ld (qi− j+1, qi− j+2, qi− j+3)

+ λi− j+1
α D j �

α
d (qi− j+1, qi− j+2, qi− j+3)

⎞
⎠ dqi

�+
d (qN−3, qN−2, qN−1, qN , λN−3, λN−2)

=
N∑

i=N−1

⎛
⎝

3∑
j=i−N+3

D j Ld (qi− j+1, qi− j+2, qi− j+3) + λi− j+1
α D j �

α
d (qi− j+1, qi− j+2, qi− j+3)

⎞
⎠ dqi
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We define the discrete Poincaré-Cartan 2-form, �d on Q4 ×R
2m,�d = −d�+

d = −d�−
d

�d(q0, q1, q2, q3, λ
0, λ1) = [

D21Ld(q0, q1, q2) + λ0
α D21�

α
d (q0, q1, q2)

]
dq1 ∧ dq0

+ [
D31Ld(q0, q1, q2) + λ0

α D31�
α
d (q0, q1, q2)

]
dq2 ∧ dq0

+D1�
α
d (q0, q1, q2)dλ0

α ∧ dq0

+ [
D11Ld(q1, q2, q3) + λ1

α D11�
α
d (q1, q2, q3)

+D12 Ld(q0, q1, q2) + λ0
α D12�

α
d (q0, q1, q2)

]
dq0 ∧ dq1

+ [
D31Ld(q1, q2, q3) + λ1

α D31�
α
d (q1, q2, q3)

+D32 Ld(q0, q1, q2) + λ0
α D32�

α
d (q0, q1, q2)

]
dq2 ∧ dq1

+D1�
α
d (q1, q2, q3)dλ1 ∧ dq1 + D2�

α
d (q0, q1, q2)dλ0 ∧ dq1

If we define j : Md × R
2m ↪→ Q4 × R

2m, the canonical inclusion, this give rise the two
form �Md

= j∗�d . From the definition of Υd it is obvious that it applies Md × R
2m onto

itself. Moreover,
(
Υ |Md×R2m

)∗
�Md

= �Md

Assume that additionally we have an action of a Lie group G on the space Q. It naturally
induces and action on the Q × Q × Q by (g, (q0, q1, q2)) → (gq0, gq1, gq2) where g ∈ G.
Construct now the discrete momentum map

J±
d : Q4 × R

2m → g∗

by

J±
d (q0, q1, q2, q3, λ

0, λ1) : g → R

ξ �→ 〈�±
d (q0, q1, q2, q3, λ

0, λ1), ξQ4(q0, q1, q2, q3)〉
where ξQ4 is the infinitesimal generator corresponding to an element of the Lie algebra ξ ∈ g,
that is, ξQ4(q0, q1, q2, q3, λ

0, λ1) = (
ξQ(q0), ξQ(q1), ξQ(q2), ξQ(q3)

)
.

If the discrete lagrangian Ld and the discrete constraints �d are invariant under this action
then L̃d = Ld +λα�α

d is also invariant, and, as a consequence, J+
d = J−

d = Jd . Under these
conditions we can show that

〈
JΥd(q0, q1, q2, q3, λ

0, λ1), ξ
〉 = 〈

J (q0, q1, q2, q3, λ
0, λ1), ξ

〉
.

Therefore, from the symmetry invariance we deduce the preservation of the momentum map,
that is, we have deduced a discrete version of the classical Noether theorem for this particular
kind of systems.

4.2 Application to optimal control for underactuated mechanical systems

In this section, we show that the discrete vakonomic approach of a second-order problem
is and appropriate framework for the treatment of the discrete versions of optimal control
problems for underactuated mechanical system considered in Sect. 3. The main application
is the construction of geometric numerical integrators for this type of systems.

A reasonable discretization of the Euler-Lagrange equations with controls is

D2 Ld(qk−1, qk) + D1Ld(qk, qk+1) + h(ua)k�G(Y a) |qk = 0, 1 ≤ k ≤ N − 1. (12)

where h is the fixed time step.
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Using the same idea that in Sect. 2, we can rewrite Eq. (12) as

− Cab(qk)〈D2 Ld(qk−1, qk) + D1Ld(qk, qk+1), Y a |qk 〉 = h(ua)k, m + 1 ≤ a ≤ n (13)

〈D2 Ld(qk−1, qk) + D1Ld(qk, qk+1), Zα |qk 〉 = 0, 1 ≤ α ≤ m. (14)

The optimal control problem is determined prescribing the discrete cost functional

Ad =
N−1∑
k=1

hC(qk, qk+1, (ua)k)

with initial and final conditions q0, q1 and qN−1, qN , respectively.
Since the control variables appear explicitly in (12), the previous discrete optimal control

problem is equivalent to the second-order discrete vakonomic problem determined by

L̃d(qk−1, qk, qk+1) = C

(
qk, qk+1,− 1

h
Cab(qk)〈D2 Ld(qk−1, qk)

+ D1Ld(qk, qk+1), Y a |qk 〉
)

�α
d (qk−1, qk+1, qk+2) = 〈D2 Ld(qk−1, qk) + D1Ld(qk, qk+1), Zα |qk 〉.

As in the previous subsection, we define Ld : Q × Q × Q × R
m → R as

Ld(qk, qk+1, qk+2, λα,k) = Ld(qk, qk+1, qk+2) + λα,k�
α
d (qk, qk+1, qk+2),

obtaining a second-order vakonomic system and from the results deduced on the previous
section we can derive the discrete equations of motion which give us a geometric integrator
preserving symplecticity and momentum map (if it is the case) for optimal control problems
for underactuated mechanical systems.

4.3 Example: Planar Rigid Body

The configuration space for this system is Q = R
2 × S1 and it can be considered as the

simplest example in the category of rigid body dynamics, but adequate to test our method.
The three degrees of freedom describe the translations in R

2 and the rotation about its center
of mass. The configuration is given by the following variables: θ describes the relative orien-
tation the body reference frame with respect to the inertial reference frame. The vector (x, y)

denotes the position of the center of mass measured with respect to the inertial reference
frame. The lagrangian is of kinetical type

L = 1

2
q̇T Mq̇, where M =

⎛
⎝

m 0 0
0 m 0
0 0 J

⎞
⎠ ,

and where m is the mass of the body and J is its moment of inertia about the center of mass.
For simplicity we assume that the body moves in a plane perpendicular to the direction of the
gravitational force, and then the potential energy is zero. Additionally, we assume that there
are not acting frictional forces. For the planar body, the control forces that we consider are
applied to a point on the body with distance l > 0 from the center of mass, along the body
x−axis (see [5] for more details about this example).
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The equations of motion are

mẍ = u1 cos θ − u2 sin θ

mÿ = u1 sin θ + u2 cos θ

J θ̈ = −lu1

The control vector fields are

Y 2 = cos θ

m

∂

∂x
+ sin θ

m

∂

∂y
− l

J

∂

∂θ

Y 3 = − sin θ

m

∂

∂x
+ cos θ

m

∂

∂y

and element Z1 generating the orthogonal D⊥ of D = span {Y 2, Y 3},

Z1 = l cos θ
∂

∂x
+ l sin θ

∂

∂y
+ ∂

∂θ
.

The equations of motion are now modified as follows

m J

J + ml2

(
cos θ ẍ + sin θ ÿ − l θ̈

) = u1

−m sin θ ẍ + m cos θ ÿ = u2

ml cos θ ẍ + l sin θ ÿ + J θ̈ = 0.

For the cost function C = u2
1 + u2

2

2
, the related optimal control problem is equivalent to

the following second-order constrained problem with second-order constraints:

Extremize

Ã =
t f∫

t0

L̃
(

q A(t), q̇ A(t), q̈ A(t)
)

dt

subject to the second-order constraints given by

�α
(

q A, q̇ A, q̈ A
)

= ml cos θ ẍ + l sin θ ÿ + J θ̈ = 0.

Here L̃ : T (2)Q → R is defined by

L̃(q A, q̇ A, q̈ A) = m2

2

(
J 2

(J + ml2)2

(
cos θ ẍ + sin θ ÿ − l θ̈

)2 + (− sin θ ẍ + cos θ ÿ)2
)

Now, we develop a discrete version of this higher-order constrained problem. Consider
the discretization Ld : Q × Q → R, with Q = R

2 × S
1, of the lagrangian L : T Q → R:

Ld(xk, yk, θk,xk+1, yk+1, θk+1) = 1

2h

(
m(xk+1 − xk)

2 + m(yk+1 − yk)
2+ J (θk+1 − θk)

2)

and

�G(Y 2) |qk = cos θk dx + sin θk dy − l dθ

�G(Y 3) |qk = − sin θk dx + cos θk dy

�G(Z1) |qk = ml cos θk dx + ml sin θk dy + J dθ
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where the control forces are applied to a point on the body with distance l > 0 from the
center of mass, along the body x−axis.

Denoting by �2[qk] = qk+2−2qk+1+qk
h2 , then the discrete control equations are

m�2[xk] = (u1)k cos θk − (u2)k sin θk

m�2[yk] = (u1)k sin θk + (u2)k cos θk

J�2[θk] = −l(u1)k

Therefore we obtain the following constrained second-order discrete variational problem:

L̃d(qk, qk+1, qk+2) = m2h

2

(
J 2

(J + ml2)2

(
cos θk�

2[xk] + sin θk�
2[yk] − l�2[θk]

)2

+ (− sin θk�
2[xk] + cos θk�

2[yk]
)2

)

�α
d (qk, qk+1, qk+2) = ml cos θk�

2[xk] + l sin θk�
2[yk] + J�2[θk] = 0

4.4 Conclusions and future work

In this paper, we have introduced a discrete geometric framework for optimal control of
mechanical systems. Our procedure is strongly based on the formulation of second-order
discrete vakonomic systems. Moreover, the construction allows us to design variational inte-
grators sharing some qualitative properties with the continuous case, as for instance, sym-
plectic and momentum preserving, and, as a consequence a good energy behavior associated
with these systems.

In a future paper, we will study the performance of the proposed numerical methods,
preferably, for long-time integration and the extension of backward error analysis to these
methods.
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