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a b s t r a c t

The physical mechanism responsible for the emergence of primordial cosmic seeds from a perfect
isotropic and homogeneous Universe has not been fully addressed in standard cosmic inflation. To handle
this shortcoming, D. Sudarsky et al have developed a proposal: the self-induced collapse hypothesis.
In this scheme, the objective collapse of the inflaton’s wave function generates the inhomogeneity and
anisotropy at all scales. In this paper we analyze the viability of a set of inflationary potentials in both the
context of the collapse proposal and within the standard inflationary framework. For this, we perform a
statistical analysis using recent CMB and BAO data to obtain the prediction for the scalar spectral index
ns in the context of a particular collapse model: the Wigner scheme. The predicted ns and the tensor-
to-scalar ratio r in terms of the slow roll parameters is different between the collapse scheme and the
standard inflationary model. For each potential considered we compare the prediction of ns and r with
the limits established by observational data in both pictures. The result of our analysis shows in most
cases a difference in the inflationary potentials allowed by the observational limits in both frameworks.
In particular, in the standard approach the more concave a potential is, the more is favored by the data.
On the other hand, in theWigner scheme, the data favors equally all type of concave potentials, including
those at the border between convex and concave families.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

According to most recent data reported by the Planck mis-
sion [1–3], the early Universe is consistent with the description
provided by cosmic inflation, which assumes an accelerated ex-
pansion of the primordial Universe [4–7]. In the simplest scenario,
the matter driving the inflationary stage is characterized by a
single scalar field, called the inflaton, with canonical kinetic term
minimally coupled to gravity [8].Moreover, the standard paradigm
considers that the inflationary expansion amplifies the quantum
fluctuations of the scalar field and converts them into classical per-
turbations which leave their imprint as temperature and polariza-
tion anisotropies in the Cosmic Microwave Background (CMB) [9–
14]. The observational data from CMB anisotropies constrain the
parameters associated to the spectra of primordial fluctuations.
Those parameters characterize the amplitude and shape of the
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scalar/tensor spectra. In particular, Planck 2015 data [2] yield the
values ln(1010As) = 3.094 ± 0.034 and ns = 0.9645 ± 0.0049 at
68% confidence level corresponding to the scalar amplitude As and
spectral index ns respectively.1 On the other hand, a measurement
of the tensor amplitude At and spectral index nt requires the B-
mode polarization of the CMB,which has not been detected. In fact,
it is not known if the tensor spectrum is consistent with a perfect
scale invariant spectrum or exhibits some degree of tilt. Regarding
the tensor spectrum amplitude, current data can only establish an
upper bound, this information is encoded in the so called tensor-to-
scalar ratio r . The joint analysis of the BICEP2/KeckArray and Planck
2015 data set the bound r < 0.12 at 95% confidence level [15].

In order to achieve an inflationary expansion, the potential
energy of the inflaton must dominate over its kinetic energy. If
there is a region in the potential which is sufficiently flat and
the inflaton is located in that region, the accelerated expansion
is known as slow roll inflation. Given observational constraints
and theoretical predictions for the inflationary parameters, namely

1 The values are obtained from Table 3 of Ref. [2] considering only temperature
(TT), plus polarization (TE,EE) for highmultipoles and (TE,EE,BB) for lowmultipoles.
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As, ns and r , one can determine the specific inflationary potentials
consistent with the data (see [16] for a review). Furthermore, it is
also argued that, in order to analyze which potentials are allowed
by observations, not only inflation has to be considered but the
reheating era as well [17,18]. A comprehensive list of potentials
have been analyzed in such a manner in Refs. [19,20] based on
the slow roll inflationary model. Those analysis resulted in precise
constraints, allowed by the data, on the parameters characterizing
each type of potential. The importance of finding out the spe-
cific shape of the inflationary potential arises because inflation is
supposed to take place at very high energies (∼1015 GeV) in a
regime unreachable by particle accelerators. Hence, the knowledge
about the potential and its characteristics can contribute to our
understanding of physical processes at such scales.

In spite of the successful predictions made by the inflationary
paradigm, there exists an issue in the standard lore of themodel. In
particular, there is no consensus on the physical mechanismwhich
transforms quantum fluctuations of the inflaton into actual real
inhomogeneities that eventually become imprinted in the CMB
anisotropies. This particular issue is usually known as the quantum
to classical transition of primordial perturbations [21–26].2 Var-
ious attempts that have helped to obtain a major understanding
of such an issue have been proposed, the most popular ones are
based on decoherence [21,23–29], many-worlds interpretation of
quantum mechanics [30–32] and evolution of the inflaton’s vac-
uum state into a squeezed state [22,23,33] or some combination of
those (in Refs. [34,35] the interested reader can find our posture on
the prior proposals). Nevertheless, a common pragmatic view is to
argue that whatever resolves the quantum-to-classical transition
of primordial quantum fluctuations, the usual predictions remain
unchanged. We think such a view is misguided and in fact, as we
will show in the present work, when facing the aforementioned
problem and finding a possible solution, the predictions do change
(evidently new predictions must be consistent with the data). In
particular, we will show in Section 2 that the predictions obtained
in our model regarding the shape and spectral index of the scalar
power spectrum, as well as the amplitude of the tensor power
spectrum, are different from the traditional ones.3

The orthodox interpretation of quantum mechanics requires a
crucial element, namely, an observer whoperforms ameasurement
using a measurement device. In the early Universe, there is of
course no measuring apparatus nor any observer; consequently,
there is nothing that can justifiably be considered as a measure-
ment. One might argue that it is us – humans – on Earth, right
now, who are performing the measurement in question. However,
arguing that it is our observation what leads to the emergence
of primordial inhomogeneities, would be tantamount to saying
that we humans create the conditions that bring about our own
existence.4 In any case, the issue we have described is directly re-
lated to themeasurement problemof quantummechanics. In other
words, in standard quantum theory, there is no clear definition
of what constitutes a measurement (performed by an observer),
but this element is required for extracting predictions from the
mathematical formalism of quantum mechanics. That, in fact, is

2 We consider that characterizing the problem as the ‘‘quantum to classical
transition" is not completely accurate. The fundamental description is always
quantummechanical, for instance, quantummechanics is also valid formacroscopic
systems. However, for some physical systems there are certain conditions that
allow us to describe specific quantities, to a satisfactory accuracy, by their quantum
expectation values. Those can then be identified with their classical counterparts.
3 It is worthwhile to mention there exist inflationary models that make use of

decoherence to explain the quantum to classical transition, and that also change the
standard predictions of the inflationary observables [36,37].
4 That is a simply unacceptable closed causal loop, as our own existence here

and now, requires as a prerequisite, the formation of galaxies, stars and planets,
that must come before even life can emerge.

achieved through the postulate known as the Born rule. In the
case of the early Universe (and in any cosmological context) the
trouble of defining unambiguously such a measurement, i.e. the
measurement problem, appears in an exacerbated manner.

In our view, a more precise characterization of the problem re-
garding the origin of primordial inhomogeneities and anisotropies
can be summarized as follows. Starting froma completely homoge-
neous and isotropic initial setting, characterizing both the vacuum
state of the inflaton and the spacetime background, the evolution
given by inflationary dynamics, somehow transmutes the initial
setting into a final one that is inhomogeneous and anisotropic.
Obviously, this is not simply the result of quantum unitary evo-
lution, since, in this case, the dynamic does not break the initial
symmetries of the system. In addition, quantum fluctuations can-
not be taken as indicating the existence of inhomogeneities and
thus cannot be taken as characterizing themeither. In the orthodox
interpretation of quantum mechanics, quantum fluctuations are
only fluctuations on measurements performed by an observer;
the state of the system, and thus its symmetries, are encoded in
the state vector or wave function. For the inflaton’s vacuum, the
symmetries are homogeneity and isotropy.

One proposal to deal with the above problem is to invoke an
objective (i.e. without observers ormeasurement devices) collapse
of the wave function, corresponding to the inflaton, which can
break the quantum state’s initial symmetries [38,39]. The proposal
was inspired in early ideas by R. Penrose and L. Diósi [40–42]which
regarded the collapse of the wave function as an actual physical
process (instead of just an artifact of the description of Physics)
and it is assumed to be caused by quantum aspects of gravitation.
Furthermore, the application of an objective reduction of the wave
function to the inflationary Universe has been analyzed by several
authorswithin different frameworks [43–48]. Thewaywe treat the
collapse process is by assuming that at a certain stage during the
inflationary epoch there is an induced jump in a state describing a
particular mode of the quantum field, in amanner that is similar to
the quantummechanical reduction of thewave function associated
with a measurement, but with the difference that in our scheme
no external measuring device or observer is called upon as trig-
gering such collapse. The self-induced collapse proposal could be
regarded as an alternative explanation to the ‘‘quantum to classical
transition" occurring at the time of collapse, which in principle
can be any time during the inflationary expansion (however see
footnote1). The issue that then arises concerns the characteristics
of the post-collapse quantum state. In particular, what determines
the expectation values of the field and momentum conjugate vari-
ables for the after-collapse state. Previous works by people in
our group have extensively discussed both the conceptual and
formal aspects of that problem [34,35,38,49–54], and the present
manuscript will not dwell further into those aspects, except for a
very short review. The observational consequences of our proposal
have also been analyzed in previous works. Specifically, we have
found that the self-induced collapse proposal implies a different
prediction with respect to the standard one for the shape and
spectral index corresponding to the scalar power spectrum [55–
58]. Additionally, the predicted amplitude of the tensor power
spectrum is very small generically (i.e. undetectable by current ex-
periments), that is, the B–mode polarization spectrum is strongly
suppressed [59–61].5

Motivated by the fact that predictions of the inflationary param-
eters are different between the standard inflationary model and
our proposal, in the present work, we have analyzed the feasibility

5 The prediction of a strong suppression of the B-modes amplitudewas obtained
in the context of semiclassical gravity. If the inflaton’s quantization is performed
using the Mukhanov–Sasaki variable, as in the standard inflationary model, there is
no such suppression.
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of various inflationary potentials within the self-induced collapse
framework. These potentials are of the single slow roll inflation
type. Also, we have made use of the public code ASPIC6 [19]
which contains 74 slow roll inflationary potentials. However, we
considered only 10 potentials of the one parameter kind. The
criteria to select the potentials is based on their popularity among
cosmologists and the ones that are consistent with the conceptual
basis of our model. The output of the ASPIC code allowed us to ex-
press our new set of predictions, corresponding to the inflationary
parameters, in terms of the potential’s parameters. On the other
hand, we performed a statistical analysis using recent CMB [3] and
Baryon Acoustic Oscillations (BAO) data to obtain the limits on the
inflationary parameters in the context of the collapse models. In
such way, we were able to compare the new predicted inflation-
ary parameters with the observational constraints for those same
parameters. As a consequence, we can find a range of values for
the potential’s parameters that are consistent with the data. The
novel aspect of this work is that inflationary potentials that were
disfavored by observations in the standard framework become
viable within the self-induced collapse framework using the same
data.

The paper is organized as follows: In Section 2, we provide a
brief review of the collapse proposal based on Wigner’scollapse
scheme. We also present there the theoretical results that will be
of interest for the rest of the paper. In Section 3, we present the
steps thatwewill follow regarding our analysis, which involves the
observational data and the theoretical predictions in terms of each
inflationary potential. In Section 4 we present the results of our
analysis and the constraints on the parameters of each inflationary
potential considered. We also introduce the computational tools
and the data set used in our analysis. Finally, in Section 5, we sum-
marize the main results of the paper and present our conclusions.

2. Inflation and theWigner collapse scheme

The objective of this section is to present the results of previous
works that will be of interest for the article’s purpose. We only
provide a brief review of the collapse inflationary model; thus,
there is no original content in this section. For a complete analysis
and motivation we invite the reader to consult our past works (in
particular see Refs. [34,35,38,49,56]).

2.1. General framework of the self-induced collapse proposal

Before addressing the self-induced collapse proposal and its
connection with inflation, we present our view regarding the rela-
tion between gravitational degrees of freedom andmatter fields. In
particular, wewill rely on the semiclassical gravity approximation.
The crucial feature of this framework is to provide a quantum
characterization of thematter fields only, while themetric degrees
of freedom remain classical. This approach contrast with the usual
procedure in which metric and matter fields perturbations are
quantized. In the ensuing paragraphs we expose some arguments
which suggest that it is not completely settled that the standard
approach is the only option to follow.

There is of course indisputable evidence of the quantum nature
of matter, from which it follows that a theory of gravity that
acknowledges the quantum character of matter, unlike general
relativity, is necessary. However, even if we agree that, at the
fundamental level, gravitation itself is quantum mechanical in
nature, that does not automatically mean that the metric de-
grees of freedom are the ones that need to be treated quantum

6 The ASPIC name stands for ‘‘Accurate Slow-roll Predictions for Inflationary
Cosmology", the library is publicly available at http://cp3.irmp.ucl.ac.be/~ringeval/
aspic.html.

mechanically. There are various arguments suggesting that the
spacetime geometry might emerge from deeper, non-geometrical
and fundamentally quantum mechanical degrees of freedom (see
e.g. Refs. [62–66]); and, just as one does not directly quantize
macroscopic, thermodynamic variables, one would not think of
quantizing the metric if it were non-fundamental.

Classical gravity is a good effective field theory and one may
say that it is straightforward to quantize its linear perturbations.
But the fact that a theory is a good effective description classically
does not guarantee that quantizing it in a canonical fashion will
yield something that accurately describes nature. For instance,
nobody believes that quantizing the heat equation is a reasonable
thing to do (even though the equation provides a good effective
theory). Similarly, few people would think that quantizing sound
waves in the air (in contrast with waves in a solid) is something
that would yield reasonable results. The important point is that,
in the end, it is always experiments that determine the correct
answer. In the particular case of the spacetime metric, the fact is
that we simply do not know for sure as we do not have anything
as an established theory of quantum gravity. In any event, before
such theory becomes available and before definite experimental
evidence, we simply do not know with absolute certainty if one
should canonically quantize the metric perturbations or not.

We agree that small fluctuations around a classical solution can
be quantized (in a technical sense) and specially if the theory is
represented by a quadratic action. However, it is crucial to notice
that there are serious issues that would arise when attempting to
give a physical interpretation of the obtained results. For instance,
what is the meaning of a spacetime that is in a state of quantum
superposition of two states sharply peaked about two spatial met-
rics? One could claim that such situation is no different than what
we face with en electric field. Well, maybe it is, but maybe it is
not. In the case of an electric field on a fixed spacetime, we at least
know what the superposition implies regarding measurements of
the electric field at a certain point. In contrast, with the metric su-
perposition,we encounter the addeddifficulty of not evenknowing
how to identify spacetime points. In any case, as we argued above,
we cannot knowwhether or not quantizing themetric is theway to
obtain correct description of nature. We simply cannot know that
in absence of an established theory of quantum gravity.

In our view, everything ought to be described quantum me-
chanically at its basic level. However, since there is not a complete
andworkable quantum theory of gravity, one can rely on the semi-
classical gravity framework and take it as an approximation, in the
appropriate regime, to relate the degrees of freedom of gravity and
matter. In fact, the semiclassical framework has provided a suitable
approximation when one wants to take into account quantum
effects provided by matter but the gravitational sector can still
be characterized by General Relativity, e.g. to derive the thermal
radiation emitted by black holes (i.e. Hawking’s radiation). On the
other hand, we equally expect that, in the quantum gravity theory,
one will be able to find many situations in which the semiclassical
Einstein’s equations would be completely inappropriate; but it
seems quite likely that thosewould correspond to situationswhere
the concept of spacetime itself becomes meaningless. In the case
presented in the paper, we are using the semiclassical gravity
approximation as suitable description in which one can observe
(as will be shown in Section 2.4) how the curvature perturbation
(which again is always classical) is born from the quantum col-
lapse.7

7 We note that although the prevailing perception is that combining a classical
theory of gravity with a quantum theory of matter would be inconsistent, the issue
is still an open one. In fact, there are a number of arguments in the literature against
the viability of a half-and-half theory. Nevertheless, as shown in Refs. [67–73]. none
of those arguments are really conclusive.

http://cp3.irmp.ucl.ac.be/~ringeval/aspic.html
http://cp3.irmp.ucl.ac.be/~ringeval/aspic.html
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Semiclassical gravity is encoded in Einstein’s semiclassical
equations

Rab − (1/2)Rgab = 8πG⟨T̂ab⟩. (1)

Having adopted a point of view whereby the spontaneous col-
lapse is the underlying mechanism behind the breakdown of ho-
mogeneity and isotropy in the inflationary epoch, and given that
spontaneous collapse is, at the basic level, a modification of the
temporal quantum evolution, it seems natural to work in a set-
ting where time and, more generally speaking, spacetime notions,
appear as playing their standard roles. That is, it seems natural
to work in contexts where the spacetime metric is taken as well-
defined and subject to a classical treatment. Thus, our program
seems best framed where the spacetime metric is treated classi-
cally while matter fields are described quantum mechanically.

We of course do not claim that this is the only choice. As a
matter of fact, one might choose instead to rely on the standard
idea of quantizing perturbations of both matter and metric fields,
and to incorporate in that setting the collapse proposal.8 We note,
however, that in the absence of a workable theory of quantum
gravity (and considering the fact that canonical approaches to
quantum gravity invariably face the ‘‘problem of time"), such ap-
proach can at best be attempted in a perturbative setting (where
the causal structure is taken as that of the unperturbed background
spacetimemetric). On the other hand, using a spontaneous collapse
within the semiclassical setting, is, in principle, susceptible to
a non-perturbative treatment using, for instance, the formalism
developed in Refs. [52,54].

Let us now focus on the theory. The action of a single scalar field
minimally coupled to gravity is

S[φ, gab] =

∫
d4x

√
−g
[

1
16πG

R[g]

−
1
2
∇aφ∇bφgab

− V [φ]

]
. (2)

Next one splits the scalar field and metric into background plus
perturbations, i.e. gab = g (0)

ab + δgab and φ(x, η) = φ0(η)+ δφ(x, η).
The background metric is described by a spatially flat FRW

spacetime. In conformal coordinates, the components of the back-
ground metric are g (0)

µν = a(η)ηµν , with a(η) the scale factor,
η the conformal cosmological time and ηµν the components of
the Minkowskian metric. The Hubble slow roll parameters, are
defined as ϵ1 ≡ 1 − H′/H2, ϵ2 ≡ ϵ′

1/Hϵ1, here H ≡ aH is
the conformal Hubble factor and primes over functions f ′ denote
derivative with respect to η. Using Friedman’s equation for the
background, one can writeH as a function of φ0. In that case, if the
slow roll parameters are small, i.e. ϵ1 ≪ 1 and ϵ2 ≪ 1, then slow
roll inflation is guaranteed. The slow roll approximation implies
3Hφ′

0 ≃ −a2∂φV and H2
≃ (8πG/3)a2V .

Moreover, the slow roll parameters can be related to the infla-
ton’s potential through,

ϵ1 ≃
M2

P

2

(
∂φV
V

)2

, (3a)

ϵ2 ≃ 2M2
P

[(
∂φV
V

)2

−

(
∂φφV
V

)]
. (3b)

whereM2
P ≡ 1/(8πG) is the reduced Planck’s mass.

At this point we should focus on a particular subject of cos-
mological perturbation theory, i.e. the gauge issue. In classical GR
perturbation theory, the problem of gauge is connected to the

8 Such approach is followed, for instance, in Refs. [43–47,74,75].

fact that one is comparing two pseudo-Riemannian manifolds: the
background (M, gab, φ) (that is manifold, metric and field) and
a perturbed one (M ′, g ′

ab, φ
′). Moreover, when focusing on the

perturbations: δgab = g ′

ab − gab or δφ = φ′
− φ, one must

deal with the arbitrariness of choice of which point of M ′ is to be
identified with each one of M (in order to evaluate the differences
defining the aforementioned δ-fields ). There are two approaches
used generically to deal with this problem:

1. To fix the gauge,
2. To work with the so called ‘‘gauge invariant quantities".

Approach 2 is traditionally favored in this particular branch
of cosmology, and is based on the fact that certain combinations
of metric components (associated with a previous selection of
preferential coordinates correlated with the homogeneous and
isotropic background) and of the field variations, have the property
of being invariant under infinitesimal coordinate transformations.
We stress this fact because confusion might arise in these matters,
and mistakenly lead one to entertain the notion that somehow
geometry and matter fields become ‘‘inexorably mixed" to the
degree that they only acquire meaning in those, so called, gauge
invariant combinations. This is not correct, as geometry andmatter
fields are quite different physical objects (one can be measured for
instance by analyzing the geodesic deviations in a neighborhood,
and the other by placing a suitable detector that interacts with the
fields in question).

In any event, as we are treating geometry and fields in a very
different fashion in our approach (the perturbations of the inflaton
field is treated quantummechanically – QFT in curved spacetime –,
while themetric description of geometry –whichwe are regarding
as emergent – is treated classically), we cannot hope to use the
second approach. That is we choose Approach 1 andwork in a fixed
gauge. Nonetheless, we expect gauge invariance of our answers
to the same degree that one has gauge invariance of any analysis
carried out in a particular gauge, and we do expect all those
choices that represent real physical alternatives, to modify the
results accordingly. In particular, a notion of the ‘‘time" at which
collapse of certainmode takes place, might changewith a different
of gauge (this ‘‘time" of course being just a index or label, with
no physical significance). However, physically relevant quantities,
e.g. the actual mean density, as hypothetically measured by co-
moving observers at the onset of the collapse,would not depend on
the gauge.Wewill get back to this issue after a small but necessary
digression.

The choice of gauge implies that the time coordinate is at-
tached to some specific slicing of the perturbed spacetime, and
thus our identification of the corresponding hypersurfaces (those
of constant time) as the ones associated with the occurrence of
collapses – something deemed as an actual physical change –
turns what is normally a simple choice of gauge into a choice
of the distinguished hypersurfaces, tied to the putative physical
process behind the collapse. This naturally leads to tensions with
the expected general covariance of a fundamental theory, a prob-
lem that afflicts all known collapse models, and which in the
non-gravitational settings becomes the issue of compatibility with
Lorentz or Poincare invariance of the proposals.Wemust acknowl-
edge that this generic problem of collapse models is indeed an
open issue for the present approach. One would expect that its
resolution would be tied to the uncovering of the actual physics
behind what we treat here as the collapse of the wave function
(which we view as a merely an effective description). As has been
argued in related works, and in following ideas originally exposed
by Penrose [40], we hold that the physics that lies behind all this,
ties the quantum treatment of gravitation with the foundational
issues afflicting quantum theory in general, and in particular those
with connection to the ‘‘measurement problem’’.
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Let us now turn back to the connection of those issues with
the choice of gauge in our approach: The ‘‘choice of gauge" deter-
mines among other things which hypersurfaces of the perturbed
spacetime are labeled as surfaces of constant time (where ‘‘time"
would be that preferred time-like coordinate of the unperturbed
FRW spacetime, defined through the pull-back on the perturbed
spacetime), and as such, in our situation, they determine on which
hypersurfaces does the collapse occur (we have been working
under the assumption that collapse occurs on these ‘‘equal time
hypersurfaces"). Thus, this choice is no longer just a gauge choice,
but an actual assumption about which hypersurfaces are the ones
one can associate with the quantum collapse or reduction. This
seems inescapable, and in fact a desired feature. After all, if the
physical condition of a system is to be represented by a quantum
state, and if the initial state is homogeneous and isotropic, and the
final one is not. Then, any development interpolating between the
two, will require the selection of a time – in our case hypersurface
– where the transition occurs (perhaps a more developed method
will involve a full series of times, or a continuous period of time).
In this sense, once we identify the surface of collapse, a change of
gauge would involve a complicated re-specification of the ‘‘times"
at which each comoving observer crosses the collapse hypersur-
face. These arguments have been formally developed in what is
named the Semiclassical Self-consistent configuration (SSC) frame-
work, see Refs. [52,54] for a full analysis. In the present article,
we make use of the results of the aforementioned works, without
dwelling to much into the full mathematical formalism.

Given the discussion above, we choose to work in the longitu-
dinal (or Newtonian) gauge. The advantage of working with this
gauge is that the action at second order involving the matter and
metric perturbations ismathematically equivalent as the one using
gauge invariant quantities. Therefore, we can be certain that the
field perturbations are actual physical degrees of freedom and not
pure gauge. Thus, assuming no anisotropic stress and working in
the longitudinal gauge, the line element associated to scalarmetric
perturbations is

ds2 = a2(η)
[
−(1 + 2Ψ )dη2

+ (1 − 2Ψ )δijdxidxj
]
. (4)

Aswehavementioned, the semiclassical approximation implies
that only the inflaton will be described by a quantum field theory;
in contrast, the metric (background and perturbations) is always
classical.Wewill focus first on the classical dynamics of the pertur-
bations and then proceed to the quantum theory of the inflaton’s
inhomogeneous part δφ(x, η)

In Appendix A of Ref. [56] it is shown that combining the
perturbed Einstein equations with components δG0

0 = 8πGδT 0
0 ,

δG0
i = 8πGδT 0

i , δG
i
j = 8πGδT i

j and the slow-roll motion equation,
one obtains:

∇
2Ψ + µΨ = 4πGφ′

0δφ
′ (5)

where µ ≡ H2
− H′. In Fourier space, and applying the slow roll

equations once again, Eq. (5) reads

Ψk(η) =

√
ϵ1

2
H

MP (k2 − µ)
δφ′

k(η) (6)

Generalizing the above equation using the semiclassical gravity
approximation we have

Ψk(η) =

√
ϵ1

2
H

MP (k2 − µ)
⟨ ˆδφ

′

k(η)⟩. (7)

It is important to mention that we are not indicating that
there are inhomogeneities of any definite size in the inflationary
Universe, but merely we are analyzing the dynamics if such in-
homogeneities existed. In particular, the fundamental description
corresponding to the inhomogeneous part of the matter field δφ

is dealt at the quantum level, where δφ is a quantum field in a
given quantum state. In fact that will be our next task. But before
analyzing the QFT of δφ, we would like to mention that Eq. (7) was
obtained by working in the longitudinal gauge. However, as has
been shown in Ref. [56] the same equation is obtained by working
with gauge invariant quantities. Therefore, we can assure that
Eq. (7) truly reflects the connection between the physical degrees
of freedom associated to matter and geometry. In particular, in the
longitudinal gauge, Ψ is the curvature perturbation, i.e. it is the
intrinsic spatial curvature on hypersurfaces on constant conformal
time for a flat Universe.

2.2. Quantum theory of perturbations and Wigner’s collapse scheme

Next,we focus on the quantumdescription of δφ. Our treatment
is based on the quantum theory of δφ(x, η) in a curved background
described by a quasi-de Sitter spacetime. It is convenient to work
with the rescaled field variable y = aδφ. Expanding the action (2)
up to second order in the y variable, we obtain δ(2)S =

∫
d4xδ(2)L,

where

δ(2)L =
1
2

[
y′2

− (∇y)2 +

(
a′

a

)2

y2

− 2
(
a′

a

)
yy′

− y2a2∂φφV
]
. (8)

Note that in δ(2)S there are no terms containing metric pertur-
bations since it is only after the self-induced collapse that the
spacetime is no longer homogeneous and isotropic.

Next, the field y and the canonical conjugated momentum π ≡

∂δ(2)L/∂y′
= y′

− (a′/a)y = aδφ′ are promoted to quantum
operators so that they satisfy the following equal time commutator
relations: [ŷ(x, η), π̂ (x′, η)] = iδ(x − x′) and [ŷ(x, η), ŷ(x′, η)] =

[π̂ (x, η), π̂ (x′, η)] = 0. We can expand the field operator in
discrete Fourier’s modes (at the end of the calculation we take the
limit L → ∞ and k continuous)

ŷ(η, x) =
1
L3
∑
k

ŷk(η)eik·x, (9)

with an analogous expression for π̂ (η, x). Note that the sum is over
the wave vectors k⃗ satisfying kiL = 2πni for i = 1, 2, 3 with ni
integer and ŷk(η) ≡ yk(η)âk + y∗

k(η)â
†
−k and π̂k(η) ≡ gk(η)âk +

g∗

k (η)â
†
−k, with gk(η) = y′

k(η) − Hyk(η). The field’s mode equation
of motion is

y′′

k (η) +

(
k2 −

a′′

a
+ a2∂φφV

)
yk(η) = 0. (10)

At first order in the slow roll parameters, we have

−
a′′

a
+ a2∂φφV ≃

−2 + 3ϵ1 − (3/2)ϵ2
η2 . (11)

The selection of yk(η) reflects the choice of a vacuum state for
the field.We proceed as in standard fashion and choose the Bunch–
Davies vacuum:

yk(η) =

(
−πη

4

)1/2

ei[ν+1/2](π/2)H (1)
ν (−kη), (12)

where ν ≡ 3/2 − ϵ1 + ϵ2/2 and H (1)
ν (−kη) is the Hankel function

of first kind and order ν.
To describe the collapse of the state associated to the scalar

field, we use the decomposition of the field into modes. It is
necessary that these modes are independent, i.e. that they give a
corresponding decomposition of the field operator into a sum of
commuting ‘‘mode operators’’, an orthogonal decomposition of the
one-particle Hilbert space and a direct-product decomposition for
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the Fock space. Furthermore, we require that the initial state of the
field is not an entangled state with respect to this decomposition,
i.e. it can be written as a direct product of states for the mode
operators. This ensures that the notion of ‘‘collapse of an individual
mode’’ will make sense.

Let us be more precise: the collapse hypothesis assumes that
at a certain time ηc

k the part of the state characterizing the mode k
randomly ‘‘jumps’’ to a new state, which is no longer homogeneous
and isotropic. The collapse is considered to operate similar to an
imprecise ‘‘measurement’’, even though there is no external ob-
server or detector involved. Therefore, it is reasonable to consider
Hermitian operators, which are susceptible of a direct measure-
ment in ordinary quantum mechanics. Hence, we separate ŷk(η)
and π̂k(η) into their real and imaginary parts ŷk(η) = ŷkR(η) +

iŷkI (η) and π̂k(η) = π̂k
R(η)+iπ̂k

I (η), such that the operators ŷR,Ik (η)
and π̂

R,I
k (η) are Hermitian operators. Thus,

ŷR,Ik (η) =
√
2Re[yk(η)â

R,I
k ], (13a)

π̂
R,I
k (η) =

√
2Re[gk(η)â

R,I
k ], (13b)

where âRk ≡ (âk + â−k)/
√
2, âIk ≡ −i(âk − â−k)/

√
2.

The commutation relations for the âR,Ik are non-standard
[âR,Ik , âR,I†k′ ] = L3(δk,k′ ± δk,−k′ ), the + and the − sign corresponds
to the commutator with the R and I labels respectively; all other
commutators vanish.

Now we specify the rules according to which the collapse hap-
pens. Again, our criteria is simplicity and naturalness. In partic-
ular, we will proceed in a purely phenomenological manner by
introducing a general parameterization of the quantum state after
collapse; wewill refer to this approach as a collapse scheme. Specif-
ically, the collapse scheme serves to characterize the post-collapse
state by the quantum expectation values of the field and its conju-
gated momentum at the time of collapse. As a consequence of the
collapse, those expectation values change from being zero, when
evaluated in the vacuum state, to having non-vanishing value in
the post-collapse state. The particular collapse scheme used leads
to an expression for the post-collapse expectation values, leaving
an imprint in the primordial power spectrum (the details will be
shown in Section 2.5)

We now introduce the Wigner’s collapse scheme (this scheme
was first introduced in [49] and subsequently analyzed in great
detail [51,55–58]): In non-relativistic QM, Heissenberg’s uncer-
tainty principle indicates that quantum uncertainties of position
and momentum operators are not independent. Specifically, mo-
mentum and position of a quantum system cannot be determined
simultaneously and independently. The self-induced collapse acts
as a sort of spontaneous ‘‘measurement" (of coursewithout relying
on observers/measurements devices) of some variable involving
both position and momentum. Consequently, as suggested by the
uncertainty principle, the collapse might involve correlations be-
tween position and momentum. Generalizing this fact to our in-
flationary model seems to indicate that the self-induced collapse
could correlate the field ŷ and its conjugated momentum π̂ .

One possible manner to characterize the correlation is to use
Wigner’s distribution function. In non-relativistic QM, Wigner’s
function can be considered, under certain special circumstances,
as a probability distribution function for a quantum system, i.e. it
allow us to visualize the momentum-position correlations and
quantum interferences in ‘‘phase space’’. For the vacuum state of
each mode of the inflaton, the corresponding Wigner’s function is
a bi-dimensional Gaussian. As a consequence, in this scheme we
will characterize the post-collapse expectation values as:

⟨ŷR,Ik (ηc
k)⟩ = xR,Ik Λk(ηc

k) cosΘk(ηc
k), (14a)

⟨π̂
R,I
k (ηc

k)⟩ = xR,Ik kΛk(ηc
k) sinΘk(ηc

k), (14b)

where xR,Ik is a random variable with a Gaussian probability dis-
tribution function, centered at zero with spread one. The variable
ηc
k represents the conformal time of collapse. The quantity Λk(ηc

k)
represents the major semi-axis of the ellipse in the ŷ–π̂ plane
where the Wigner function has magnitude 1/2 of its maximum
value. The other variable Θk(ηc

k) is the angle between Λk(ηc
k) and

the ŷR,Ik axis. The explicit expressions for Λk and Θk are very
cumbersome and do not contain much information for our present
interest.9

2.3. Emergence of curvature perturbation within the collapse scheme

Herewe illustrate how the collapse process generates the seeds
of cosmic structure. We proceed by recalling that the conjugated
momentum is π̂k = a ˆδφ

′

k, therefore Eq. (7) can be expressed as

Ψk(η) =

√
ϵ1

2
H

MP (k2 − µ)
⟨π̂k(η)⟩. (15)

Given that we are working in the longitudinal gauge, then the
scalar Ψk represents the curvature perturbation. Moreover, the
primordial curvature perturbation Ψk is related to the quantum
expectation value of the conjugated momentum ⟨π̂k⟩. It follows
from the above equation that in the vacuum state ⟨π̂k⟩0 = 0, which
implies Ψk = 0, i.e., there are no perturbations of the symmetric
background spacetime. It is only after the collapse has taken place
(|Θ⟩ ̸= |0⟩) that ⟨π̂k⟩Θ ̸= 0 generically and Ψk ̸= 0; thus,
the primordial inhomogeneities and anisotropies arise from the
quantum collapse.

As we observe from (15), the time evolution of Ψk(η) is driven
by the dynamics of ⟨π̂k(η)⟩ evaluated in the post-collapse state. The
corresponding expression of ⟨π̂k(η)⟩ is of the form

⟨π̂k(η)⟩ = F (kη, zk)⟨ŷk(ηc
k)⟩ + G(kη, zk)⟨π̂k(ηc

k)⟩. (16)

The parameter zk is defined as zk ≡ kηc
k . The deduction of such

equation and its explicit function is shown in Appendix B of [56].
The important point is that ⟨π̂k(η)⟩ depends linearly on the ex-
pectation values ⟨ŷk(ηc

k)⟩ and ⟨π̂k(ηc
k)⟩ evaluated at the time of

collapse. Those expectations values are the ones characterized by
the Wigner’s collapse scheme presented in Eqs. (14).

Substituting (16) in (15), and making use of the Wigner’s
scheme, we find the expression for the primordial curvature per-
turbation (given in the longitudinal gauge)

Ψk(η) =

√
ϵ1

2
H

MP (k2 − µ)

× XkΛk(zk)
[
F (kη, zk) cosΘk(zk)

+ G(kη, zk)k sinΘk(zk)
]
, (17)

where Xk ≡ xRk + ixIk.
Up to this point we have proceeded in with no approximations

in order to obtain Ψk(η). In the present work, we will be only
interested in the casewhere the time of collapse occurswell before
the ‘‘horizon crossing’’, i.e. when the time of collapse satisfies
−kηc

k ≫ 1 or equivalently, with the definition of zk, when |zk| ≫ 1.
We remind the reader that before the time of collapse there are
no perturbations whatsoever, that is Ψk = 0. After the time of
collapse, when the primordial perturbation is born, Ψk(η) evolves.
Hence, for any given mode, Ψk(η) originates well inside the hori-
zon, then it continues to evolve until horizon crossing, and finally
enters into the super-horizon regime.

9 The interested reader can consult Refs. [56,58] for the exact expressions of
Λk(ηc

k), Θk(ηc
k) and their derivation.
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In particular, the time evolution of Ψk(η) is dictated by the
functions F and G. The time dependence of those functions are
given by linear combination of Bessel’s functions Jν(kη) and Yν(kη)
(see Appendix B of Ref. [56]). Therefore, when the modes are sub-
horizon (kη ≫ 1 ), the curvature perturbation Ψk(η) oscillates.
For super-horizon modes (kη ≪ 1) the curvature perturbation is
approximated by

Ψk(η) ≃ AW (zk)η3/2−νk−νXk, (18)

with A some amplitude which includes numerical factors, H and
ϵ1; the function W (zk) is a cumbersome function of the time of
collapse zk ≡ kηc

k; alsowe recall from (12) that ν ≡ 3/2−ϵ1+ϵ2/2.
Furthermore, as shown inRef. [56], the quantityΨk(η) givenby (18)
is constant up to second order in slow roll parameters (one needs
to take into account that the time dependence appears not only
in the factor η3/2−ν but also implicitly in the H and ϵ1 parameters
which are not strictly constant, i.e. they do not describe an exact
de-Sitter spacetime).

2.4. Primordial scalar power spectrum

Having discussed the origin of the primordial curvature per-
turbation, we now focus on the scalar power spectrum. The scalar
power spectrum in Fourier space is defined as

ΨkΨ
⋆
k′ ≡

2π2

k3
Psδ(k − k′), (19)

wherePs(k) is the dimensionless power spectrum. The bar appear-
ing in (19) denotes an ensemble average over possible realizations
of the stochastic field Ψk. In our approach, the realization of a
particular Ψk is given by the self-induced collapse according to the
Wigner’s scheme.

Using expression (18), one can compute ΨkΨ
⋆
k′ . Furthermore,

since Ψk is a constant (up to second order in the slow roll parame-
ters), we can evaluateΨk(η) at the time η∗ = 1/k∗ i.e. at the confor-
mal time of horizon crossing corresponding to a particular k∗ called
the pivot scale. Note that were are following the same method as
the traditional one when evaluating the power spectrum at the
horizon crossing even if the expression for the curvature pertur-
bation considered was obtained in the super-horizon regime (the
error induced is of higher order in the slow roll parameters, see [76]
for a useful discussion on this subject). Also we further assume
that the random variables are uncorrelated, that is, they satisfy,
xR,Ik xR,Ik′ = δk,k′ ± δk,−k′ ; the + corresponds to the real part xRk
and the − corresponds to the imaginary part xIk. Consequently,
XkX⋆

k′ = 2δ(k − k′) (in the continuous limit of k).
Taking into account the above discussion, it is straightforward

to obtain Ψk(η∗)Ψ ⋆
k′ (η∗) from (17). That is,

Ψk(η∗)Ψ ⋆
k′ (η∗) = A2W (zk)2k−3+2ν

∗
k−2νδ(k − k′). (20)

From the latter expression and the definition (19), we can extract
the scalar power spectrum

Ps(k) =
A2

2π2W (zk)2
(

k
k∗

)3−2ν

. (21)

Finally, we re-express the obtained power spectrum in a more
familiar manner, i.e. (for more technical details see [56])

Ps(k) = As

(
k
k∗

)ns−1

Q (zk) (22)

with As = H2/8π2ϵ1M2
P (the parameters H and ϵ1 are evaluated at

the horizon crossing of the pivot scale, i.e. at η∗ = 1/k∗) and

ns − 1 = +2ϵ1 − ϵ2 (23)

Expression (22) is our predicted scalar primordial power spectrum
(at first order in the slow roll parameters), using the Wigner col-
lapse scheme (within the semiclassical gravity framework).

Note that the obtained amplitude As is exactly the same as in
the standard treatment while the spectral index is different. The
traditional prediction of the scalar spectral index is nstd

s − 1 =

−2ϵ1 − ϵ2.
Another main difference introduced by the collapse model, as

comparedwith the traditional prediction, is an extra k dependence
in the spectrum reflected in the function

Q (zk) ≡{[
2ν

|zk|3/2

(
cosβ(ν, |zk|) −

sinβ(ν, |zk|)
2|zk|

Γ (ν + 3/2)
Γ (ν − 1/2)

)
−

(
sinβ(ν, |zk|) +

cosβ(ν, |zk|)
2|zk|

Γ (ν + 5/2)
Γ (ν + 1/2)

)]
cosΘk

+

[
cosβ(ν, |zk|) −

sinβ(ν, |zk|)
2|zk|

Γ (ν + 3/2)
Γ (ν − 1/2)

]
sinΘk

}2

, (24)

where Γ (x) is the Gamma function, ν = 2 − ns/2, β(ν, |zk|) ≡

|zk| − (π/2)(ν + 1/2) and tan 2Θk ≃ −4/3|zk|.
Themodel’s parameter is the time of collapse ηc

k or equivalently
the quantity zk ≡ kηc

k . We parameterize the time of collapse as

ηc
k =

A
k

+ B. (25)

The motivation regarding that specific parameterization has been
discussed in previous works [38,49,55,56,58]. We can see that if
B = 0 then Q (zk) is a constant, and our model’s power spectrum
has the same shape as the standard prediction, i.e. ∝ kns−1.

Another important aspect is that, in order to obtain the spec-
trum (22), the approximation |zk| ≫ 1 was used. This means, we
are assuming that the time of collapse takes place before the so
called ‘‘horizon crossing’’, at least for modes that contribute the
most to the observed CMB anisotropies. In other words, we take
A and B such that −kηc

k ≫ 1 with k between 10−6 Mpc−1 and 10−1

Mpc−1.

2.5. Primordial tensor power spectrum

Regarding tensor perturbations of the metric, the line element
corresponding to the perturbed flat FRW metric (at first-order) is
given by

ds2 = a(η)2[−dη2
+ (δij + hij)dxidxj]. (26)

Therefore, Einstein’s perturbed equations (at first-order) with i, j
components yield

h′′

ij + 2Hh′

ij − ∇
2hij = 0 (27)

In the traditional inflationary scenario, the metric perturbations
are quantized. Hence, whatever drives the quantum to classical
transition in the scalar sector, must also do the same for ten-
sor modes. As a consequence, one can associate a tensor power
spectrum to the quantum two-point function (in Fourier’s space)
⟨0|ĥi

j(k, η)ĥj
i(k

′, η)|0⟩ [32]. In fact, in the standard approach, one
expects that the tensor power spectrum acquires an amplitude
that in principle can be detected in the CMB B–mode polarization
spectrum.

On the other hand, in our proposal based on the semiclassical
framework, Eq. (27) does not contain matter sources; this contrast
with the scalar perturbation inwhichΨk is sourced by the quantum
expectation value ⟨π̂k⟩, see Eq. (15). Therefore, in our approach,
there are no primordial tensor modes at first order in the pertur-
bations. Thus, in the self-induced collapse proposal based on the
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semiclassical gravity approximation, we need to consider second-
order perturbation theory in order to deal with the primordial
gravitational waves.

The analogous expression to (15) obtained from Einstein’s per-
turbed equations (at second-order) is (see Refs. [59,61])

h′′

ij + 2Hh′

ij − ∇
2hij = 16πG⟨(∂i ˆδφ)⟩⟨(∂j ˆδφ)⟩tr-tr, (28)

where the superscript tr-tr stands for the transverse-traceless part
of the expression. Note that as before, even though ⟨(∂i ˆδφ)⟩⟨(∂j ˆδφ)⟩
vanishes when evaluated in the Bunch–Davies vacuum, it will
becomenon-vanishing in the quantumstate of the field that results
from the spontaneous collapse.

The fact that the scalar metric perturbations are seeded by the
linear terms in perturbations of the scalar field [see. Eq. (15)], while
the tensor perturbations are seeded by quadratic terms, represents
a major difference between our approach and the standard one. In
particular, an equivalent tensor power spectrum can be obtained
from hi

j(k, η)hj
i(k

′, η), where the bar above the expression repre-
sents an ensemble average over possible realizations, each one as-
sociated to the stochastic collapse. Therefore, from (28), the tensor
power spectrum will involve 4-products of linear perturbations,
e.g. ⟨ŷ(k1, η)⟩⟨ŷ(k2, η)⟩⟨ŷ(k3, η′)⟩⟨ŷ(k4, η′)⟩ (recall that ŷ ≡ a ˆδφ).
Thus, our model’s prediction for the tensor power spectrum is
(we invite the interested reader to consult Refs. [59–61] for more
technical details):

Pt (k) ≃ ϵ2
1P

2
s , (29)

which implies an essentially undetectable amplitude of primordial
B–modes. In fact, our estimate for the tensor-to-scalar ratio is
r ≃ ϵ2

110
−9. We can compare that expression with the standard

one rstd = 16ϵ1. Thus, in our model any inflationary potential
results in a very small amplitude of tensor modes. Consequently,
in our approach we can safely neglect the r parameter in any data
analysis.

We end this section by mentioning that we have proposed and
analyzed other different collapse schemes. However, a Bayesian
evidence analysis showed a moderate preference for Wigner’s
collapse scheme model over the ΛCDM model using recent CMB
andBAOdata [58]. For other collapse schemes the results of the sta-
tistical analysis showed preference for the ΛCDMmodel or incon-
clusive preference. That is the reason for choosingWigner’scollapse
scheme in the present analysis.

3. Inflationary potentials and the theoretical predictions

The standard analysis regarding the viability of inflationary
potentialsmainly relies on the scalar spectral indexnstd

s and tensor-
to-scalar ratio rstd. From the predicted values in terms of slow roll
parameters nstd

s = 1− 2ϵ1 − ϵ2, rstd = 16ϵ1, and given a particular
potential V with some parameter λ, it is then straightforward
to write nstd

s and rstd as a function of the potential parameter λ

using (3) (since slow roll parameters are not exactly constant, they
have an extra dependence on the number of e-foldings). Then,
observational constraints on ns and r are compared with their
predicted values as a function of λ. In this way, one explores a
range of λ values allowing us to accept (or not) the feasibility of
a potential V [19,20].

In the preceding section we have seen that the predicted infla-
tionary parameters given byWigner’scollapse scheme are different
from standard inflation. In particular, the spectral index ns and
tensor-to-scalar ratio r are not related anymore (at first order in the
slow roll parameters) because of the generic predicted smallness
in r . Additionally, the spectral index as a function of slow roll
parameters is also different from the traditional one, namely ns =

1 + 2ϵ1 − ϵ2.

One may conclude that given the limits on ns established with
Planck data, the predicted ns given by Wigner’sscheme must be
within that interval. Nonetheless that conclusion assumes that
the usual observational constraints on ns translate directly to our
model. That is not the adequate procedure. In order to test our
model’s predictions, we must perform first a statistical analysis
using recent observational data to obtain the constraints on ns in
the context of the collapse models. In fact, as we will show in next
section, the extra k dependence inPs(k) introduced by the function
Q (zk), see (22), enlarges current observational bounds ns consistent
with data. In the following, we provide the steps detailing the
analysis process.

• Step 1: Given the scalar power spectrum in Eq. (22), we
perform a statistical analysis using recent CMB and BAO data.
The parameters we are interested in are: the Wigner scheme
parameters A, B and the inflationary parameters ns, As. For a
fixed set of A values, we find the posterior probability den-
sities corresponding to the cosmological parameters, which
include As, ns and the collapse parameter B.

• Step 2: For a given particular potential V (φ), with a single
parameter λ, it is convenient to calculate φ as a function of
the number of e-folds from the ‘‘horizon crossing’’ [that is
from the time η∗ such that the pivot scale k∗ satisfies k∗ =

a(η∗)H(η∗)] to the end of inflation; we denote such period of
e-foldings as ∆N∗.
Therefore, one needs to solve the equation of motion for the
homogeneous part of the field φ0(η) in the slow roll approx-
imation together with Friedmann’s equation. That is, after a
change of variablesN(η), whereN is the number of e-foldings
from the beginning of inflation to some time η, the equations
to solve are: 3H2

≃ a2V/M2
P and 3H2 dφ0

dN ≃ −a2∂φV . Those
equations can be combined to yield
dφ
dN

= −M2
P
d ln V
dφ

, (30)

note that for ease of notation we have omitted the subindex
0 from the background field φ0. Denoting by I the primitive

Iλ(φ) ≡

∫ φ

dϕ
Vλ(ϕ)

∂φVλ(ϕ)
, (31)

Eq. (30) can be solved

N = −
1
M2

P
[Iλ(φ) − Iλ(φini)]. (32)

Therefore one has

Nend = −
1
M2

P
[Iλ(φend) − Iλ(φini)], (33a)

N∗ = −
1
M2

P
[Iλ(φ∗) − Iλ(φini)], (33b)

formally φ∗ represents the vacuum expectation value of the
field evaluated when the pivot scale crosses the Hubble ra-
dius; Nend, represents the number of e-folds from the begin-
ning to end of inflation; and N∗ represents the number e-
folds from the beginning of inflation to the conformal time η∗

where the pivot scale k∗ crossed the horizon. From the latter
expressions, it follows that

φ∗ = I−1
λ [Iλ(φend) + M2

P∆N∗] (34)

where ∆N∗ ≡ Nend − N∗. Eq. (34), explicitly yields φ∗ as a
function of the potential’s parameter λ and ∆N∗.

• Step 3 For the particular potential given Vλ(φ), we express
the slow roll parameters in terms of λ and ∆N∗, i.e. we need
to find the explicit expressions: ϵ1(λ, ∆N∗), ϵ2(λ, ∆N∗).
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In order to achieve that, we first use the definition of the slow
roll parameters in terms of the potential V and its derivatives
∂φV and ∂φφV , Eqs. (3). After inserting the explicit form of
the potential evaluated at φ∗, i.e. Vλ(φ∗), into Eqs. (3), that
operation yields ϵ1(λ, φ∗), ϵ2(λ, φ∗). Finally, we use solution
(34) to obtain ϵ1(λ, ∆N∗), ϵ2(λ, ∆N∗). Recall that we can find
the value of the field at the end of inflation by using the
condition ϵ1(φend) ≃ ϵ2(φend) ≃ 1.

• Step 4 With the expression for the slow roll parameters at
hand ϵ1(λ, ∆N∗), ϵ2(λ, ∆N∗), we write ns also as a function of
λ and ∆N∗, i.e.

ns(λ, ∆N∗) = 1 + 2ϵ1(λ, ∆N∗) − ϵ2(λ, ∆N∗) (35)

We remind the reader that our model’s prediction for r is
extremely small, so we neglect it from the analysis.

• Step 5: For distinct values of ∆N∗ and λ we obtain different
predicted values of ns(λ, ∆N∗). Therefore, we can compare
our predicted values with the ones obtained in Step 1 from
the data analysis. Since our predicted ns and r are generically
different from the usual one, we expect a difference in the
type of inflationary potentials that are allowed between our
approach and the standard one.

As shown in Refs. [17,18], in Step 5we need to take into account
the reheating era in order to choose a ∆N∗ that is physically
possible. One can define the reheating parameter as

ln Rrad =
1 − 3w̄reh

12(1 + w̄reh)
ln
(

ρreh

ρend

)
(36)

where w̄reh is themean equation of state parameter during reheat-
ing, ρreh is the energy density at the end of the reheating era, and
ρend is the energy density at the end of inflation. Consequently, it
has been shown [17,18] that the quantities∆N∗ andRrad are related
by

∆N∗ = ln Rrad − N0 −
1
4
ln
[

9
2ϵ1∗

Vend

V∗

]
+

1
4
ln(8π2As) (37)

with

N0 ≡ ln

(
k∗/a0
ρ
1/4
γ

)
; (38)

the quantity ργ denotes the energy density of radiation today, and
k∗/a0 the pivot scale normalized at the scale factor today. Taking
the pivot scale k∗/a0 = 0.05 Mpc−1 and recent bounds on ργ [1]
implies that N0 ≃ −61.7.

From the definition of the reheating parameter, we see that
ln Rrad is not arbitrary since −1/3 < w̄reh < 1 and ρnuc < ρreh <

ρend. Consequently, the quantity ∆N∗ is also constrained to vary
in the range ∆N∗ ∈ [∆Nnuc

∗
, ∆Nend

∗
]. That is, ∆Nend

∗
corresponds

to assume ρreh = ρend which means that reheating takes place
instantaneously after inflation ends. And ∆Nnuc

∗
corresponds to as-

sume that ρreh = ρnuc, i.e. that the reheating era extends up to the
nucleosynthesis epoch. Moreover, that range is model-dependent
since ρend or Vend/V∗ differ for different inflationary scenarios. It is
shown that ∆Nnuc

∗
and ∆Nend

∗
are given by [17,18]

∆Nnuc
∗

= −N0 + ln
(

H∗

MP

)
−

1
3(1 + w̄reh)

ln
ρend

M4
P

+
1 − 3w̄reh

12(1 + w̄reh)
ln

ρnuc

M4
P

, (39)

with ρnuc ≃ (10 MeV)4, and

∆Nend
∗

= −N0 + ln
(

H∗

MP

)
−

1
4
ln

ρend

M4
P

. (40)

Table 1
List of analyzed inflationary potentials.
Inf. Model Potential V (φ) Parameter

HI M4(1 − e−

√
2
3

φ
MP )2 NA

LFI M4(φ/MP )p p
RCQI M4( φ

MP
)4[1 − α ln( φ

MP
)] α

RCHI M4
[1 − 2e

−
2φ

√
6MP +

AI
16π2

φ
√
6MP

] AI

RCMI M4( φ

MP
)2[1 − 2α( φ

MP
)2 ln( φ

MP
)] α

NI M4
[1 + cos( φ

f )] f
ESI M4(1 − e−qφ/MP ) q
PLI M4e−αφ/MP α

DWI M4
[( φ

φ0
)2 − 1]2 φ0

LI M4
[1 + α ln( φ

MP
)] α

Note that these equations are algebraic for ∆N∗ since H∗ and ρend
depend on ∆N∗.

Fortunately enough,with help of the ASPIC code,we automatize
Steps 2, 3, 4 and 5 for each inflationary potential. Additionally, in
order to be able to compare our results and the standard ones, we
repeat all steps but considering the traditional predictions from
inflation, that is, we consider the usual nstd

s and rstd (so in Step 4
we use nstd

s = 1 − 2ϵ1 − ϵ2, rstd = 16ϵ1 ).
In Table 1, we show a list of the inflationary potentials consid-

ered in our analysis, depicting their specific shape and character-
istic parameter. The potentials correspond to popular inflationary
models found in literature, these models are: Higgs Inflation (HI)
also known as Starobinsky’s or R2 inflation; Large Field Inflation
(LFI), Radiatively Corrected Massive Inflation (RCMI), Radiatively
Corrected Quartic Inflation (RCQI), Radiatively Corrected Higgs
Inflation (RCHI), Natural Inflation (NI), Exponential SUSY Inflation
(ESI), Power Law Inflation (PLI), Double Well Inflation (DWI) and
Loop Inflation (LI). For the theoretical motivation of these models
we refer the reader to Ref. [19] (and references therein), where a
brief review of each model is given.

All the potentials we have chosen for our analysis contain a
‘‘mass" term M associated to the characteristic energy scale of
inflation, which in turn is related to the spectra’s amplitude. How-
ever, we do not treat M as a potential’s parameter. As a matter of
fact, the first potential on the list corresponds to Higgs Inflation
(HI) which only contains M and no other parameter, hence HI is
parameterless. All the rest of potentials considered contain a single
parameter.

4. Results and discussion

For Step 1, we used a modified version of the CAMB [77] code
to include the primordial power spectrum of theWigner’s scheme.
Therefore, we considered an extension of the minimal ΛCDM
model, adding the collapse parameters A and B to the usual set
of cosmological parameters: the baryon density Ωbh2, the cold
dark matter density Ωch2, the ratio between the sound horizon
and the angular diameter distance at decoupling θ , the optical
depth τ , the primordial scalar amplitude As and the scalar spectral
index ns. Concerning the data analysis we work with flat priors
for the cosmological parameters. We use the CMB anisotropy and
polarization spectrum reported by the Planck Collaboration [1]
together with data from Baryonic Acoustic Oscillation (BAO). In
particular, we consider the high-ℓ Planck temperature data from
the 100-,143-, and 217-GHz half-mission T maps, and the low-ℓ
data by the joint TT, EE, BB and TE likelihood. Also, we consider BAO
data by the 6dF Galaxy Survey (6dFGS) [78], SDSS DR7Main Galaxy
Sample (SDSS-MGS) galaxies [79], BOSS galaxy samples, LOWZ and
CMASS [80].

It follows from (22) and (25) that the scalar spectrum amplitude
As is degeneratedwith the collapse A parameter. Therefore, we test
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Fig. 1. Estimated 68% confidence limits on ns for distinct fixed values of A using
Planck 2015 + BAO data set. The A parameter is negative. The shadowed area
corresponds to the 68% confidence limits of ns for the ΛCDMmodel using the same
data set.

several values of A by taking B = 0. We analyze the full interval
−108

≤ A ≤ −102 and divide it in subintervals of 1 order of
magnitude. For all A in such an interval, the condition −kηc

k ≫ 1 is
satisfied, with k between 10−6 Mpc−1 and 10−1 Mpc−1. Moreover,
for each subinterval −10i+1

≤ A ≤ −10i (with i an integer such
that i ∈ [2, 7]), we select the value of A which minimizes the
variation of As with respect to the value obtained in the statistical
analysis with observational data for the standard ΛCDMmodel.

For each fixed value of A chosen in the aforementionedmanner,
we now include the B parameter as a free parameter in our analysis
along with the rest of cosmological parameters. We perform a
Monte Carlo Markov chain analysis using the available package
COSMOMC [81].

In Fig. 1, we show the 68% confidence limits on ns from the data
analysis obtained for each value of A. For comparison purposes,
we also include the respective limits on ns for the minimal ΛCDM
model. Since the modification of the standard cosmological model
that we are studying in this paper involves only a change in the
standard inflationary model, we will refer to it in what follows as
the standard framework or standard inflationary model. It follows
from Fig. 1 that the estimated confidence intervals are very similar
for all the values of A selected previously, which covers an interval
of several orders of magnitude. In Fig. 2, we show the 1σ and 2σ
confidence regions of the inflationary parameters ns and As for two
values ofA; other values ofA result in similar plots. Also,we include
the same confidence regions for the standard ΛCDMmodel. As we
can observe, the effect of including Wigner’scollapse scheme is to
enlarge the estimated interval of ns with respect to the standard
model. Furthermore, the analysis above indicates that the esti-
mated value of ns is independent of the specific value associated to
the time of collapse. As we will see next, that result, together with
the generically predicted smallness of the r parameter, will modify
the usual conclusions regarding the type of potentials allowed by
observations.

Following Steps 1–5, we analyze the viability of all inflationary
potentials listed in Table 1. In order to provide amore detailed pic-
ture of the analysis made, we focus on three particular potentials
that serve as an example: LFI, PLI and RCQI.

Let us begin by analyzing the LFI potential with varying pa-
rameter p. In Figs. 3 and 4 we show the predicted values of ns as
a function of ∆N∗ for Wigner’scollapse scheme and the standard
framework respectively. In each figure we also include the 2σ
confidence interval resulting from the statistical analysis using

Fig. 2. 68% and 95% two dimensional confidence regions and posterior probability
density of ns and As for two values of A using Planck 2015 + BAO data set. We also
show the same confidence regions of theΛCDMmodel (red) in the two plots. Other
values of A exhibit the same behavior . (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

recent CMB and BAO data. As we observe from the figures, the
predicted interval for the standard framework is different from
the respective one inWigner’sscheme. In the standard inflationary
model we see that for p ∈ [1, 2], the predicted values of ns for
some particular values of∆N∗ liewithin the 2σ confidence interval
allowed by the data set. Moreover, it follows from Fig. 5 that
including the r parameter in the analysis restricts the viability of
the standard framework to a smaller interval of ∆N∗. Meanwhile,
in Wigner’sscheme, we observe from Fig. 3 that the LFI potential
is only viable for p ≃ 1 and some particular values of ∆N∗. Let
us recall that in Wigner’sscheme we do not include in the analysis



G. León, A. Pujol, S.J. Landau et al. / Physics of the Dark Universe 24 (2019) 100285 11

Fig. 3. The predicted spectral index ns as a function of∆N∗ with varying parameter
p for the LFI potential in Wigner’sscheme. The shadowed region corresponds to the
estimated ns at 2σ CL using Planck 2015 + BAO data set.

Fig. 4. The predicted spectral index ns as a function of∆N∗ with varying parameter
p for the LFI potential in the standard framework. The shadowed region corresponds
to the estimated ns at 2σ CL using Planck 2015 + BAO data set.

the r parameter since the model generically predicts a strong sup-
pression of primordial tensor modes. In brief, the allowed values
of the free parameter p and ∆N∗ for the Wigner collapse scheme
are different from the respective ones for the standard inflationary
model.

Another interesting potential to use as an example is the RCQI
model with ωreh = −

1
3 . Fig. 6 shows the predicted values of ns as a

function of ∆N∗ in Wigner’scollapse scheme together with the 2σ
confidence interval determined from the statistical analysis using
CMB and BAO data. We observe that the predicted value of ns for
some values of the free parameters logα and ∆N∗ lie in the region
allowed by the observational data. On the other hand, it follows
from Figs. 7 and 8 that all predicted values of ns and r in the context
of the standard framework lie outside the allowed region by the
data set. In summary, the RCQI potential is ruled out by the data in
the context of the standard inflationarymodelwhile for theWigner
collapse scheme there is a set of values of the free parameter logα

and ∆N∗ for which the prediction of ns is in agreement with the
observational data.

We choose as a final example of our analysis the historical
potential given by PLI with varying parameter α. For the standard
inflationary model, we observe from Figs. 9 and 10 that there is

Fig. 5. The predicted ns and r as a function of∆N∗ with varying parameter p for the
LFI potential in the standard framework. The shadowed region corresponds to the
marginalized 68% and 95% CL regions for ns and r from Planck 2015 + BAO data set.

Fig. 6. The predicted spectral index ns as a function of∆N∗ with varying parameter
α for the RCQI potential with ωreh = −

1
3 in Wigner’sscheme. The shadowed region

corresponds to the estimated ns at 2σ CL using Planck 2015 + BAO data set.

Fig. 7. The predicted spectral index ns as a function of∆N∗ with varying parameter
f for the RCQI potential with ωreh = −

1
3 in the standard framework. The shadowed

region corresponds to the estimated ns at 2σ CL using Planck 2015 + BAO data set.
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Fig. 8. The predicted ns and r as a function of∆N∗ with varying parameter α for the
RCQI potential with ωreh = −

1
3 in the standard framework. The shadowed region

corresponds to the marginalized 68% and 95% CL regions for ns and r from Planck
2015 + BAO data set.

Fig. 9. The predicted spectral index ns as a function of∆N∗ with varying parameter
α for the PLI potential in the standard framework. The shadowed region corresponds
to the estimated ns at 2σ CL using Planck 2015 + BAO data set.

no value of α and ∆N∗ that makes the predicted ns and r to lie
inside the 2σ confidence region in the ns–r plane. Furthermore,
Fig. 11 shows that there is no value of the α parameter for which
the prediction of ns lies in the allowed region by the data in the
collapse framework. Thus, we conclude that the PLI potential is not
viable for both theWigner scheme and the standard framework.

The results obtained for all the potentials considered are sum-
marized in Tables 2 and 3. In Table 2, we indicate for each in-
flationary potential considered in this paper the values of the
potential’s parameter and ∆N∗ such that the predicted value of
ns forWigner’scollapse scheme lies inside the estimated 1σ and/or
2σ confidence interval obtained from the statistical analysis with
recent CMB and BAO data. In Table 3, for the standard inflationary
model, we indicate for each inflationary potential the values of the
potential’s parameter and∆N∗ such that the predicted value of the
pair ns−r , lie inside the estimated 1σ and/or 2σ confidence regions
obtained from the CMB/BAO data analysis. We can distinguish
different type of situations: (i) Potentials that are ruled out both
in the collapse and in the standard inflationarymodel context: this
is the case of the PLI model discussed above; (ii) Potentials that
are ruled out in the context of the standard framework, but not in
Wigner’sscheme: here we refer to the RCQI potential for both cases

Fig. 10. The predicted ns and r as a function of ∆N∗ with varying parameter α for
the PLI potential in the standard framework. The shadowed region corresponds to
the marginalized 68% and 95% CL regions for ns and r from Planck 2015 + BAO data
set.

Fig. 11. The predicted spectral index ns as a function of ∆N∗ with varying parame-
ter α for the PLI potential in Wigner’sscheme. The shadowed region corresponds to
the estimated ns at 2σ CL using Planck 2015 + BAO data set.

of ωreh considered in this paper; (iii) Potentials whose predictions
are in agreementwith the data but this happens for different values
of the free parameters in the context of the collapsemodels and the
standard model: this is the case of NI, LFI, DWI, RCMI models and
finally; (iv) similar to (iii) but the difference in the allowed range of
the free parameters is small: here we refer to the HI, RCHI, LI with
α < 0 and ESI for both values of ωreh considered in this paper. In
summary, in this sectionwe have shown, that the analysis of viable
potentials for inflation in the context of Wigner’scollapse model
is different from the one performed for the standard inflationary
model in most of the cases studied in this work.

5. Summary and conclusions

In this paperwehave analyzed the feasibility of a representative
set of inflation potentials in the context of both the standard infla-
tionary framework and the self-induced collapse of the inflaton’s
wave function proposal. For this, we have performed a statistical
analysis using recent CMB and BAO data to obtain the confidence
interval for ns in the context of a particular collapse model: the
Wigner scheme. Then, we have compared the predictions of each
potential for ns given by Wigner’scollapse scheme with the 2σ
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Table 2
Results: The first column details the inflationary potential considered; the second column refers to the potential’s
parameter; the third column reports the parameter values for Wigner’scollapse scheme that are not discarded by recent
CMB and BAO data; the fourth column reports the ∆N∗ values for Wigner’scollapse scheme that are not discarded by
recent CMB and BAO data; the fifth column refers to the confidence level for which the values reported in columns 3,4
are in agreement with recent CMB and BAO data.
Inf. model Parameter Param. values ∆N∗ Conf. region

HI – – [42.10, 55.68] 2σ -1σ
LFI p 1 [15.10, 56.81] 2σ -1σ
RCQI (ω̄reh = 0) logα −0.55, −0.50 [44.36, 56.49] 2σ -1σ
RCQI (ω̄reh = −1/3) logα [−0.57, −0.51] [57.53, 58.03] 2σ -1σ
RCHI AI [−5.86, 100] [41.96, 56.47] 2σ -1σ
RCMI logα −6,−4.3,−4,−3.7 [43.46, 56.71] 2σ -1σ
NI log(f /MP ) 0.69,0.85,1 [43.54, 57.49] 2σ -1σ
ESI (ω̄reh = 0 ) log q −3,−1.3,−1,−0.6

−0.3,0,0.18,0.54
[41.35, 56.81] 2σ -1σ

ESI (ω̄reh = −1/3) log q −3,−1.3,−1,−0.6
−0.3,0,0.18,0.54

[30.41, 56.81] 2σ -1σ

PLI logα None None None
DWI log(φ0/MP ) [1.18, 3] [43.12, 57.40] 2σ -1σ
LI (α > 0) logα −2.52,−2.15,−1.77

−1.39, −1.02,−0.64
−0.27,0.11

[41.20, 56.16] 1σ

LI (α < 0) α [−0.29, −0.10] 43,46,50
53,57,61

2σ -1σ

Table 3
Results: The first column details the inflationary potential considered; the second column refers to the potential’s
parameter; the third column reports the parameter values for the standard inflationary model that are not discarded
by recent CMB and BAO data; the fourth column reports the ∆N∗ values for the standard inflationary model that are not
discarded by recent CMB and BAO data; the fifth column refers to the confidence level for which the values reported in
columns 3,4 are in agreement with recent CMB and BAO data.
Inf. model Parameter Param. values ∆N∗ Conf. region

HI – – [49.96, 55.68] 2σ -1σ
LFI p 1,2 [39.29, 52.43]; 57.49 2σ -1σ
RCQI (ω̄reh = 0) logα None None None
RCQI (ω̄reh = 1/3) logα None None None
RCHI AI [−0.29, 23.86]

[61, 100]
[42.81, 55.68] 2σ -1σ

RCMI logα −4.3,−4 55.21,56.65,56,71 2σ
NI log(f /MP ) 0.85,1 [53.02, 57.20] 2σ
ESI (ω̄reh = 0 ) log q −3,−1.3,−1,−0.6

−0.3,0,0.18,0.54
[42.51, 56.87] 2σ -1σ

ESI (ω̄reh = −1/3) log q −3,−1.3,−1,−0.6
−0.3,0,0.18,0.54

[39.17, 54.77] 2σ -1σ

PLI logα None None None
DWI log(φ0/MP ) [1.18, 3] [50, 57.48] 2σ
LI (α > 0) logα −2.52,−2.15,−1.77

−1.39, −1.02,−0.64
−0.27,0.11

[41.20, 56.16] 2σ -1σ

LI (α < 0) α [−0.35, −0.10] 43,46,50
53,57,61

2σ -1σ

confidence interval resulting from the statistical analysis with
observational data. The same analysis was also performed for the
prediction of ns in the standard inflationary model, but in this
case, the comparison was also performed considering confidence
regions in the ns − r plane. The reason for not including the latter
in the analysis of the collapse model is that these models predict a
strong suppression of primordial tensor modes.

In Wigner’sscheme, the predicted scalar spectral index is given
by ns = 1 + 2ϵ1 − ϵ2, and the observational data suggests that
ns ≤ 1 (at 2σ CL). Henceforth, any inflationary potential that
satisfies 2ϵ1 ≤ ϵ2 will be consistent with the data at 2σ CL within
Wigner’scollapse scheme. This result, together with the generically
predicted smallness of r , relaxes the constraints on allowed poten-
tials with respect to the standard inflationary model. Specifically,
within the collapse framework, constraints from observational
data allow for inflationary potentials that are not as concave as the
ones required by the standard model.

In particular, the corresponding potentials of DWI, RCMI and
NI (see Table 1) are very well motivated models from the theo-
retical point of view and in good agreement with the data when

considering Wigner’sscheme (see Table 2). On the other hand, in
the standard scenario, those same potentials are barely consistent
with the data (and possibly will be discarded if future data sets
bound r ≤ 0.01 see Table 3). Notably, the three aforementioned
potentials are not particularly as concave as the ones in HI, RCHI,
ESI and LI (with α > 0), which are in perfect agreement with the
data in the standard model and inWigner’sscheme. In contrast, full
convex potentials such as LFI for p ≥ 2 and PLI are not favored by
the data in any approach.

The fact that full concave potentials (instead of convex ones)
are favored by the data in the standard scenario can be explained
as follows. The data indicates that ns ≤ 1, hence the contribution of
ϵ2 should dominate in the predicted expression nstd

s = 1−2ϵ1 −ϵ2
because 2ϵ1 is required by the data to be as small as rstd (recall
that rstd = 16ϵ1). From the expression of ϵ1 and ϵ2 in terms of
the potential and its derivatives (see Eqs. (3)), one can see that
as observational bounds on r decrease, the potentials’ concavity
should increase. InWigner’sscheme concave potentials are favored
by the data as well but also potentials whose shape satisfies 2ϵ1 ≤

ϵ2. That condition enlarges the families of potentials allowed, in-
cluding the ones in the border between convex and concave type.
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In particular, the RCQI model is ruled out in the context of the
standard framework while the prediction of the Wigner collapse
model is in agreement for a range of the free parameters.

We end our work by stressing that the difference in the pre-
dicted expressions for ns and r with respect to the standard model
is due to the self-induced collapse proposal and the semiclassical
gravity assumption. This shows thatwhen facing conceptual issues
such as the quantummeasurement problem in the early Universe,
the possible solutions might lead to novel predictions that can be
compared with observational data.
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