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Abstract

If the universe is slightly non-extensive, and the distribution functions are not exactly given
by those of Boltzmann–Gibbs, the primordial production of light elements will be non-trivially
modi3ed. In particular, the principle of detailed balance (PDB), of fundamental importance in
the standard analytical analysis, is no longer valid, and a non-extensive correction appears.
This correction is computed and its in4uence is studied and compared with previous works,
where, even when the universe was considered as an slightly non-extensive system, the PDB
was assumed valid. We analytically track the formation of helium and deuterium, and study
the kind of deviation one could expect from the standard regime. The correction to the capture
time, the moment in which deuterium can no longer be substantially photo-disintegrated, is also
presented. This allows us to take into account the process of the free decay of neutrons, which
was absent in all previous treatments of the topic. We show that even when considering a 3rst
(linear) order correction in the quantum distribution functions, the 3nal output on the primordial
nucleosynthesis yields cannot be reduced to a linear correction in the abundances. We 3nally
obtain new bounds upon the non-extensive parameter, both comparing the range of physical
viability of the theory, and using the latest observational data. c© 2001 Elsevier Science B.V.
All rights reserved.

1. Introduction

Primordial nucleosynthesis provides an interesting testing arena where to analyze
the viability of physical theories, particularly, of the statistical description. It is in
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this epoch where the earliest bounds upon a given theory with cosmological in4uence
can be imposed. Thermal processes (see Ref. [1], hereafter referred as Paper I) are
non-trivially modi3ed by a non-extensive correction to quantum distribution functions.
Then, diAerent abundances of light elements are a possible outcome.

Some of the predictions for primordial nucleosynthesis in a non-extensive setting
have been analyzed before by some of us, using the asymptotic approach of the quan-
tum distribution functions, see Refs. [2–4]. Here, instead, we shall consistently continue
within the formalism given in Paper I. Since this approach is simpler, we shall obtain
analytical results far beyond the point where previous works have reached, see for
instance Ref. [4,5]. Together with Paper I, we shall then provide a complete history
of the early universe, accordingly modi3ed taking into account a non-extensive setting.
In this paper, we shall focus on the study of the changes that non-extensive statis-
tics introduces in the principle of detailed balance, for which we provide a detailed
analysis, both numerical and analytical. We shall then enhance the study presented in
Ref. [4], by framing it in a larger picture which encompasses an smaller number of
approximations and a larger number of predictions.

Primordial nucleosynthesis was recently used as well to demonstrate that macroscopic
samples of neutrinos in thermal equilibrium are indeed distributed according to Fermi–
Dirac statistics [6]. These latter authors considered that neutrinos were distributed by
a Bose–Einstein statistics, and established bounds (not very restrictive though) upon
this unexpected possibility. It is interesting to compare with our case: we assume that
neutrinos are indeed 1=2 particles, as a large amount of data coming from particles
accelerators show, but that even when continuing being fermions, and ful3lling the
Pauli’s exclusion principle, their distribution functions could slightly deviate from an
exact Fermi–Dirac one.

Since we have provided a detailed account of non-extensive statistics, and the reasons
why we choose the analytical form of the quantum distribution functions we adopted
(together with its derivation) in Paper I, we shall skip such topics here. We have
also considered in Paper I some physical reasons why to expect that Boltzmann–Gibbs
distribution functions could be considered as an approximation. The same is valid for
citations to previous works, for which we adopted here the criterion to quote just those
needed for the explicit computations we are carrying on. This does not mean that our
references are the only works in cosmological applications of non-extensivity, but only
that for proper citation of some of the others, we refer the reader to Paper I.

The layout of this work is as follows. Section 2 presents the basics of the neutron
to proton ratio in an evolving universe. This section does not use much the fact that
we are immersed in a non-extensive setting, but just presents general results which are
valid disregarding the statistical mechanics used. Indeed, the derivation being presented
in Section 2 was already given by others [4,7], and we provide it here just for the
ease of discussion. In Sections 3–7 we give the details of the analysis of the principle
of detailed balance, and show how to obtain a priori results on the possible range of
physically admitted values of (q − 1) without the need to compare with experiments.
Much of it is done in an analytical form, some is solved numerically. In Section 8,
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we present a detailed comparison between the two situations (full and approximate
cases) that we found possible for the principle of detailed balance. Towards the end
of this latter section we provide a comparison with the latest data available. In Section
9 we compute, for the 3rst time in a non-extensive framework, which is the modi3ed
capture time, the time in which neutrons are captured into deuterons. Using this result
we are able to compute the primordial abundance of 4He with a greater degree of
precision than that obtained in all previous works. We show that there are non-linear
eAects introduced by the appearance of a slight non-extensivity. Finally, we give some
general discussion in our concluding remarks.

2. The neutron to proton ratio

We begin by turning again to the issue of the evolution of the neutron abundance as
the universe evolves. We shall base this discussion in the work by, Bernstein et al. [7].
As we have done before, we shall denote by �pn(T (t)) the rate for the weak processes
to convert protons into neutrons and by �np(T (t)) the rate for the reverse ones [4].
X (T (t)) will be, as usual, the number of neutrons to the total number of baryons. For
it, a valid kinetic equation is

dX (t)
dt

= �pn(T )(1 − X (t)) − �np(T )X (t) : (1)

The solution to it is given by

X (T ) =
∫ t

t0
dt′I(t; t′)�pn(t′) + X (t0)I(t; t0) : (2)

Here, I(t; t′) is

I(t; t′) = exp
(
−
∫ t

t′
dt̂ �(t̂ )

)
(3)

with

�(t) = �pn(t) + �np(t) : (4)

Note that this solution is completely general, and does not depend on the statistical
mechanics used, except by the implicit changes introduced in the new reaction rates.
As explained in Ref. [4], we simplify by taking t0 = 0 and omitting the X (t0)I(t; t0)
term. These approximations yield

X (t) =
∫ t

0
dt′ I(t; t′)�pn(t′) : (5)

Finally, we note that

I(t; t′) =
1

�(t′)
d
dt′

I(t; t′) (6)
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or, equivalently

X (t) =
�pn(t)
�(t)

−
∫ t

0
dt′ I(t; t′)

d
dt′

(
�pn(t′)
�(t′)

)
: (7)

To compute Eq. (7), we need to know the reaction rates. Let us consider �np(t):

�np = �
+n→p+e− + �e+n→p+K
 + �n→p+e−+K
 (8)

that are individually given in Ref. [8]

�
+n→p+e− = A
∫ ∞

0
dp
p2


peEe(1 − fe)f
 ; (9)

�e++n→p+K
 = A
∫ ∞

0
dpep2

ep
E
(1 − f
)fe ; (10)

�n→p+e−+K
 = A
∫ p0

0
dpep2

ep
E
(1 − f
)(1 − fe) (11)

with A a constant, 3xed by the experimental value of �n→p+e−+K
, p
;e are the neutrino
and electron momenta, and E
;e their energies. In the energy domain we are interested,
some approximations are in order, see Refs. [4,7] for discussion: (1) energy conserva-
tion is E
 + mn = Ee + mp, to be used in Eq. (9) and E
 + mp = Ee + mn, to be used
in Eq. (10). (2) In Eq. (11), E
 = Lm − Ee ¿ 0, with Lm = mn − mp = 1:29 MeV,
from here comes the upper limit of the integration range. (3) Pauli blocking factors
are assumed equal to 1.

Since computations will involve the inverse processes of Eqs. (9) and (10), we shall
quote their form below

�e−+p→n+
 = A
∫ ∞

p0
e

dpep2
ep
E
(1 − f
)fe ; (12)

�K
+p→n+e+ = A
∫ ∞

Lm
dp
p2


peEe(1 − fe)f
 ; (13)

where E
 +mn =Ee +mp for Eq. (12) and E
 +mp =Ee +mn for Eq. (13). The lower
limit of the integral (12) is given by the minimum momentum that electrons must have
in order to result E
 ¿ 0, p0

e = (Lm2 − m2
e)

1=2. On the other hand, the lower limit in
the integral (13) comes from the constraint E
 = Ee + Lm¿Lm, since we suppose
that 3nal states are unbounded.

As remarked in Ref. [4], in general, the electron and neutrino temperatures, Te and
T
, may diAer because at the end of the freezing out period, electrons and positrons
annihilate, heating only the photons and maintaining with them thermal equilibrium.
Indeed, in Paper I we have computed the amount of this deviation for our non-extensive
setting. This diAerence is, however, small, and we shall follow Bernstein et al., and set
all temperatures equal, T = Te = T
 = T�. In the standard case this assumption ensure
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that the rates for reverse reactions, such as e− + p → n + 
, obey the principle of
detailed balance (PDB).

3. Principle of detailed balance

The PDB states that if we know the expression for a reaction rate, say �np, then this
is related with the reaction rate for the inverse reaction by an exponential factor

�pn = e−Lm=T �np : (14)

We shall study what happen in the non-extensive case, by analyzing each reaction
appearing in Eq. (8) in a separate way.

3.1. 
 + n ↔ p + e−

We would like to see what is the relationship between �qe−+p→n+
 and �q
+n→p+e− ,
with

�qe−+p→n+
 = A
∫ ∞

p0
e

dpep2
ep
E
(1 − f


q)f
e
q (15)

and

�q
+n→p+e+ = A
∫ ∞

0
dp
p2


peEe(1 − fe
q)f



q : (16)

Starting from �qe−+p→n+
, and taking into account that pedpe = EedEe, E
 = Ee − Lm
and E
 = p
, it is possible to show that, using changes of variable

�qe−+p→n+
 = A
∫ ∞

0
dp
p2


peEe(1 − f

q)f

e
q : (17)

In the regime x = E=T�1, fi
q can be approximated by

fi
q = e−xi +

q− 1
2

x2
i e

−xi with xi = Ei=T : (18)

Since during the period of freezing, the temperature T is low compared with the
energies appearing in the reaction rates, it is a good approximation to neglect Pauli
factors. Then, to analyze the relationship between

�qe−+p→n+
 = A
∫ ∞

0
dp
p2


peEefe
q (19)

and

�q
+n→p+e− = A
∫ ∞

0
dp
p2


peEef

q (20)

it is enough to see how fe
q and f


q relate themselves. From Eq. (18), and recalling
that in the reactions 
+ n ↔ p+ e−, E
 =Ee −Lm, we can directly write fe

q in terms
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of f

q. This yields

fe
q = e−Lm=Tf


q + e−Lm=T q− 1
2

(2E
Lm + Lm2)
e−E
=T

T 2 : (21)

Then, the PDB is no longer valid, since the reaction rates in this case are related by

�qe−+p→n+
 = e−Lm=T �q
+n→p+e− +
q− 1

2
e−Lm=T A

T 2

×
∫ ∞

0
dp
p2


peEe(2E
Lm + Lm2)e−E
=T (22)

with E
 = Ee − Lm. We shall say that we are working within a detailed balance with
non-extensive corrections (BNE).

It is worth noting that we can obtain an approximate expression among the rates, sim-
ilar to what one obtains for the standard situation. Indeed, using E
=T�1 in
Eq. (21), we get

fe
q = e−Lm=Tf


q (23)

what immediately yields

�qe−+p→n+
 = e−Lm=T �q
+n→p+e− : (24)

We can recover the standard PDB, invoking this additional approximation, what we
shall refer as to standard PDB (BST). In what follows, we shall show results both in
the full BNE as in the BST approximation, and we shall discuss the range of validity
of Eq. (23).

3.2. e+ + n ↔ p + K


A similar analysis yields

�qe++n→p+K
 = e−Lm=T �qK
+p→n+e+ +
q− 1

2
e−Lm=T A

T 2

×
∫ ∞

0
dpep2

ep
E
(2E
Lm + Lm2)e−Ee=T ; (25)

where E
 = Ee + Lm and we neglected the electron mass with respect to the energies.
In fact, a careful look at Eqs. (22) and (25) show that both integrals are identical.

Within BST, the relationship between the rates again simpli3es, to give

�qe++n→p+K
 = e−Lm=T �qK
+p→n+e+ : (26)

3.3. n → p + e− + K


Because of the fact that we have taken 1 − fi
q as 1 in Eq. (11), no modi3cation

arises in this case
1
�

= �n→p+e−+K
 = 0:0157ALm5 : (27)
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This allow us to determine A in terms of a measurable quantity, the neutron mean
life �,

A =
a
�

1
4
Lm5; a = 255 : (28)

We shall neglect the free decay of the neutron in this section, particularly when com-
puting �np. This makes Eq. (8) to assume the form �qnp = �q
+n→p+e− + �qe+n→p+K
.
Neglecting the blocking factors in Eqs. (9) and (10) it is evident that this two terms
are identical. The same happens with Eqs. (12) and (13), but in this case we have to
neglect, in addition, the electron mass in order to have p0 equal to Lm. Due to this,
�qnp = 2�q
+n→p+e− and �qpn = 2�qe−+p→n+
.

Using all previous results, the valid relationship between �qnp and �qpn, both in the
BNE as in the BST approximation are

�qpn = e−Lm=T �qnp + (q− 1)e−Lm=T I ; (29)

where we have de3ned

I =
A
T 2

∫ ∞

0
dp
p2


peEe(2E
Lm + Lm2)e−E
=T (30)

with Ee = E
 + Lm, for BNE, and

�qpn = e−Lm=T �qnp (31)

for the BST.

4. Explicit form for the rates

To compute �qnp and �qpn, it is clear that we have to know just one reaction rate,
for instance �q
+n→p+e− , and the value of I de3ned in Eq. (30). We can solve for
�q
+n→p+e− using Eq. (20). With the distribution functions being as in Paper I we
obtain

�q
+n→p+e− = A
∫ ∞

0
dE
E2


 (E
 + Lm)2f

q : (32)

These integrals are easily computed changing variables to x=E
=T and using the integral
form of the function �(n). Noting that �(n + 1) = n! for n∈Z, de3ning y = Lm=T ,
and using (27), we obtain

�q
+n→p+e− =
1
2

a
�y5 [12 + 6y + y2] +

a
�y5 (q− 1)[180 + 60y + 6y2] : (33)

These same considerations are valuable to compute I . It is given as

I(y) =
1
2

a
�y5 [120y + 60y2 + 12y3 + y4] : (34)
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Fig. 1. Left Standard reaction rates �stpn(y) and �stnp(y). Right: Corrections produced by non-extensive statis-
tics, normalized by (q− 1), using the full BNE.

4.1. �qnp

We have already mentioned that �qnp = 2�q
+n→p+e− , i.e.,

�qnp(y) =
a
�y5 [12 + 6y + y2] +

a
�y5 (q− 1)[180 + 60y + 6y2] : (35)

This equation is valid in both, the full BNE and the BST approximation.

4.2. �qpn

We use Eqs. (29) and (34) to get, within the full BNE

�qpn(y) = e−y�qnp(y) +
q− 1

2
a
�y5 e−y[120y + 60y2 + 12y3 + y4] : (36)

It is also immediate to obtain this rate in the BST, i.e.,

�qpn(y) = e−y�qnp(y) : (37)

This last equation was used by Torres and Vucetich [4], where the BST was assumed
from the beginning.

It is worth noticing that since �stpn(y) and �stnp(y) have an asymptotic behavior anal-
ogous to that of the standard rates, see Fig. 1, also in this case we expect that in the
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limit of low temperatures (i.e., y → ∞) the neutron abundance behaves as a constant.
That is, for low temperatures, the reaction rates are practically zero and then, pro-
cesses interchanging neutrons into protons and viceversa are negligible. In this sense,
X q(y → ∞) stabilizes towards a constant.

5. Evolution of the neutron abundance

The formal solution for the evolution of the neutron abundance is given by Eq. (7).
We shall use the variable y = Lm=T , so that

X q(y) =
�qpn(y)
�q(y)

−
∫ y

0
dy′I q(y; y′)

d
dy′

(
�qpn(y′)
�q(y′)

)
(38)

and the factor I becomes

I q(y; y′) = exp
(
−
∫ y

y′
dŷ
(

dt̂
dŷ

)
�q(ŷ)

)
: (39)

To evaluate the Jacobian dt̂=dŷ, we recall that the scale factor, R, in a Friedmann–
Robertson–Walker metric, goes as R � 1=T , independently of the statistics [9]. Then,
Ṫ =T = −Ṙ=R, and the rhs is given by Einstein equations

Ṙ
R

=
(

8�G
3

�q

)1=2

: (40)

Here, �q is the energy density of relativistic species, given in Paper I. When the
universe is dominated by e−; e+; 
 and �′s, and then gb = 2, gf = 2 + 2 + 2 × 3 = 10
and g =

∑
bg

b + 7
8

∑
fg

f = 43=4, we obtain

�q =
�2

30
[g + 35:85(q− 1)]T 4 : (41)

We can now compute dt=dy,

dt
dy

=
dt
dT

dT
dy

= − 1
Ṫ

Lm
y2 : (42)

Since, Ṫ =T = −Ṙ=R,

Ṫ = −T
(

8�G
3

�q

)1=2

(43)

and to 3rst order in (q− 1),

1
Ṫ

= − 1
T 3

(
45

4�3Gg

)1=2 [
1 − 15

g�2 35:85(q− 1)
]
: (44)

In this sense, we see that

dt
dy

=
�
a
by[1 − c(q− 1)] ; (45)
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where b and c are given

b =
(

45
4�3Gg

)1=2 a
�Lm2 ; c =

15
g�2 35:85 : (46)

Numerical values for these constants can be obtained taking into account that: a=255,
g=43=4, Lm=1:29 MeV, �=887±2 s [10] and G=m−2

pl and are b=0:25 and c=5:07.
This follows the treatment given in Ref. [4].

Using all previous remarks

I q(y; y′) = exp(Kq(y) − Kq(y′)) (47)

with Kq(y) given by

Kq(y) = −
∫

dŷ
(

dt̂
dŷ

)
�q(ŷ) (48)

or, equivalently, using Eq. (45)

Kq(y) = −�b
a

(1 − c(q− 1))
∫

dŷŷ�q(ŷ) : (49)

We then see that the needed steps to solve for the evolution of X q as a function
of y are: (1) 3nd the function Kq(y) as in Eq. (49), (2) substitute this result in the
expression (47) for I q(y; y′), and (3) 3nally solve the integral in (38). The complexity
of all functions involved requires a numerical procedure. However, we can do further
before going to numerical work, since our aim is to primarily see how the asymptotic
value of X , X q(y→∞), is aAected as a function of the parameter (q − 1), and ulti-
mately, how this asymptotic value changes if one assume the full BNE as compared
with the approximate BST approach.

6. Standard balance: BST

In this case, �q(y)=�q(y) coincides with its standard analogous �st(y)=�st(y). Indeed,
by de3nition, �q(y) = �qpn(y) + �qnp(y), and since BST establishes �qpn(y) = e−y�qnp(y),
we obtain �q(y)=�q(y) = (1 + ey)−1 = �st(y)=�st .

We can get Kq(y) taking into account that, using Eqs. (35) and (36)

�q(y) =
a
�y5 (1 + ey)[12 + 6y + y2] + (q− 1)[180 + 60y + 6y2] : (50)

Computing the integral in Eq. (49)

Kq(y) = b(1 − c(q− 1))
[
K1(y) +

q− 1
2

K2(y)
]
: (51)

with

K1(y) =
[(

4
y3 +

3
y2 +

1
y

)
+
(

4
y3 +

1
y2

)
e−y
]

(52)
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and

K2(y) =
[(

30
y3 +

15
y2 +

3
y

)
+
(

30
y3 +

3
y

)
e−y − 3Ei(1; y)

]
(53)

and where the functions Ei(1; y) are

Ei(1; y) =
∫ ∞

1

e−yt

t
dt : (54)

We recognize in Eq. (51) the standard term Kst(y) = bK1(y). The presence of the
factor b(1 − c(q − 1)) in the Jacobian dt=dy produces the appearance in K2(y) of a
second order term in (q−1). It is important to note that because this function diverges
as y−3 at the origin, it is not a priori obvious that we can retain (as was done in
Ref. [4]), only the term linear in (q − 1). This is a key remark, and we shall come
back on this later.

We shall then try to obtain the whole solution, without linearizing any of the func-
tions involving (q − 1). Having shown that �q(y)=�q(y) = (1 + ey)−1, we can write,
using Eq. (38), the asymptotic value X q(∞) ≡ limy→∞ X q(y), as

X q(∞) = lim
y→∞ eK

q(y)
∫ y

0
e−Kq(y′) ey

′

(1 + ey′)2 dy′ : (55)

This expression allows for an analytical study. Based on the divergent behavior of Kq

at the origin and because of the good behavior of

d
dy′

(
�qpn(y′)
�q(y′)

)
=

ey
′

(1 + ey′)2 (56)

near zero, it is possible to discard a priori, i.e., without having the need to compare
with any observation, the range of (q − 1)-values such that the non-extensive theory,
considered within the BST, looses its sense (i.e., the cases in which the asymptotic
values predicted for X q are out of the interval [0,1/2]). Indeed, in order to avoid
problems at the origin in Eq. (55), Kq(y) has to be positive when y → 0. Using
Eqs. (51)–(53), this condition translates immediately into an allowed interval for
(q− 1), since

lim
y→0

Kq(y) � lim
y→0

b(1 − c(q− 1))
[

4
y3 +

4
y3 e−y +

q− 1
2

(
30
y3 +

30
y

e−y
)]

;

(57)

i.e.,

lim
y→0

Kq(y) � b(1 − c(q− 1))
[

8
y3 + (q− 1)

30
y3

]
: (58)

We see that, to have Kq(y)¿ 0; (q − 1) must be such that the inequality −8=30¡
(q− 1)¡ 1=c is ful3lled. Recalling that c = 5:07 we see that values that do not ful3ll
the condition

−0:27¡ (q− 1)¡ 0:2 (59)
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must be automatically discarded. We mention in addition that no matter the sign of
Kq, the factor eK(y) multiplying the integral in Eq. (55) tends to 1 when y → ∞.

Fig. 2 shows the behavior of the integrand of Eq. (55) for diAerent (q− 1)-values.
Note the abrupt change of the plots when (q − 1) is near the extremes of the range
given by Eq. (59). The analytical conclusion is then reinforced by these plots and is
completely con3rmed when numerical computations are made. These latter show that
the integral (55) grows without limit when (q − 1) assumes values out of the range
given by Eq. (59). We have then showed that there exist a range of (q− 1) such that
the asymptotic value of X q(∞) has physical sense. We can now ask if there also exist
a range of (q−1)∈ [−0:27; 0:2] such that the X q(∞) obtained to 3rst order in (q−1)
is consistent with the whole computation. This would be so if we can prove that the
3rst order result do not diAer much from the real result that we have already got.

6.1. First order computation

To compute X q(∞) to 3rst order in (q−1), we need to write Eq. (55) to 3rst order
and neglect quadratic terms in Eq. (51). This gives

Kq(y) = Kst(y) + (q− 1)Kc(y) (60)

with

Kst(y) = b
[(

4
y3 +

3
y2 +

1
y

)
+
(

4
y3 +

1
y2

)
e−y
]

(61)

and

Kc(y) =
b
2

[(
30
y3 +

15
y2 +

3
y

)
+
(

30
y3 +

3
y

)
e−y − 3Ei(1; y)

]
− cKst : (62)

We write eK
q

to 3rst order as

eK
q
= eK

st
e(q−1)Kc � eK

st
[1 + (q− 1)Kc] : (63)

Substituting this expansion into (55) and retaining only the linear term we get

X q(∞) = X st(∞) + (q− 1)X c(∞) (64)

with

X st(∞) = lim
y→∞ eK

st(y)
∫ y

0
e−Kst(y′) ey

′

(1 + ey′)2 dy′ (65)

and

X c(∞) = lim
y→∞ eK

st(y)
∫ y

0
e−Kst(y′)[Kc(y) − Kc(y′)]

ey
′

(1 + ey′)2 dy′ : (66)

This integrals can be computed numerically, and the result is

X q(∞) = 0:15 + (q− 1)0:18 ; (67)
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Fig. 2. Behavior of the integrand needed in the computation of X q(∞) for diAerent values of (q−1) within
the BST approach.
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Fig. 3. Comparison between X q(∞) as a function of (q − 1), to 3rst order, and using the full numerical
solution, both obtained within the BST approach.

where the value X st(∞)=0:15 is the standard one. Fig. 3 shows the linear dependence
of Eq. (67), together with the full solution given by Eq. (55). Although within the
framework of the asymptotic approach to quantum distribution functions, an analogous
equation to (67) was presented already by some of us [4], we have now shown, for the
3rst time, what is behind that approach, what sustains it, and the range of its validity.

7. Non-extensive balance: BNE

In this section we shall solve Eq. (38) without approximations. That is, we shall take
for �qpn and �qnp, the expressions given by (35) and (36), respectively. Our aim will be
to quantify the amount of the deviation that it is produced when the BST, instead of
the full BNE, is considered.
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By de3nition, �q(y) = �qpn(y) + �qnp(y), adding (35) and(36) we see that �q(y) is
given by the sum of two terms

�st(y) =
a
�y5 (12 + 6y + y2)[1 + e−y] ; (68)

�c(y) =
1
2

a
�y5 [90[1 + e−y] + 30y[1 + 5e−y] + y2[1 + 21e−y] + 12y3 + y4] :

(69)

Because of the linearity of the integral operator, the same happens to Kq(y) in
Eq. (49). Using the previous expressions, we get

Kq(y) = b(1 − c(q− 1))
[
K̂1(y) +

q− 1
2

K̂2(y)
]

(70)

with

K̂1(y) =
[(

4
y3 +

3
y2 +

1
y

)
+
(

4
y3 +

1
y2

)
e−y
]

(71)

and

K̂2(y)=
[(

30
y3 +

15
y2 +

3
y

)
+
(

30
y3 +

60
y2 +

3
y

)
e−y−y−12 ln y−3Ei(1; y)

]
;

(72)

where Ei(1; y) were given in (54). As before, we do recognize the standard term
Kst(y) = bK̂1(y). Also here, within the BNE, it happens that

lim
y→∞

�qpn(y)
�q(y)

= 0 : (73)

Indeed, since within the BNE, in the limit y→∞ we have �qpn(y)˙y−3 and �qnp(y)˙
y−1e−y, we obtain

lim
y→∞

�qpn(y)
�q(y)

= lim
y→∞

1
1 + �qpn(y)=�q(y)

= lim
y→∞

1
1 + ey

= 0 : (74)

We then obtain an analogous to Eq. (55)

X q(∞) = − lim
y→∞ eK

q(y)
∫ y

0
e−Kq(y′) d

dy′

(
�qnp(y)
�qpn(y)

)
dy′ : (75)

It is important to note that Kq(y) diverges as y−3 at the origin, and as −y at in3nity.
Then, 3rst order developments will not do. The complex dependencies of the integrand
of Eq. (38) with (q− 1) makes much harder to a priori analyze the validity range, as
done within the BST. We can, however, make a detailed analysis of the behavior of the
derivative of the function �qpn(y)=�q(y) and of the integrand of Eq. (38), for diAerent
(q− 1)-values. We show this in Figs. 4 and 5. From the analysis of these 3gures we
see that the BST and the BNE diAer in a fundamental way, which translates into the
value of X q(∞). Within the BNE, and because of the behavior of the derivative of
the function �qpn(y)=�q(y) for negative values of (q− 1), it is not guaranteed that the
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Fig. 4. Behavior of the derivative of �qpn(y)=�q(y) for diAerent (q− 1)-values within the BNE.
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Fig. 5. Behavior of the integrand involved in the computation of X q(∞) for diAerent (q− 1)-values, within
the BNE.
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integrand in Eq. (38) is negative. For (q− 1)¡− 0:1 the integral of (38) is positive
(i.e., X q(∞)¡ 0), and this discards values of q such that (q−1)¡−0:1. On the other
hand, looking at Fig. 4 for positive values of (q− 1), we see that the upper bound is
between 0.19 and 0.2, in this case similarly to the BST. Then, for the BNE, the values
for which the theory has physical sense a priori of any experimental comparison are

−0:1¡ (q− 1)¡ 0:2 : (76)

The BNE is more restrictive than the BST. Out of this range, the physical sense of
the description is lost.

8. Comparing both approaches, and bounding the value of q

We now compare the results obtained in Sections 6 and 7. Fig. 6 shows X q(∞) for
diAerent values of (q− 1), both in the full BNE as well as in the BST approximation.
DiAerences are notable, and they grow with increasing values of |q − 1|, as it tends
to its limiting values. Table 1 gives the explicit values of X q(∞) obtained using a
numerical integration scheme for the BST and for the full BNE, and the analytical
results of the 3rst order approximation for the BST. For values of (q− 1) near 0, the
BST numerical computation is perfectly described by the linear approximation. The
deviation from the standard case is greater for the BNE than for the BST, for equal
values of (q−1), i.e., the BST underestimates the eAect of non-extensivity. This can be
seen directly from Fig. 6, or equivalently from Table 2, where we show the coeQcients
of the linear 3t of X q(∞) near 0, both for the full BNE and the BST. For the sake
of completeness, we also show the 3rst order result for the BST (this is not a 3t, but
comes directly from the analytical computations shown before).

Table 1
Comparison of X q(∞)-values as a function of (q − 1) for the
diAerent approaches

(q− 1) X q (BST) X q (BST) X q (BNE)
(O (q− 1))

−0:150 0.1472 0.1230 −0:6571
−0:120 0.1441 0.1284 −0:1061
−0:100 0.1431 0.1320 0.0261
−0:050 0.1440 0.1410 0.1299
−0:010 0.1484 0.1482 0.1476
−0:001 0.1499 0.1498 0.1498

0.0 0.1500 0.1500 0.1500
0.001 0.1502 0.1502 0.1503
0.010 0.1520 0.1518 0.1523
0.050 0.1625 0.1590 0.1635
0.100 0.1851 0.1680 0.1915
0.120 0.1991 0.1716 0.2109
0.150 0.2303 0.1770 0.2561



M.E. Pessah, D.F. Torres / Physica A 297 (2001) 201–228 219

Fig. 6. X q(∞) as a function of (q− 1), both for the full BNE and the BST.

Table 2
CoeQcients of the linear 3ts of X q(∞) near (q−1)=0 for the full
BNE, the BST approximation, and for the 3rst order computation
of the BST

Case X st X c

BST approximation 0.15 0.18
BST O(q− 1) 0.15 0.18
BNE Full 0.15 0.23

Until now, we have discussed the physical viability of the statistical description,
establishing a range of a priori discarded values of (q − 1) both for the full BNE
case, the real situation, and for the BST approximation. These values are those for
which X q(∞) is ¡ 0 or ¿ 0:5. This can be done before than the comparison with
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any given observational data or experiment. Recall that X (∞) is the neutron-to-proton
ratio, for which clearly, a negative value has no sense. In addition, X (∞)¿ 0:5 is in
con4ict with the reaction rates dependence with temperature, since X =0:5 is the initial
condition for the kinetic equation (1) when T → ∞ (i.e., y → 0). Within the range
of physical viability we now look for consistency with observations. This will further
restrict the range of admitted values of (q− 1). To obtain a direct bound upon (q− 1)
using the primordial abundance of 4He it is necessary to study in detail the free decay
of neutrons, happening between the moment of freezing out of the weak interactions
(t � 1 s) and the moment in which the temperature of the universe is similar to the
binding energy of D (t � 3 min). We shall provide, for the 3rst time in a non-extensive
setting, a detailed account of this in the following section, but nevertheless, let us give
here some preliminary considerations in the sense of Ref. [2,3].

Including the eAects of the neutron decay in the equation for the evolution of X q(t)
we have

X q(t) = exp(−t=�) KX
q
(t) ; (77)

where KX
q

is the already obtained ratio and � is the neutron mean life. In the capture
time, t= tc, when the temperature is below the D binding energy (2:23 MeV), neutrons
are captured into D. Then, almost all neutrons present at t = tc are converted into 4He.
Substituting the value of tc into Eq. (77) and using the value of KX

q
(∞) previously

found, we shall obtain half of the mass fraction of all 4He primordially produced. For
the time being, we shall adopt the standard value for exp(tc=�), which is � 0:8 [7].
With this we obtain

Y q
p ≡ 2X q

4 � e−tc=�2 KX
q
(∞)

= 0:8 × 2 × [0:15 + (q− 1)0:23]

= 0:24 + (q− 1)0:37 : (78)

There is no absolute consensus about the observational value of 4He. The two greatest
compilations give [11,12],

Yp = 0:244 ± 0:004 and Yp = 0:234 ± 0:004 : (79)

To consider a typical case, we average over the two mean values and twice the error
bar

Yp = 0:239 ± 0:008 : (80)

If at the same time we neglect the diAerence between the standard theoretical and the
observational values, which is given by 0.001, in order to obtain a 3rst bound, we can
get, using Eq. (78) and asking for |q− 1|0:37¡ 0:008,

|q− 1|¡ 0:021 : (81)
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Within the most complete treatment of the principle of detailed balance (BNE), which
accounts for the more in depth analytical study on the in4uence of a slight non-
extensivity in primordial nucleosynthesis, the value of q could diAer from 1 at the
level of a few percent and still be in agreement with current constraints. See below
for a more detailed treatment.

9. The capture time

The aim of this section is to show how the capture time tc is modi3ed in the
non-extensive framework. Recalling that at early times Ṙ=R = (8��q=3mpl)2 and
R(t)T
(t) = constant after the e+e− annihilation, it is straightforward to write

t =
(

3
8�G

)1=2 ∫ ∞

T

�−1=2
q

dT ′



T ′



+ t0 ; (82)

where t0 is a constant whose standard value is of the order 2 s, see Ref. [7]. In
Paper I, it was shown that the energy density could be written as �R = (�2=30)gq∗T 4.
Taking also into account that the photon and neutrino temperatures are related by
T� = (11=4)1=3[1 + 0:109(q− 1)]T
, we can solve the de3nite integral to obtain

t =
(

45
16�3geff

)1=2(11
4

)2=3 mpl

T 2
�

[1 − 5:06(q− 1)] + t0 ; (83)

where geff = 2(11=4)4=3 + 21=4 � 12:95.
In equilibrium, neutrons, protons and deuterons behave as free non-relativistic gases,

with number densities given by

niq = gi

(
miT�
2�

)3=2

e−(mi−)i)=T� ×
[
1 +

q− 1
2

(
15
4

+ 3
mi − )i

T�
+
(
mi − )i

T�

)2
)]

:

(84)

Here, the subscript i stands for n; p and D, for neutrons, protons and deuterons, re-
spectively, gn = gp =2; gD =3 and )i; mi are the chemical potentials and masses of the
particles. At early times, these gases are in chemical equilibrium, so that )D =)n +)p.
Therefore

nnqn
p
q

nDq
=

gngp
gD

(
mnmp

mD

)3=2( T�
2�

)3=2

e−+D=T�

[
u((mn − )n)=T )u((mp − )p)=T )

u((mD − )D)=T )

]
(85)

with +D = mn + mp − mD, and where we have made use of the de3nition

u((mi − )i)=T ) ≡ 1 +
q− 1

2

(
15
4

+ 3
mi − )i

T
+
(
mi − )i

T

)2
)

: (86)
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Eq. (85) is the generalized Saha equation that describes the deuterium formation (see
Paper I for a general derivation). Helium appearance is inhibited by the “deuteron
bottleneck”, represented by the reactions

n + p → D + � ; (87)

D + D → T + p ; (88)

D + T → 4He + n : (89)

Eq. (85) can be given in terms of the normalized abundance fractions X i
q = niq=n

B
q .

To this purpose we introduce the baryon to photon ratio .q = nBq =n
�
q and recall that

n�q = [2/(3) + 3!/(4)(q− 1)](T 3
� =�

2). We get for the quantity Gq
np = X n

q X
p
q =X D

q , to 3rst
order in (q− 1), the following result

Gq
np =

�1=2

/(3)
2

3.q

(
mpmn

2mDT�

)3=2

e−+D=T�

[
1 +

q− 1
2

(un + up − uD)
]
: (90)

Here, as in Paper I, ui = 15=4 + 3(mi − )i)=T + ((mi − )i)=T )2. As in the standard case
analyzed in Ref. [7], to determine the neutron capture time tc we need to examine
the sequence of reactions (87)–(89). It is convenient to do so in terms of an scaled
temperature z = +D=T�, so that they involve rate parameters of the form

Rq =
dt
dz

〈1v〉T nBq ; (91)

where 〈1v〉T denotes the thermal average of the relevant cross-section times the relative
velocity [7]. Using Eq. (83) and writing the baryon number density in terms of the
baryon to photon number density ratio, .q, we get

Rq =
.q
z2

(
45

�7geff

)1=2(11
4

)2=3

/(3)+Dmpl〈1v〉T [1 + 0:34(q− 1)] : (92)

Taking .0 =3:57×1010 [10] as a nominal value for .q and considering 〈1npv〉T =4:6×
10−20 [13] we obtain

Rq
np = 3:63

(
29
z2

)2 .q
.0

[1 + 0:34(q− 1)] : (93)

Neutron and proton populations are mainly determined by the kinetic equations

dX n
q

dz
= −Rq

np[X n
q X

p
q − Gq

npX
D
q ];

dXp
q

dz
= −Rq

np[X n
q X

p
q − Gq

npX
D
q ] : (94)

As in the usual case, if the neutron population is not depleted by other reactions such as
Eqs. (88)–(89), protons, neutrons and deuterons are kept in equilibrium, relationships
X q
p +X q

n +2X q
D=1 and X q

D=(Gq
np)−1X q

pX
q
n being valid. Since (Gq

np)−1 is very small, the
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deuterium number density will be also small, and we can write a 3rst approximation
as

XD; (1)
q = (Gq

np)−1X n; (0)
q X p; (0)

q ; (95)

where X n; (0)
q and Xp; (0)

q are the unperturbed populations, that obey X n; (0)
q + Xp; (0)

q = 1.
Using this we now have

X q
p + X q

n � 1 − 2(Gq
np)−1X n; (0)

q X p; (0)
q : (96)

Recalling Eq. (90), one sees that for the z-values we are interested (z � 30), the major
z dependence of (Gq

np)−1 goes as e z. Hence, to 3rst order

d
dz

(X q
p + X q

n ) � −2(Gq
np)−1X n; (0)

q X p; (0)
q : (97)

Adding Eqs. (94) and using Eq. (95) we 3nd that

XD; (1)
q = Rq

np[X n
q X

p
q − Gq

npX
D
q ] : (98)

When deuterium number density is depleted, its number density will change according
to

dXD
q

dz
= Rq

np[X n
q X

p
q − Gq

npX
D
q ] − Rq

DD[2(XD
q )2 − Gq

DDX
T
q X

q
p] + · · · ; (99)

where RDD is the scaled rate for the reaction (88) and Gq
DD is the Saha factor which

gives the equilibrium value for the ratio (X q
D)2=X T

q X
p
q . It can be shown that, in contrast

to Gnp, GDD is always a small number (see Section III of Ref. [7]). In fact, in the
standard framework GDD is of order e−60. We shall obviously be safe in considering
Gq

DD = GDD, and therefore in neglecting it. We can obtain Rq
DD inserting the value of

〈1DDv〉T in Eq. (92). The calculation of 〈1DDv〉T is a non-trivial task, which involves
the use of a phenomenological 3t to the cross-section plus a thermal average carried
out using Boltzmann velocity distributions for the deuterons. For the sake of simplicity,
we shall adopt the value of the thermal averaged cross-section used by Bernstein et al.
This can be written as

〈1DDv〉T = 0:016
z2=3

+7=2D m5=6
pl

e−1:44z1=3
: (100)

Introducing the nominal value of .0 as we did it when we wrote Rq
np, we can now

write for Rq
DD

Rq
DD = 1:76 × 107

(
.q
.0

)
z−4=3e−1:44z1=3

[1 + 0:34(q− 1)] : (101)

When the deuterium number density decreases enough, the chain of reactions that
converts almost all neutrons into helium is initiated. We may therefore identify the
temperature T�;c, at which the neutrons are captured, or equivalently, the value of
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z = zc = +D=T�;c, as in the standard case, by the condition that(
dXD

q

dz

)
z=zc

� 0 : (102)

Once we have neglected the factor Gq
DD, the condition stated above, together with

Eqs. (95) and (98) and the approximation XD
q = XD; (1)

q , gives

2XD; (1)
q Rq

DD � 1 : (103)

In order to solve this equation we proceed as follows. Let us 3rst rewrite the previous
equation as

Gq
np = 2X n; (0)

q X p; (0)
q Rq

DD : (104)

Note that we can put the rhs in terms of z. In Section 8 we have already given the
asymptotic value of X n; (0)

q as 0:15 + 0:23(q− 1), and therefore the value of Xp; (0)
q can

be found trough the relation X n; (0)
q + Xp; (0)

q = 1. Now, using Eq. (101) leads, to 3rst
order in (q− 1), to

Gq
np = 4:5 × 105

(
.q
.0

)
[1 + (q− 1)1:6]z−4=3e−1:44z1=3

: (105)

On the other hand, we also have an expression for Gq
np: it is given by Eq. (90).

Therefore, if we were are able to write Eq. (90) in terms of z we can equal both
expressions and solve for the unknown zc, which will satisfy the equality for a given
value of (q− 1). Unfortunately, this is not easy. The diQculty is due to the presence
of the chemical potentials in Gq

np in combinations other than the relation )D =)n +)p.
In this sense, we confront here a problem similar to that found in the recombination
study of Paper I. We shall just mention that it is possible to show that the function
un +up−uD has 103 as an upper bound, see the appendix for details. Therefore, in the
range of z-values that concerns us, the corrections in Gq

np due to non-extensivity will
be at most of order [(q− 1)=2]103 and we can then write for Gq

np = Gq
np(z),

Gq
np = 2:98 × 1012

(
.0

.q

)
[1 + 5 × 102(q− 1)]z3=2e−z : (106)

Thus, equating expressions (105) and (106), and taking .q = .0, we 3nally found that
zc must satisfy the following relation,

1 = 1:5 × 10−6 1 + 1:6(q− 1)
1 + 5 × 102(q− 1)

z−17=6
c e−1:44z1=3

c ezc : (107)

The standard result (i.e., (q− 1) = 0) gives zc = 27:08. The numerical solution of this
equation for diAerent values of the parameter (q − 1), and the corresponding capture
time, are shown in Fig. 7. It is interesting to notice that while values of (q − 1)¿ 0
can be used within the analytical study presented in this section without any limit,
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Fig. 7. Left zc as a function of (q − 1). Right: Capture time as a function of (q − 1). Both plots are
constructed for a nominal value of .q = 3:57 × 10−10. Note the asymmetric range of the (q − 1)-values
considered. See text for explanation.

this is not the case for values of the parameter such that (q − 1)¡ 0. The problem
arises in that in these cases, Gq

np can become negative, what clearly has no sense.
In particular, for (q − 1) = −0:002, the denominator in Eq. (107) is identically zero,
while for values of (q− 1)¡− 0:002 it is negative. Although this mines the physical
viability of the description for these values of q, in the same sense that what was
referred before, other assumptions are taken in this section, and only a numerical code
can give a more precise answer in either way. Note that to obtain Fig. 7 we have
made use of the non-extensive time–temperature correction. In Fig. 8 (left panel), we
show the dependence of the 4He abundance as a function of (q − 1), taking into the
free neutron decay correction.

Some comments about Figs. 7 and 8 are worth doing. Firstly, note that the depen-
dence of the 4He abundance, when neutron free decay is taken into account, is no
longer linear as it was before, see for instance Eq. (78). This makes the study of the
nucleosynthesis process much more interesting, and the use of the full numerical code
a worth doing task. Now we know that even when considering a 3rst (linear) order
correction in the quantum distribution functions, the 3nal output in the primordial nu-
cleosynthesis cannot be reduced to a linear correction in the abundances. Secondly, it
appears that for a given value of Yp (and .) there are two values of (q− 1) that could
3t well the observations. Finally note that the y-axis of Fig. 8 (left panel) is showing
variations at the level of less than 1%, and in principle, all values of (q − 1) shown
there are admitted by the current constraints on the primordial abundance of 4He.
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Fig. 8. Left: 4He abundance as a function of (q−1), taking into account neutron decay corrections. This plot
is constructed for a nominal value of .q = 3:57 × 10−10. Right: Primordial abundance of 4He as a function
of .q. Several (q− 1)-values are shown. Two horizontal lines stand for a conservative current constraint on
Yp.

In Fig. 8 (right panel) we show for the 3rst time the dependence of the 4He abun-
dance as a function of .q, for diAerent (q−1)-values. The general trend of an increasing
abundance as a function of . is maintained, but for diAerent values of q, the curves
cross the current constraints in diAerent positions. This plot actually represents a 3D
problem, with a two parameter space. The in4uence of . appears when numerically
solving the equation for zc. Indeed, the computation of the correction to the value of
Yp in the full analytical treatment presented here has to take into account diAerent
contributions. A direct linear dependence on (q − 1) is within the time–temperature
relationship (see the 3rst equations in this section, especially Eqs. (83)) and (78). In
addition, we can see that if zc is smaller than in the standard case, then Tc will be
bigger, and tc will be smaller than their respective standard counterparts. Thus, e−t=�

will in turn be bigger, what happens for instance in the case of a negative value
of (q − 1), and this would provide a bigger Yp. However, the linear correction in
Eq. (78) is competing with that positive deviation; this is what 3nally makes the curve
to deviate from a straight line.

10. Conclusions

In this paper, based on previous works (Paper I), we have revisited the problem
of the primordial genesis of light elements within the framework of non-extensive
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statistics. We have particularly paid attention to the form of the principle of detailed
balance that is valid in this new setting. We have shown that its usual form is no
longer valid, but instead, that it is just an approximation, dubbed here as the BST. The
full, new form of the principle of detailed balance was derived and named as BNE, and
we have studied it in detail too. By doing so, we were able to disguise the range of
validity of previous approaches to the topic, and to formally see the origin and range
of the deviations between the standard and non-extensive scenarios for the primordial
production of elements. We have also analyzed the neutron free decay correction to
the capture time, and found that even when considering a 3rst (linear) order correction
in the quantum distribution functions, the 3nal output cannot be reduced to a linear
correction in the abundances, as Fig. 8 explicitly show. By comparing with the latest
observational data, we have obtained a new bound on the upper limit of the parameter
|q− 1|. We think that the bound being presented here (referring also to Figs. 7 and 8)
is obtained within a much more detailed basis than the previous ones, see for instance
[2–5], and then that this bound should be considered as the more reliable of them all.
Indeed, we believe that the only way to improve it is to go to a direct implementation
of the primordial nucleosynthesis code. By doing so we would have the possibility of
studying the modi3cations to the abundances of all light elements in a simultaneous
way. This further extension is currently under analysis.
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Appendix A. un + up − uD

To have a rough idea of the order of magnitude of the function un + up − uD,
we need to compute (mi − )i)=T in the range of temperatures we are interested in,
with i = n; p; and D. Firstly, we note that for this purpose it is enough to consider
the standard values of all these quantities. This is because non-extensive eAects here
would introduce only second order corrections in (q− 1), that we are disregarding in
our computation. Recalling the relation Xi = (gi=nB)(miT=2�)3=2 exp((mi − )i)=T ), we
see that in order to estimate the values of (mi−)i)=T we need to know the abundances
Xi. Then, to get un + up − uD, we have made the following steps:

1. Using the time–temperature relation we can put Xn(t) = exp(−�=t)Xn(tfreeze) as an
explicit function of T . Thus Xn(T ) follows, as well as (mn − )n)=T .
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2. Considering Xn(T ) together with the obtainable function XnXp=XD (remember that
)n + )p − )D = 0), and imposing the (approximate) constrain Xn + Xp + 2XD = 1,
we get the values of Xp and XD. Then, the corresponding values of (mp − )p)=T
and (mD − )D)=T can be obtained.

These results allow us to construct un + up − uD and thus to see that 103 constitutes
an upper bound in the range 0.07 ¡T ¡ 0:1 MeV (i.e., 22¡z¡ 32).
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