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Classical Electromagnetic Field Theory in the Presence of Magnetic Sources �
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Using two new well-de�ned four-dimensional potential vectors, we formulate the classical Maxwell �eld theory in

a form which has manifest Lorentz covariance and SO(2) duality symmetry in the presence of magnetic sources.

We set up a consistent Lagrangian for the theory. Then from the action principle we obtain both Maxwell's

equation and the equation of motion of a dyon moving in the electromagnetic �eld.
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Recently, there has been an increasing interest in
the study of electromagnetic (EM) duality symme-
try, because it plays a fundamental role in superstring
and brane theory.[1;2] From Maxwell's equations we
know that general EM duality implies the existence
of magnetic source [magnetic charge (monopole) and
currents]. However, when considering the quantum
dynamics of particles carrying both electric and mag-
netic charges (dyons), one faces the lack of a naturally
de�ned classical �eld theory despite of the fact that a
consistent quantum �eld theory does exist.[3] This is-
sue was analysed by many researchers.[5�9] in recent
contributions. In our previous paper,[14] we presented
an alternative formulation of electric-magnetic �eld
theory in the presence of magnetic source. The ad-
vantages of our formulation are as follows. First, we
introduce two new potential vectors that have no sin-
gularities and we do not need to use the concept of
Dirac string. Secondly, from the present paper we can
set up a consistent Lagrangian theory from which we
can obtain all the information of classical electromag-
netic �eld theory which returns to the usual Maxwell
�eld theory when only electric source is considered.
Thirdly, it has manifest Lorentz covariant and SO(2)
duality symmetry. Finally, it seems that our formula-
tion can be quantized directly, which will be reported
in a forthcoming article.

In this Letter, we present the details of the con-
struction of a Lagrangian for the EM �eld theory in
the formulation of Ref. [14]. From the action principle
we expect to obtain the Maxwell equation as well as
the equation of motion of a dyon moving in the elec-
tromagnetic �eld. We also explain why our formalism
has manifestly SO(2) duality symmetry.

Let us �rst give a brief review the formulation of
the two four-vector potentials of the electromagnetic
�eld in the presence of magnetic source.[14] Besides the

usual de�nition of four-dimensional potential which
we called A1

�, i.e.,

A1
� = (�1;�A1); or A

�1 = (�1;A1); (1)

we also introduce

A2
� = (�2;�A2); or A

�2 = (�2;A2); (2)

where �1 and A1 are the usual electric scalar poten-
tial and magnetic vector potential in electrodynam-
ics, while the newly introduced potential �2 is the
scalar potential associated with the magnetic �eld and
A2 is a vector potential associated with the electric
�eld. It should be emphasized that these two four-
potentials have no singularities around the magnetic
charges (monopoles). Using these potentials, the elec-
tric �eld strength E and the magnetic induction B

are then expressed by

E = �r�1 �
@A1

@t
+r�A2; (3)

B = r�2 +
@A2

@t
+r�A1: (4)

In the magnetic source free case, �2 and A2 are ex-
pected to be zero, so the above equation returns to
the usual magnetic source free case.

Now we introduce two �eld tensors

F I
�� = @�A

I
� � @�A

I
�; I = 1; 2: (5)

Then, choosing Lorentz gauge @�AI
� = 0, Maxwell's

equation in the case of existing both electric and mag-
netic sources,

r �E = �e; r�B = je +
@E

@t
; (6)

r �B = �m; r�E = �jm �
@B

@t
; (7)
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can be recast as

@�F I
�� = gII

0

JI
0

� ; (8)

where

gII
0

=

�
(1 0
0 �1

�
;

J1
� = Je� = (�e;�je); J2

� = Jm� = (�m;�jm):

In this formulation, the currents are manifestly
conserved:

@�JI� / @�@�F I
�� = 0:

We will see that the index I is the SO(2) index, so
our formulation described above has manifestly SO(2)
duality symmetry which is related to the general gauge
transformation AI

� ! AI
�+@��

I . The �elds E, B, the
�eld tensors in Eq. (5) and Maxwell's Eqs. (8) are all
invariant under the transformations.

Let us also stress that in the above expressions,
neither F 1

�� nor F 2
�� has the same matrix form as the

usual electromagnetic tensor. From Eq. (5) together
with Eqs. (3) and (4), we can �nd

Ei = F 1
0i +

�F0i
2;

Bi =
�F0i

1 � F 2
0i:

Thus, it is convenient to de�ne a new �eld tensor as

F�� = F 1
�� +

�F 2
�� ; (9)eF�� = �F 1

�� � F 2
�� ; (10)

where eF�� is exactly the Hodge star dual of F�� . As
we see in the following, using these new �eld tensors
we can easily express the duality symmetry in a com-
pact fashion. It is easy to see that F�� is the analogue
to the usual electromagnetic tensor de�ned in classical
electrodynamics, because they have exactly the same
matrix form in terms of the �eld strengths. Since the
vector potentials in our formalism have no singulari-
ties, one has @� �F I

�� = 0, so Maxwell's equations can
also be written as

@�F�� = @�F 1
�� = J1

� ;

@� eF�� = �@�F 2
�� = J2

� : (11)

From F�� or eF�� de�ned above, we can easily build
a Lagrangian such that the Maxwell Eq. (11) can be
derived from the action principle.

The SO(2) duality symmetry of electromagnetic
�eld theory has been discussed in the literature.[6�8;10]

In our previous paper,[14] we explained in detail why
the general duality symmetry is the SO(2) symmetry,
but there still exists something that is not very clear.
For example, under the general dual transformation
for F�� and eF�� , i.e.,�

F 0

��eF 0

��

�
=

�
a b
c d

��
F��eF��

�
; (12)

why should the same transformation hold simultane-
ously for J�1 and J�2? One can make the same ques-
tion concerning the dual transformations of (E;B)
and (q; g); (Je;Jm), etc. Why must all these dual
transformations be the same? In our formulation, we
can shed light on this issue. Thus, we would �rst like
to give answers to these questions and then explain
in details why our formulation has manifestly SO(2)
duality symmetry, i.e., we can see that the index I is
the SO(2) index.

Let us �rst solve Maxwell's equation in our for-
malism. It is easy to check that the potential func-
tions de�ned in the above section satisfy the di�eren-
tial equations:[14]

@2

@t2
�1 �r

2�1 = �e;

@2

@t2
A1 �r

2A1 = je

@2

@t2
�2 �r

2�2 = ��m;

@2

@t2
A2 �r

2A2 = �jm: (13)

In the static case, i.e., when the sources do not
depend on time t, we can write

�I = �I(x); JI = JI(x); I = 1; 2;

where I = 1 and 2 represent I = e andm, respectively.
Then, as is exactly performed in the standard clas-
sical electrodynamics (magnetic source free case),[11]

the solution of Eq. (13) is given by

�I =
1

4�
gII

0

Z
�I0(x0)

r
d3x0 (14)

AI(x) =
1

4�
gII

0

Z
JI0(x0)

r
d3x0; (15)

where r = jx�x0j, then from Eqs. (3) and (4) we �nd
that the �eld strengths have the following representa-
tion

E(x) =
1

4�

Z
�e(x

0)
r

r3
d3x0

+
1

4�

Z
Jm(x

0)�
r

r3
d3x; (16)

B(x) =
1

4�

Z
�m(x

0)
r

r3
d3x0

�
1

4�

Z
Je(x

0)�
r

r3
d3x: (17)

Now we can give the answer to the question men-
tioned above under Eq. (12). Because Ei = F0i,

Bi = eF0i, we know that if F�� and eF�� have a trans-
formation given by Eq. (12), which leads to the �eld
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strengths E and B having the same transformation,
and because the �eld strengths are related to the
sources by Eqs. (16) and (17), the sources �e; �m and
Je;Jm must change in the same way. The same trans-
formation must be satis�ed by the four-dimensional
currents J�1 and J�2. That is why once one chooses
the transformation for F�� and eF�� given by Eq. (12),
then the corresponding �eld strengths and the sources
must obey the same transformation. If we impose that
Maxwell's Eqs. (6) and (7) are invariant under these
transformations of �eld strengths and the sources, we
obtain a = d and b = �c. Moreover, if we also impose
that the energy density 1

2 (E
2+B2) and the Poynting

vector E�B are invariant under this transformation,
we obtain a2 + b2 = 1. It is then natural to introduce
an angle � such that a = cos� and b = sin�. Hence
the general duality transformation matrix coincides
with the general rotation matrix in two dimensions.
Thus it becomes apparent that the general electromag-
netic duality symmetry is the SO(2) symmetry. Under
the special case, � = �=2, transformation (12) coin-

cides with the replacement F�� ! eF�� , eF�� ! �F��
and the same replacements must be taken simultane-
ously, i.e., E ! B;B ! �E, �e ! �m, �m ! ��e
and Je ! Jm, Jm ! �Je, etc. This corresponds to
the usual special electromagnetic duality symmetry.

Now we would like to point out that the index I
is the SO(2) index. Under the general dual trans-
formation, i.e., SO(2) transformation, from the above
discussion we know that the sources �I and JI change
into

�I0 = R(�)II0�I
0

J 0

I = R(�)II0JI0

;

where R(�) is the SO(2) rotation matrix. Then
from Eqs. (14) and (15), we know that the potentials
AI
� = (�I ;�AI) should have the same SO(2) trans-

formation, that is to say, the index I of potential AI
�

is the SO(2) index. Therefore, our formulation has
manifestly SO(2) duality symmetry.

Now we would like to give a Lagrangian for
the electromagnetic �eld which gives right Maxwell's
equation in the presence of magnetic source. We will
also see that from this Lagrangian, one can deduce the
right Lorentz force formula.

The Lagrangian of the �eld is given by

L = �
1

4
(F��)

2 � (A1
� +

�A2
�)J

�1 + (�A1
� � A2

�)J
�2;

(18)
where �AI

� is de�ned by

�AI
� = �

1

2
�����

Z x

P

@�A�Idx� : (19)

From a simple calculation we �nd

@F 2

@(@�A1
�)

=
@(F��F

��)

@(@�A1
�)

= 4F�� ;

@F 2

@(@�A2
�)

=
@(F��F

��)

@(@�A2
�)

= 4 eF�� :

It is noticed that �AI
� is related to the derivative

of AI
�, and if we take into account the conservation

conditions of the currents, then the Euler{Lagrange
equation of the Lagrangian de�ned in Eq. (18) gives
Maxwell's Eq. (11).

For simplicity, we consider here one dyon with elec-
tric charge q and magnetic charge g, which moves in
the electromagnetic �eld (the extension to the multi-
dyon system can be easily carried out). From the
action of the system we expect to obtain both �eld
Eq. (11) and the equation of motion of the dyon. The
action of this system consists of three parts, i.e,

S = Sp + SI + SF ; (20)

where

Sp = �m

Z �2

�1

r
�g��

dx�

d�

dx�

d�
d� (21)

is the free action of the dyon, and

SI =q

Z �2

�1

(A1
� +

�A2
�)
dx�

d�
d�

� g

Z �2

�1

(�A1
� �A2

�)
dx�

d�
d�

=

Z



(A1
� +

�A2
�)J

�1d4x

�

Z



(�A1
� � A2

�)J
�2d4x (22)

is the term of interaction between the dyon and the
electromagnetic �eld around it. J�I in the above equa-
tion are the currents for one particle dyon which have
the form

J�1 = q

Z
dx�

d�
Æ4(x� x(�))d�;

J�2 = g

Z
dx�

d�
Æ4(x� x(�))d�:

The last term of the action

SF = �
1

4

Z



F��F
��d4x (23)

is nothing but the action of the electromagnetic �eld.
Let us now vary the potentials as

AI
� ) AI

� + �IB
I
�(x); BI

�j
 = 0:

We can check that

@Sf
@�1

j�1=�2=0 =

Z



@�F
��B1

�d
4x;
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@Sf
@�2

j�1=�2=0 =

Z



@��F
��B2

�d
4x:

Noticing that
@ �A�I

@�I0
= 0 and

@Sp
@�I

= 0, we then have

0 =
@S

@�1
j�1=�2=0 =

Z



(@�F
�� � J�1)B1

�d
4x; (24)

0 =
@S

@�2
j�1=�2=0 =

Z



(@� eF�� � J�2)B2
�d

4x: (25)

Because B1
� and B2

� are arbitrary, then from Eqs. (24)
and (25), we obtain Maxwell's Eq. (11) again.

Furthermore, if we change the coordinate of the
dyon in the form

x� ) x� + �0y
�; with y�(�1) = y�(�2) = 0; (26)

we �nd

@S

@�0

���
�0=0

=

Z �2

�1

�
�m

d2x�

d�2
+qF�

�

dx�

d�
�g eF�

�

dx�

d�

�
y�d�:

(27)
Since y� is arbitrary, then from @S

@�0
j�0=0 = 0 we obtain

m
d2x�

d�2
= qF�

�

dx�

d�
� g eF�

�

dx�

d�
: (28)

This is just the equation of motion of a dyon moving
in the electromagnetic �eld. From this equation we
can �nd that the Lorentz force the dyon acquires in
the magnetic �eld can be represented in terms of �eld
strengths as

F = q(E + v �B) + g(B � v �E): (29)

We would like to stress that the general Lorentz
force has also the SO(2) electromagnetic duality sym-
metry.

In summary, we have used the formulation of
Ref. [14] to explain why the classical electromagnetic
�eld theory in the presence of a magnetic source has
exactly the SO(2) duality symmetry. Then we �nd
a proper Lagrangian formulation for the theory, and
lastly we have used the action principle of the system
of dyons to derive both Maxwell's equation and the
equation of motion for the dyon. From this equation

of motion we have obtained the general Lorentz force
for a dyon moving in the electromagnetic �eld.

As a consistency check of our formulation we see
that for g = 0 and J�2 = 0 (no magnetic sources),
from Eqs. (14) and (15) we can set A2

� = 0, and so
F�� = F 1

��+
�F 2

�� ) F 1
�� . This means that our formu-

lation contains standard electrodynamics as a partic-
ular case. For q = 0 and J�1 = 0 (no electric sources),
one has A1

� = 0, and then F�� = F 1
�� +

� F 2
�� )

� F 2
�� ,

and the Lagrangian becomes:

L = �
1

4
(�F 2

��)
2 � A2

�J
�2 =

1

4
(F 2

��)
2 � A2

�J
�2:

Thus in this case the formulation is completely parallel
to the magnetic source free case.
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