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A new predictive method based on Partial Order Ranking is introduced in the realm
of the QSPR–QSAR Theory using a single descriptor as variable and which is simple
enough to perform calculations by hand. Comparisons are made with a model relying
on the Least Squares Method subjected to the modeling of the Enthalpy of Formation
from Elements exhibed by a set of 51 hydrocarbon molecules by means of a flexible type
descriptor. The results achieved with the proposed method are quite satisfactory and its
future aplicability seems to be very promising.
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1. Introduction

The Quantitative Structure Property–Activity Relationships (QSPR–QSAR)
have emerged in the last decades as a useful tool for predicting physicochemical,
biological and pharmacological properties of molecules, specially in those cases
where there are no available experimental data corresponding to such properties
[1,2]. Since Hansch and Fujita made the pioneer studies in 1964 [3], these have
been succesfully applied in the estimation of different properties and activities
and so the development of the theory is encouraged.

The different formulations of the QSPR–QSAR theory suggest mathemati-
cal models quantifying an hypothetical relationship between the molecular struc-
ture and the property p shown by a compound,

p = function{d}, (1)

where {d} denote a set of molecular descriptors describing the molecular
structure/substructure. The {d} variables often represent experimentally
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determined physicochemical properties [2] or theoretically derived quantities, for
example, from the Chemical Graph Theory [4].

In order to obtain the model indicated with (1) the first issue to be estab-
lished is a structural function relating the property under study with the set of
descriptors, which is usually an unknown relationship depending on the prop-
erty, the descriptors and the family of molecules being studied. It can represent a
linear or a non-linear dependence. The simplest way to elucitate a mathematical
function is to draw the dependent variable in the z-axis of a cartesian coordinate
reference system and the descriptors in the other axes. Obviously, this operation
can be done for no more than two descriptors.

A second point to cover is the choice of a statistical method that enables
the calculation of all the function parameters and finally the prediction of the
property. Different methods have been used as data reduction techniques, such
as: Multiple Regression Analysis (MRA) [5], Principal Component Analysis
(PCA) [6], Partial Least Squares (PLS) [7], or Artificial Neural Networks (ANN)
[8]. The MRA is the commonest used technique for many years in the field of
QSPR–QSAR Theory owing to the simplicity of its equations, representing the
other advanced methodologies introduced in the last 30 years which developed
upon MRA. Although the ANN is often a heavily parametrized method it has
the advantage that it does not need a structural function to be specified, since
the algorithms try to guess it.

Another important point to bear in mind is the selection of the molecu-
lar descriptors. The complexity of the molecular structure has not allowed the
design of a novel descriptor englobing the whole structural information into a
single variable [9]. Nowadays there are more than 1000 molecular descriptors
available in the standard literature [10,11] and the researcher has to deal with
the problem of selecting the best subset from an initial pool of descriptors [12–
14]. There is nothing definitively stated in this regard, and the best way of doing
that is to choose those descriptors generating the best predictions.

As soon as all these topics are fulfilled a calibration set of compounds can
be modeled. The criterium to define the quality of a model can be the functional
standard deviation of estimate S or the Fischer test parameter. The model must
assure that it has predictive ability for a set of compounds not included in the
calibration set and comprising the validation set. When there are no reasons to
doubt about it, the leave-one-out cross validation technique gives the real predic-
tive power of the model [15].

An alternative atractive methodology for designing a QSPR–QSAR study is
the Partial Order Ranking method, a technique which does not rely on a struc-
tural function for the model nor a statistical method for the predictions like the
already mentioned above. Its theory has been described in several papers [16–18]
and is based on elementary methods of Discrete Mathematics, appearing from a
mathematical point of view extremely simple compared to the more demanding
statistical methods such as MRA or PCA/PLS.
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The purpose of this paper is to present a new predictive method based on
Partial Order Ranking for a single descriptor. Since up to our knowledge the lit-
erature does not register the use of just only one variable for employing Par-
tial Order Ranking, the results obtained in this paper are in principle the first
in the subject. The predictions given by this new method are compared with the
results given in ref. 19. The article is organized as follows: next section describes
the Partial Order Ranking method. Then a discussion of the results obtained is
presented. Finally, we summarize the main conclusions of this work and suggest
some possible future extensions of the new technique.

2. Method

The methodology of Partial Order including a single descriptor has an
extremely simple principle: if a molecule j with a given property pj is charac-
terized with a descriptor dj , then two molecules A and B can be compared if
and only if their descriptors can be compared. That is to say,

pB 6 pA ↔ dB 6 dA. (2)

When the rule (2) is true then it is said that compound A is ranked higher than
compound B. If (2) is false, then both A and B are incomparable. Note that (2)
a priori includes “6” as the only structural function.

First of all consider a calibration set a with N compounds. If we apply (2)
to this set then it will generate two different subsets a1 and a2: in a1 all the mol-
ecules will satisfy (2) and the second subset a2 will contain those compounds
which dont follow the rule. However, if we apply again (2) to a2 we will generate
two new different subsets a3 and a4, with fewer elements each one, where com-
pounds in a3 are ordered and compounds in a4 do not obey rule (2). Proceeding
in this way repeatedly, we continue iterating until the number of compounds in
the second subset is zero. This condition is achieved only if the selected descrip-
tor can describe the whole calibration set. Otherwise, the second subset of the
last iteration will not be empty. After all this procedure is done, we will have the
following k ordered subsets ah/h = 1, . . . , k, and where k is dependent on the
property pj under consideration and the descriptor dj employed.

In order to predict the property pi of a given compound i with descriptor
value di from the calibration set using the k ordered subsets, we can use sim-
ple interpolation formulae. First, we have to locate the subset ax that contains a
compound j (with i excluded from ax) that satisfies the next condition

absolute(dj − di) = minimum. (3)
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Once located the subset ax and the molecule j , then the following situation will
appear in ax ,

pj dj

di

p(j+1) d(j+1),

where we have the ranking j 6 i 6 j + 1.
The linear interpolation formulae can be deduced as

pj = a ∗ dj ,

p(j+1) = a ∗ d(j+1),

pi = a ∗ di,

p(j+1) − pj/(d(j+1) − dj ) = a,

pi(pred) = p(j + 1) − pj/(d(j+1) − dj ) ∗ di

with pi(pred) denoting the predicted value of pi . For the special case where
pj=pmin or pj = pmax, where pmin and pmax are the minimum and maximum
values of pj in ax , respectively, we can generalize the previous equations,

pj = a ∗ dj

pj/dj = a,

pi(pred) = (pj/dj ) ∗ di,

If we have a validation set we proceed in a similar way as indicated above: first,
localizating the minimum difference between the descriptor di of the validation
set and a dj from a subset ax according to the condition (3), and then applying
the linear interpolation formulae.

It could be shown that the lower the value of k the better are the estima-
tions of the proposed methodology. This can be concluded from the fact that
condition (3) is not sufficient to lead to the best predictions for a descriptor di

in ax when k is greater. Another point is the length of the interval d(j+1)−dj : the
lower the length of the interval, the better the predictions. This is in consecuence
of the linear interpolation formulae: a secant line is approximating a tangent line
in a property versus single descriptor-graph.

3. Results and discussion

In ref. 19 of the work that we based our calculations the enthalpies of
formation from elements 1H ◦

f (kcal/mol) of 51 hydrocarbons where partitioned
into a calibration and a validation set, each composed of 36 and 15 molecules,
respectively. However, owing to the results of the work of Hawkins et al. [15],
we decided to use the complete set of 51 molecules for calibration, since we



E.A. Castro et al. / QSPR modeling of the enthalpy 437

do not have any reason to doubt of the predictive hability of the leave-one-out
technique.

If we calibrate the model using linear least squares and a flexible descriptor
such as the correlation weighting of local invariants of atomic orbital molecular
graphs that was used in the reference, the best model found resulted for probe
number 2 from the three probes reported.

Model 1.

1H ◦
f = −4.264 + 1.394 ∗ Oxc (probe 2),

Rcal = 0.9989; Scal = 1.8114; F = 2.2102 × 104; absqdev = 3.1526,

Rlou = 0.9988; Slou = 1.8533.

Here Rcal, Scal and F are the correlation coefficient, standard deviation and
Fisher test parameter of the calibration set, respectively; absqdev is the mean
absolute quadratic deviation of the model; Rlou and Slou stand for the correlation
coefficient and standard deviation of the leave-one-out cross validation method.

Applying partial order we get the predictions for the 51 molecules and k =
2, that is, 2 subsets totally ordered listed in table 1. In order to compare these
predictions with the previous result of least squares, we did a correlation between
the experimental values of the property and the predicted values using partial
order. We got that the best model results for probe 1,

Model 2.

1H ◦
f = −0.254 + 1.012 ∗ Oxc (probe 1),

Rcal = 0.9974; Scal = 2.7695; F = 9426.7; absqdev = 7.3698.

In table 2 we display the predicted values for the heats of formation with mod-
els 1 and 2. Note that descriptors Oxc (probe 1) and Oxc (probe 2) are not the
same.

When judging the quality of the model with the standard error of the
leave-one-out method, it can be concluded that the new method produced worse
predictions. This result can be explained arguing that the descriptor Oxc may not
be optimum for partial order. If the descriptor performs well in a regression, it
does not mean that it will also work well with partial order. This is why the best
model chooses two different Oxc in model 1 (probe 2) and in model 2 (probe 1).
The opposite situation is also valid: if a descriptor orders itself just like the prop-
erty does, then it does not mean a good correlation between the descriptor and
the property is expected. This last conclusion can be demostrated with a simple
numerical experiment: if we order the set of 51 enthalpies and create an arbitrary
mathematical descriptor D0 by taking the square root of j, j = 1, . . . , 51, then
we will find a better statistic with partial order instead of that provided when
using that descriptor in a linear regression model.
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Table 1
List of ordered subsets generated according to condition (2) for 51 hydrocarbon molecules.

Subset a1 Subset a2

ID 1H ◦
f (kcal/mol) Oxc(probe1) ID 1H ◦

f (kcal/mol) Oxc (probe1)

20 −40.140 −49.860 27 −39.940 −50.970
40 −36.600 −46.350 38 −30.330 −41.730
13 −32.240 −40.940 17 −18.260 −23.110
7 −24.930 −31.000 1 −17.790 −23.080

23 −23.670 −30.240 51 4.310 −4.112
37 −20.040 −18.870 34 4.560 3.862
43 −12.400 −14.930 6 4.790 4.431
12 −4.270 −6.246 42 29.900 28.940
11 −1.770 −3.784 45 36.000 38.220
10 0.070 −1.514 19 37.450 43.760
50 4.140 5.278 44 43.560 47.530
16 8.440 8.770 41 51.900 59.550
36 11.950 13.050 29 55.200 62.550

3 12.560 13.600 18 66.220 78.890
39 18.290 17.100 33 69.200 81.140
15 25.270 29.060 25 79.700 95.200

8 26.010 29.830
14 32.120 37.460

9 34.690 40.590
35 35.400 41.980
32 37.230 43.770
22 37.700 44.250
49 43.300 48.300
24 44.250 52.200

4 44.410 52.280
5 45.310 53.510

46 49.700 59.660
31 54.000 64.380

2 54.550 64.700
28 59.180 70.250
26 62.500 74.280
47 66.000 81100
30 68.100 83.990
48 78.400 99.250
21 148.690 178.900

Linear Least Squares

1H ◦
f = −25.349 + 199.767 ∗ D0,

Rcal = 0.8316; Scal = 21.3870; F = 109.905; absqdev = 439.470,

Rlou = 0.8081; Slou = 22.5032.
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Table 2
Experimental and predicted values of Entalpies of Formation from Elements (kcal/mol) for 51

hydrocarbons with models 1 and 2.

ID Oxc (probe 1) Oxc (probe 2) 1H ◦
f exp 1H ◦

f model 2 1H ◦
f model 1

1 −23.080 −9.316 −17.79 −18.230 −17.250
2 64.700 42.070 54.55 54.280 54.370
3 13.600 12.330 12.56 12.800 12.920
4 52.280 34.800 44.41 44.310 44.240
5 53.510 35.480 45.31 45.280 45.190
6 4.431 6.712 4.79 5.134 5.089
7 −31.000 −14.390 −24.93 −24.280 −24.320
8 29.830 21.470 26.01 25.890 25.660
9 40.590 27.860 34.69 34.380 34.560

10 −1.514 3.286 0.07 −0.290 0.314
11 −3.784 1.990 −1.77 4320 −1.492
12 −6.246 0.422 −4.27 1.824 −3.678
13 −40.940 −19.740 −32.24 −29.810 −31.780
14 37.460 26.090 32.12 35.490 32.100
15 29.060 21.160 25.27 29.980 25.230
16 8.770 9.176 8.44 7.646 8.524
17 −23.110 −9.530 −18.26 −17.800 −17.550
18 78.890 50.420 66.22 64.860 66.010
19 43.760 29.650 37.45 37.220 37.060
20 −49.860 −25.260 −40.14 −38.770 −39.470
21 178.900 108.700 148.60 141.300 147.200
22 44.250 30.210 37.70 37.870 37.840
23 −30.240 −13.560 −23.67 −24.620 −23.160
24 52.200 34.620 44.25 44.380 43.990
25 95.200 59.840 79.70 75.660 79.140
26 74.280 47.680 62.50 61.710 62.190
27 −50.970 −25.210 −39.94 −41.040 −39.400
28 70.250 45.250 59.18 59.150 58.810
29 62.550 40.320 55.20 52.330 51.930
30 83.990 53.790 68.10 71.320 70.710
31 64.380 41.960 54.00 54.240 54.220
32 43.770 29.680 37.23 37.460 37.100
33 81.140 51.420 69.20 66.020 67.410
34 3.862 6.500 4.56 4.758 4.794
35 41.980 28.580 35.40 35.800 35.570
36 13.050 11.770 11.95 12.090 12.140
37 −18.870 −10.470 −20.04 −15.290 −18.860
38 −41.730 −21.400 −30.33 −32.870 −34.090
39 17.100 17.810 18.29 15.440 20.560
40 −46.350 −23.300 −36.60 −37.030 −36.740
41 59.550 39.020 51.90 49.620 50.120
42 28.940 21.390 29.90 25.190 25.550
43 −14.930 −4.754 −12.40 −15.120 −10.890
44 47.530 32.860 43.56 42.240 41.530
45 38.220 26.820 36.00 32.740 33.110
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Table 2 (Continued)

ID Oxc (probe 1) Oxc (probe 2) 1H ◦
f exp 1H ◦

f model 2 1H ◦
f model 1

46 59.660 40.280 49.70 52.010 51880
47 81.100 53.750 66.00 69.140 70.650
48 99.250 62.380 78.40 83.090 82.680
49 48.300 33.590 43.30 44.090 42.550
50 5.278 8.798 4.14 5.657 7.997
51 −4.112 3.242 4.31 −2.103 0.253

Partial Order Ranking

1H ◦
f = −0.306 + 1.029 ∗ D0,

Rcal = 0.9878; Scal = 6.0062; F = 1965.8; absqdev = 34.660.

The nature of the new method suggested reveals two important features:

1. Since (2) includes “6” as the only structural function, this structural
function will always be true whenever the descriptor used obey this rule.
This mean that, in comparison to classical least squares method, one
does not have to look for this structural function but for the descriptors
that behave correctly.

2. The proposed method does not need to be validated with the leave-one-
out technique. That is so because when the property of compound i is
being predicted with the interpolation formulae, it is really being prac-
tised the leave-one-out technique, as compound i is being left out of the
entire calibration set and being predicted with its immediate neighbors,
j and j + 1. A leave-one-out like this should function better than the
ordinary leave-one-out obtained with the least squares method, since it
also does not depend on the structural function. In other words, the Rcal

and Scal of Partial Order “correspond to Rlou and Slou of Least Squares”
whenever the structural function being used in the model is valid for
least squares.

4. Conclusions

Partial Order Ranking can be considered as a parameter-free method, and
so neither assumptions about linearity nor assumptions about distribution prop-
erties are made. A structural function is difficult to elucitate in cases where
the property has a complicated dependence on the molecular features. Here is
when the utility of Partial Order appears: if the descriptor orders itself just like
the property values do, even when treating with difficult properties the method
would perform well. The only difficult part in all this could appear when trying
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to find molecular descriptors which order themselves accordingly to the prop-
erty. There are different ways to surmount this problem and one of them is
to optimize flexible type descriptors taking into account their ranking with the
property. This kind of experiments are being carried out in our laboratories and
the corresponding results will be presented elsewhere in the near future.
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