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Abstract
In this paper we give quantitative bounds for the norms of different kinds of singular
integral operators on weighted Hardy spaces H p

w , where 0 < p ≤ 1 and w is a weight
in the Muckenhoupt A∞ class. We deal with Fourier multiplier operators, Calderón–
Zygmund operators of homogeneous type which are particular cases of the first ones,
and, more generally, we study singular integrals of convolution type. In order to prove
mixed estimates in the setting of weighted Hardy spaces, we need to introduce several
characterizations ofweightedHardy spaces bymeans of square functions, Littlewood–
Paley functions and the grandmaximal function.We also establish explicit quantitative
bounds depending on the weight w when switching between the H p

w -norms defined
by the Littlewood–Paley–Stein square function and its discrete version, and also by
applying themixedbound Aq−A∞ result for the vector-valued extensionof theHardy–
Littlewood maximal operator given in Buckley (Trans AmMath Soc 340(1):253–272,
1993).
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746 M. E. Cejas, E. Dalmasso

1 Introduction

Boundedness of singular integrals in weighted norms arises in the analysis of PDE’s. It
is a classical result that many operators in harmonic analysis are bounded on L p

w(Rn),
1 < p < ∞, if the weight w belongs to the so-called Ap Muckenhoupt class. The
sharp dependence of the corresponding L p

w(Rn) operator norms in terms of the Ap

characteristic of w has been studied for different operators in the last few years. We
recall that a weight w, that is, a non-negative locally integrable function, belongs to
the Muckenhoupt Ap class for 1 < p < ∞ if

[w]Ap = sup
Q

�
1

|Q|
�
Q

w

��
1

|Q|
�
Q

w
− 1

p−1

�p−1

< ∞

where the supremum is taken over all cubes in R
n with sides parallel to the axes. In

the case p = 1 we say that w ∈ A1 if

Mw ≤ kw a.e.

andwedefine [w]A1 = inf {k > 0 : Mw ≤ kw a.e.}. For p = ∞,we say thatw ∈ A∞
if

[w]A∞ = sup
Q

1

w(Q)

�
Q
M(wχQ) < ∞,

where w(Q) = �
Q w. We call [w]Ap the Ap constant or characteristic of the weight

w. It is well-known that there exists a constant that depends on the dimension n such
that [w]A∞ ≤ cn[w]Ap , for p ≥ 1. All the above constants can be defined over balls
instead of cubes, and they are the same up to a dimensional constant.

In [1], Buckley proved that for the Hardy–Littlewood maximal operator M and
1 < p < ∞

�M�L p
w(Rn) ≤ C[w]

1
p−1
Ap

(1.1)

and this result is sharp in the sense that the right-hand side of (1.1) cannot be replaced
by ϕ([w]Ap ) for any positive nondecreasing function ϕ growing more slowly than

t
1

p−1 . In the same article [1], it was shown that for the convolution Calderón–Zygmund
singular integral operators T and 1 < p < ∞,

�T �L p
w(Rn) ≤ C[w]

p
p−1
Ap

and the best power of [w]Ap is at least max
�
1, 1

p−1

�
. In the case p = 2 and T = H is

the Hilbert transform, Petermichl and Pott improved it to the power 3
2 (see [28]) and,

later on, Petermichl in [25] obtained the best possible linear dependence for p ≥ 2.
For the case 1 < p < 2, that dependence of the [w]Ap constant is a consequence
of the sharp extrapolation proved in [5]. For the Riesz transforms, in [26], the author
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Mixed estimates for singular integrals on weighted Hardy spaces 747

obtained the same linear bound. From [29], we also know that the linear dependence
on the Ap constant is the sharpest for the Ahlfors–Beurling operator.

Then, proving a linear dependence on the A2 constant for general Calderón–
Zygmund operators became an important problem in the area that was finally solved
by Hytönen in [15]. This result was improved in [13] by means of what it is now
called mixed Ap − A∞ estimates, as the ones obtained in that paper. Namely, for a
Calderón–Zygmund operator T , Hytönen and Pérez showed in [13] that

�T �L2
w(Rn) ≤ c [w]

1
2
A2

max
�
[w]A∞, [w−1]A∞

� 1
2
.

Afterwards, this was extended for p > 1 in [11].
When considering p = 1, it is well-known that the above operators are unbounded

in L1
w, for w ∈ A1, but a weak type estimate can be stated (see [21] and [13]) with the

following mixed bound for the norm of the Calderón–Zygmund operator T

�T �L1
w→L1,∞

w
≤ C[w]A1(1 + log[w]A∞).

Given that the singular integrals we shall be dealing with are not bounded for p = 1,
a natural goal is to define a subspace of L1

w whose image under any singular integral
is in L1

w. With this purpose in mind, the Hardy space H1
w is introduced. Next, one can

extend the definition for any p > 0, obtaining the space H p
w , where w ∈ Aq for some

q > 1 (for more details, see the following sections). It is well-known that for p > 1
these spaces coincide with L p

w. Then, the case of interest is, actually, 0 < p ≤ 1.
Hardy spaces give rise to the so-called endpoints estimates for the L p

w boundedness of
singular integrals, and this fact has motivated us to study the boundedness of singular
integrals in H p

w for Muckenhoupt weights.
There are several ways to define Hardy spaces. According to each definition, dif-

ferent norms arise and, in most cases, they are equivalent up to constants that depend
on the weightw. The weighted Hardy spaces were introduced by García-Cuerva in his
Ph.D. dissertation [9]. A complete book about these spaces is [30] where the authors
define theweightedHardy spaces by using the non-tangentialmaximal functions. They
introduce these spaces for doublingweights, namely, that there exists a constantC > 0
such that w(2Q) ≤ Cw(Q) for any cube Q. Moreover, they study the boundedness
of Calderón–Zygmund singular integrals on weighted Hardy spaces.

More recently, Lu and Zhu [22] apply a discrete version of Calderón’s reproducing
formula and Littlewood–Paley theory with weights to establish H p

w(Rn) → H p
w(Rn)

(0 < p ≤ ∞) boundedness results for singular integrals of convolution type when
w ∈ A∞. Several authors have studied this problem requiring stronger hypotheses on
the weight (see, for example, [18,20]).

The authors in [22, Theorem 1.1] show the boundedness of some sort of singular
integrals in H p

w(Rn) for w ∈ A∞. They claim that the bounds obtained in their article
are quantitative but they fail in giving the explicit constant depending on the weight
when switching from one H p

w -norm to another (see [22, Proposition 2.1 and Corollary
2.1]); there is actually a dependence on the A∞ constant of the weight w. Therefore,
a difficulty in obtaining quantitative bounds for norms of operators in this setting is
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748 M. E. Cejas, E. Dalmasso

that one needs to be very careful when interchanging the norms in H p
w(Rn) since there

will be constants relating them that might depend on the weight. When one is just
concerned about the boundedness of an operator, the constant can be disregarded.

In this article we shall precise the quantitative bounds obtained in [22]. While they
provide bounds for the norm of the singular integral operator, they are not completely
quantitative and accurate. In this sense, we first study multiplier operators Tm where
m is a Fourier multiplier, and obtain bounds for �Tm�H p

w→H p
w
by means of the norm

defined through a square function, wherew ∈ A∞. In this case we obtain estimates for
the same range of p for which the boundedness of these operators in H p

w is well-known
(see [30, ChapterXI, Theorem6]). As a particular case ofmultiplier operators, we have
the Calderón–Zygmund singular integrals of homogeneous type T f = K ∗ f , where
K (x) = �(x)

|x |n , provided that � is an homogeneous function of degree zero, infinitely

differentiable on the unit sphere Sn−1 and
�
Sn−1 � = 0. However, in Section 3 we

are able to get quantitative estimates for those operators using the characterization of
H p

w(Rn) by the grand maximal function. This choice on the definition of the weighted
Hardy space allows us to prove quantitative bounds for every p ∈ (0, 1]. Using
estimates for the grand maximal function given by Lerner and Wilson [19,33,34] we
get mixed bounds for the norm in H p

w(Rn) when w ∈ A1. Next, as a consequence of
an extrapolation result from [3] we can extend this last result for w ∈ A∞.

Afterwards, we consider singular integrals of convolution type with more general
kernels that include the homogeneous type operators mentioned above. We follow the
ideas by Lu and Zhu [22] and use the mixed bound Aq − A∞ for the vector-valued
Hardy–Littlewood maximal operator obtained in [2], which is an improvement of the
bound for this operator used by the authors. Moreover, we take special care of the
equivalence between H p

w(Rn) norms in order to get the correct dependence on the
weight w.

2 Quantitative bounds for multiplier operators with A∞ weights

From now on, for simplicity, we will denote H p
w and L p

w instead of H p
w(Rn) and

L p
w(Rn), respectively.
Set

�β(x) =
�
(y, t) ∈ R

n+1+ : |x − y| < tβ
�

, β > 0.

Let P(x) = cn

(1+|x |2) n+1
2

be the Poisson kernel and, for t > 0, set Pt (x) = 1
tn P( xt ).

Let f ∈ S and define f (x, t) = Pt ∗ f (x) its Poisson integral. If we consider the
maximal function

Nβ f (x) = sup
(y,t)∈�β(x)

| f (y, t)|,

the weighted Hardy space H p
w can be defined in terms of Nβ for w ∈ A∞ and any

β > 0. This means, f ∈ H p
w if and only if Nβ f ∈ L p

w. The norm is defined in the
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Mixed estimates for singular integrals on weighted Hardy spaces 749

natural way � f �H p
w

:= �Nβ f �L p
w
. We may refer to H p

w through the above definition,
so the different equivalent norms used in our results will be related to it.

Let us denote byS the Schwartz class of functions and consider the subset D̂0 :=
{ f ∈ S : supp( f̂ ) is compact and 0 /∈ supp f̂ }. A bounded function m defined on
R
n \ {0} is called a multiplier. A multiplier operator T is defined by means of the

Fourier transform as

(T f )�= m f̂

for f ∈ D̂0(R
n), so m is also called a Fourier multiplier. If T is bounded on H p

w ,
since D̂0 is dense in H p

w for w a doubling weight ([30, Chapter VII]), T admits an
extension as a continuous operator on H p

w . We shall denote T = Tm to indicate the
corresponding Fourier multiplier of T .

In this section, we consider the following functions. We define the square function

Sβ( f )(x) =
	�

�β(x)
|t∇ f (y, t)|2dy dt

tn+1


1/2

,

for β > 0, and the Littlewood–Paley function

g∗
μ( f )(x) =

�� ∞

0

�
Rn

�
t

t + |x − y|
�μn

|t∇ f (y, t)|2dy dt

tn+1

� 1
2

for μ > 1, where ∇ = (∂x1, . . . , ∂xn ,
d
dt ).

Assume that m ∈ Cn+1(Rn \ {0}) and for any multi-index α = (α1, . . . , αn) ∈ N
n
0

with |α| = α1 + · · · + αn ≤ n + 1,

sup
0<R<∞

R2|α|−n
�
R≤|x |≤2R

|Dαm(x)|2dx < ∞.

This condition is known in the literature as m ∈ M(2, n + 1). Then, it is well-known
(see [31, p. 233]) that

S1(Tm f )(x) ≤ Cg∗
2+ 2

n
( f )(x), x ∈ R

n, (2.1)

for any f ∈ D̂0. This inequalitywill be the key ingredient in order to obtain quantitative
bounds for �Tm�H p

w→H p
w
.

Aswe said in the introduction, changing the H p
w -norm for an equivalent one can lead

to a different bound for the operator norm. Therefore, we shall fix a norm according
to the operator we are dealing with. Since the L p

w norms of Nβ and Sβ are equivalent
by [10, Theorem 1], we can also characterize H p

w using Sβ , in particular, using S1.
Thus, in this section, we denote the weighted Hardy space by H

p
w and fix the norm

� f �H p
w

= �S1( f )�L p
w
, 0 < p ≤ 1. Note that we choose to present this notation
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750 M. E. Cejas, E. Dalmasso

because it seemed to us that it made the exposition clearer. However, these space are
all equivalent.

To give a quantitative bound for �Tm�H p
w →H p

w
, in view of the pointwise inequality

(2.1), it will be enough to prove that g∗
μ( f ) can be estimated by S1( f ) in norm L p

w

for 0 < p ≤ 1. This result is in the literature, more precisely, it can be found in
[30, Theorem 4], but we shall revisit its proof in order to give the explicit constant
depending on the weight. Our result is the following.

Theorem 1 Let 0 < p ≤ 1, w ∈ A∞ and 0 < r < min{ p
qw

, 1}, where qw = inf{q >

1 : w ∈ Aq}. Then,
�
Rn

(g∗
μ( f )(x))pw(x)dx ≤ C(n, p, r , μ)[w]A p

r

�
Rn

(S1( f )(x))
pw(x)dx (2.2)

for each μ > 2
r .

Therefore, we have the following quantitative bound for multiplier operators on
H

p
w , by combining (2.1) and theorem above. Notice that we can choose r to verify

2+ 2
n > 2

r , that is, r > n
n+1 . Thus, for

n
n+1 < r < min{ p

qw
, 1}, both inequalities hold.

Moreover, if r > 1
2 , they are valid for any dimension.

Theorem 2 Let n
n+1qw < p ≤ 1, w ∈ A∞ and 0 < r < min{ p

qw
, 1}. Then, if

m ∈ M(2, n + 1),

�Tm�H p
w →H p

w
≤ C[w]

1
p
A p

r

,

where the constant C does not depend on the weight.

Proof of Theorem 1 Let us introduce some notation and properties that we will use to
prove (2.2).

First, notice that, since w ∈ A∞, from the definition of qw there exists r > n
n+1

such that w ∈ A p
r
. Therefore, the weight satisfies the following doubling condition:

w(B(x, ar)) ≤ cda
np
r w(B(x, r)), ∀ r > 0, a ≥ 1.

cd is called the doubling constant of w and B(x, r) denotes the ball centered at x and
radius r . It can be shown that

cd = �M�
p
r

L
p
r
w →L

p
r ,∞
w

≈ C(n, p, r)[w]A p
r

which means that this weak type norm of the Hardy–Littlewood maximal operator is
equivalent to the constant of the weight up to a constant that depends on n, r and p (see
[1]). We shall also make use of the Hardy–Littlewood maximal operator associated to
the measure dν(x) = w(x)dx given by

Mw( f )(x) = sup
B�x

1

w(B)

�
B

| f (x)|w(x)dx, f ∈ L1
loc(w),
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Mixed estimates for singular integrals on weighted Hardy spaces 751

where the supremum is taken over the balls B containing x . It is known that Mw is of
weak type (1, 1) respect to the measure w(x) dx with constant Cn , only depending on
n, not on w.

Let us proceed with the proof of (2.2). It is easy to see that

g∗
μ( f )(x) ≤ C(μ, n)

∞�
k=0

2−kμn(S2k ( f )(x))
2

for every μ > 1 (c.f. [30, p. 54]).
Since p

2 < 1, we have

�
Rn

(g∗
μ( f )(x))pw(x)dx ≤ C(μ, n)

�
Rn

	 ∞�
k=0

2−kμn(S2k ( f )(x))
2


 p
2

w(x)dx

≤ C
�
Rn

∞�
k=0

2−kμn p
2 (S2k ( f )(x))

pw(x)dx

= C
∞�
k=0

2− kμnp
2

�
Rn

(S2k ( f )(x))
pw(x)dx .

We will show that the L p
w-norm of S2k can be replaced by the L

p
w-norm of S1 times a

constant that depends on the weight w.
Fix k ≥ 0. Using a similar notation to [30], we define the level sets

Os = {x ∈ R
n : S1( f )(x) > s}, O �

s = {x ∈ R
n : S2k ( f )(x) > s}

and

Us = {x ∈ R
n : Mw(χOs )(x) > (2cd(2

k)
np
r )−1}.

Given r , s > 0, we can write

w(O �
rs) ≤ w(Us) + w(O �

rs ∩ U c
s ).

From the weak type (1, 1) of Mw,

w(Us) = w({x ∈ R
n : Mw(χOs )(x) > (2cd(2

k)
np
r )−1}) ≤ Cn2cd2

knp
r w(Os).

On the other hand,

w(O �
rs ∩ U c

s ) = (rs)−2
�
O �
rs∩U c

s

(rs)2w(x)dx ≤ (rs)−2
�
U c

s

�
S2k ( f )(x)


2
w(x)dx .

(2.3)
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752 M. E. Cejas, E. Dalmasso

From [30, Chapter IV, Lemma 7], we have that �2k (U
c
s ) ⊂ �1(Oc

s ), where �β(E) :=
∪x∈E�β(x), and also, from that result,

w(B(y, 2k t) ∩ U c
s ) ≤ 2cd2

knp
r w(B(y, t) ∩ Oc

s ), t > 0.

These two properties allow us to deduce the following bound for the integral on the
right-hand side of (2.3):

�
U c

s

�
S2k ( f )(x)


2
w(x)dx

=
� ∞

0

�
�2k (U c

s )

|t∇ f (y, t)|2w(B(y, 2k t) ∩ U c
s )dy

dt

tn+1

≤ 2cd2
knp
r

� ∞

0

�
�1(Oc

s )

|t∇ f (y, t)|2w(B(y, t) ∩ Oc
s )dy

dt

tn+1

= 2cd2
knp
r

�
Oc
s

(S1( f )(x))
2 w(x)dx .

Thus, inserting this into (2.3),

w(O �
rs ∩ U c

s ) ≤ (rs)−22cd2
knp
r

�
Oc
s

(S1( f )(x))
2 w(x)dx

= 4cd2
knp
r (rs)−2

� ∞

0
tw({t < S1( f )(x) ≤ s})dt

≤ 4cd2
knp
r (rs)−2

� s

0
tw(Ot )dt .

Hence,

w(O �
rs) ≤ 4cd2

knp
r (rs)−2

� s

0
tw(Ot )dt + Cn2cd2

knp
r w(Os).

By [30, Chapter IV, Lemma 9] with c1 = 4cd2
knp
r and c2 = Cn2cd2

knp
r ,

�
Rn

(S2k ( f )(x))
pw(x)dx ≤ C(n, p, r)cd2

knp
r

�
Rn

(S1( f )(x))
pw(x)dx

as we claimed.
Then,

�
Rn

(g∗
μ( f )(x))pw(x)dx ≤ C

∞�
k=0

2− kμnp
2

�
Rn

(S2k ( f )(x))
pw(x)dx

≤ C(n, p, r)cd

�
Rn

(S1( f )(x))
pw(x)dx

∞�
k=0

2− kμnp
2 2

knp
r
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Mixed estimates for singular integrals on weighted Hardy spaces 753

≤ C(n, p, r)[w]A p
r

�
Rn

(S1( f )(x))
pw(x)dx

where the series converges since μ > 2
r . The proof is now finished. ��

Remark 1 Note that in each step we are using the optimal constant cd for the doubling
condition which give us a good constant in last theorem.

Remark 2 We also observe that the restriction on p, which translates in a restriction
for r , coincides with the sufficient conditions given in [30, Chapter XI, Theorem 6]
for the boundedness of Tm onH p

w .

3 Quantitative bounds for singular integrals of homogeneous type

In this section, we first obtain quantitative bounds for the norm of T on weighted
Hardy spaces, when w ∈ A1, for singular integrals of homogeneous type. Next, using
an extrapolation argument, we will extend these bounds for w ∈ A∞.

We will need to introduce different functions in order to give the definition of the
weighted Hardy spaces and several characterizations (see [35]).

For f ∈ L1
loc(R

n) and α > 0, let

Aα f (y, t) = sup
ϕ∈Cα

| f ∗ ϕt (y)|,

where ϕt (y) = t−nϕ(
y
t ) and Cα is the collection of functions ϕ : R

n → R supported
in the unit ball with integral zero, such that |ϕ(y) − ϕ(y�)| ≤ |y − y�|α for every
y, y� ∈ R

n .
First, we define the square function of f ∈ L1

loc(R
n) by

Sψ,β( f )(x) =
	�

�β(x)
| f ∗ ψt (y)|2 dy dt

tn+1


1/2

where ψ ∈ C∞
0 (Rn) is radial, non trivial, supported in the unit ball with

�
ψ = 0 and

such that

� ∞

0
|ψ̂(ξ t)|2 dt

t
= 1, ∀ξ �= 0.

The intrinsic square function is defined as

g∗
α,μ( f )(x) =

	�
R
n+1+

(Aα( f )(y, t))2
�

t

t + |x − y|
�μn dy dt

tn+1


1/2

, α, μ > 0,
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754 M. E. Cejas, E. Dalmasso

and the Littlewood–Paley function is given by

g∗
φ,μ( f )(x) =

	�
R
n+1+

| f ∗ φt (y)|2
�

t

t + |x − y|
�μn dy dt

tn+1


1/2

, μ > 0,

where φ ∈ C∞
0 (Rn), is radial, with support contained in the ball {x : |x | ≤ 1/2} and�

φ = 0.
Finally, we define the grand maximal function GN for f ∈ S �, the set of tempered

distributions. Given a natural number N , let AN denote the set of all functions η ∈
C∞(Rn) with supp η ⊂ {|x | ≤ 1} and

������
�

|β|≤N

|Dβη|
������∞

≤ 1

where β is a multi-index. Then

GN ( f )(x) := sup
t>0

sup
η∈AN

| f ∗ ηt (x)|.

It is well-known that one can define the weighted Hardy space for 0 < p < ∞, as
the set

H p
w = �

f ∈ S � : GN ( f ) ∈ L p
w

�
. (3.1)

The norm is given by � f �H p
w

:= �GN ( f )�L p
w
. Note that this definition of H p

w is
possible according to [24,36]. We fix the norm given by GN for the results of the
present section.

We will deal with homogeneous type operators. Let us consider� an homogeneous
function of degree 0, infinitely differentiable on the unit sphere with

�
|x |=1

�(x) dσ(x) = 0.

We consider the following singular integral operator given by

T f (x) := lim
ε→0

�
|y|>ε

�(y)

|y|n f (x − y) dy.

These type of operators are known as homogeneous singular integrals and they are
particular cases of multiplier operators. More precisely, if � is as above, there exists
a multiplier (a bounded function outside the origin) m ∈ C∞(Sn−1) which is homo-
geneous of degree 0 (see [31, Chapter III, Theorem 6]). Thus, under some extra
assumptions on �, one can have m ∈ M(2, n + 1) (see [17] or [30]) and T will
be in the conditions of the previous section. We will show now that with no other
hypotheses on� than the given above, we get mixed estimates and reach all the values
of p ∈ (0, 1].
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Mixed estimates for singular integrals on weighted Hardy spaces 755

We state the following pointwise estimate that holds for singular integrals and it
can be found in [33] (see also [19]). It relates the square function of the homogeneous
singular integral applied to f with the Littlewood–Paley function of f .

Theorem 3 [33] Let us consider an homogeneous singular integral operator T as
defined above.

Let φ ∈ C∞(Rn) be radial, supp(φ) ⊂ {|x | ≤ 1/2}, satisfying that there exist
positive constants c and ξ such that

� ∞

s
|φ̂(t, 0, . . . , 0)|2 dt

t
≥ c(1 + s)−ξ (3.2)

for every s > 0, and that
�
P(x)φ(x)dx = 0 for every polynomial P of degree ≤ 2n.

Let ψ = φ ∗ φ. There exists a constant C(β, μ, φ) and μ > 3 such that for all β > 0

Sψ,β(T f ) ≤ C(β, μ, φ)g∗
φ,μ( f ). (3.3)

We will use the following result given by Lerner [19] in order to obtain bounds for
the norms on weighted Hardy spaces.

Proposition 1 [19]Letψ beas in thedefinitionof the square functionandalso verifying
(3.2). Then there exist N ∈ N depending on ξ and n, and β depending on n such that
for any weight w and for any f with GN ( f ) ∈ L p

w,

�GN ( f )�L p
w

≤ c[w]
1
2
A∞�Sψ,β( f )�L p

w
(3.4)

where c does not depend on either f or w.

Remark 3 This result was obtained by Wilson in [33] but in [19] the author showed
the bound in terms of [w]A∞ which was defined in the Introduction. Inequality (3.4)
with f instead of GN ( f ) is essentially contained in [33].

We will obtain a mixed A1 − A∞ estimate for the norm �T �H p
w →H p

w
when 0 <

p ≤ 1. For that, we shall use the following weighted inequality.

Lemma 1 [34] Let 0 < p ≤ 1. There exists �μ = μ̃(p) > 0 such that for any μ > �μ
and any weight w we have

��
Rn

g∗
φ,μ( f )pw(x) dx

� 1
p ≤ C(n, N , p)

��
Rn

|GN ( f )|pMw(x) dx

� 1
p

(3.5)

where the constant does not depend on w.

Remark 4 If we consider w ∈ A1, by the lemma above we obtain

��
Rn

g∗
φ,μ( f )pw(x) dx

� 1
p ≤ C(n, N , p)[w]

1
p
A1

��
Rn

|GN ( f )|pw(x) dx

� 1
p

(3.6)

where the constant does not depend on w.
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Theorem 4 If 0 < p ≤ 1, w ∈ A1 and T is a singular integral as in Theorem 3, then

�T �H p
w →H p

w
≤ C[w]

1
p
A1

[w]
1
2
A∞ ,

where the constant C does not depend on the weight.

Proof Let φ and ψ be as in Theorem 3. Then, for this choice of ψ , from Proposition
1 there exists N ∈ N such that

�GN (T f )�L p
w

≤ C[w]
1
2
A∞||Sψ,β(T f )||L p

w

where the constantC does not depend onw. Now, using the pointwise inequality (3.3)
and last remark, with μ > max{3, μ̃}, for μ̃ as in Lemma 1, we have

�Sψ,β(T f )�L p
w

≤ C(β, μ, φ)�g∗
φ,μ( f )�L p

w
≤ C(β, μ, φ, n, N , r)[w]

1
p
A1

�GN ( f )�L p
w
,

so we obtain the desired inequality. ��
Now we will extend inequality (3.6) to the case of A∞ weights.

Proposition 2 If 0 < p ≤ 1, w ∈ A∞. Let 0 < r < min{ p
qw

, 1}. Then, there exists
�μ = μ̃(p) > 0 such that for any μ > �μ, we have
��

Rn
g∗
φ,μ( f )pw(x) dx

� 1
p ≤ C(n, N , p, r)[w]

1
p
A p

r

[w]
1
r − 1

p
A∞

��
Rn

|GN ( f )|pw(x) dx

� 1
p

.

(3.7)

Proof We will give the proof in order to obtain the explicit constant in the inequality
(3.7). However, the result is an immediate consequence of [3, Theorem 2.2].

We first notice that, since w ∈ A∞, from the definition of r we have that w ∈ A p
r
.

We denote q = p
r .

We are going to use Rubio de Francia’s algorithm (see [9]). Define the operatorR,
for f ∈ L1

loc(R
n), by

Rh(x) =
∞�
k=0

Mkh(x)

2k�M�k
Lq�

w1−q�

,

where Mk is the Hardy–Littlewood maximal operator iterated k times if k ≥ 1 and,
for k = 0 is just the identity operator. It is immediate from the definition of R that

(a) h(x) ≤ Rh(x),
(b) �Rh�

Lq�
w1−q�

≤ 2�h�
Lq�

w1−q�
,

(c) M(Rh)(x) ≤ 2�M�
Lq�

w1−q�
Rh(x), meaning thatRh ∈ A1 with constant indepen-

dent of h.
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We write

�g∗
φ,μ( f )�r

L p
w

= �
�
g∗
φ,μ f

�r �Lq
w

= sup
h

�
Rn

�
g∗
φ,μ f (x)

�r
h(x)w(x)dx,

where the supremum is taken over all non-negative functions h ∈ Lq �
w with �h�

Lq�
w

= 1.

For any of such functions h, we have that hw ∈ Lq �
w1−q� with �hw�

Lq�
w1−q�

= �h�
Lq�

w
=

1.
Let us fix h ∈ Lq �

w with �h�
Lq�

w
= 1. Then, from (a) and (c) with hw and (3.6), we

have

�
Rn

�
g∗
φ,μ f (x)

�r
h(x)w(x)dx ≤

�
Rn

�
g∗
φ,μ f (x)

�r
R(hw)(x)dx

≤ C(n, N , r)[R(hw)]A1

�
Rn

|GN f (x)|rR(hw)(x)dx .

Note that, if F ∈ L p
w andR(hw) ∈ Lq �

w1−q� , 0 < w < ∞ almost everywhere in the

set where f rR(hw) > 0. Then, by applying Hölder’s inequality with q and q �, we
get

�
Rn

|F(x)|rR(hw)(x)dx =
�
Rn

|F(x)|rw(x)
1
q R(hw)(x)w(x)−

1
q dx

≤ �F�r
L p

w
�R(hw)�

Lq�
w1−q�

≤ �F�r
L p

w
2�hw�

Lq�
w1−q�

= 2�F�r
L p

w

where we have used (b) and that �hw�
Lq�

w1−q�
= 1.

Particularly, we can apply the inequality above to F = GN ( f ), which we assume
in L p

w since, otherwise, there is nothing to prove. Thus, we get

�
Rn

�
g∗
φ,μ f (x)

�r
h(x)w(x)dx ≤ C[R(hw)]A1

��
Rn

|GN f (x)|pw(x)dx

� r
p

.

In other words, we have proved that

��
Rn

g∗
φ,μ( f )pw(x) dx

� 1
p ≤ C[R(hw)]

1
r
A1

��
Rn

|GN ( f )|pw(x) dx

� 1
p

.

Now, we need to estimate [R(hw)]A1 in terms of the weight w. According to (c),
we have that [R(hw)]A1 ≤ 2�M�

Lq�
w1−q�

. But, the Aq � − A∞ mixed estimate for the

Hardy–Littlewood maximal operatoris known, see [13, Corollary 1.10]. Hence,
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758 M. E. Cejas, E. Dalmasso

[R(hw)]A1 ≤ cnq
�
[w1−q � ]Aq� [w]A∞

� 1
q� = cn

p

r
[w]

1
q
Aq

[w]
1
q�
A∞ = cn

p

r
[w]

r
p
A p

r

[w]1−
r
p

A∞ ,

where we have used that [w]Aq = [w1−q � ]q−1
Aq� . Therefore,

[R(hw)]
1
r
A1

≤ c
1
r
n

� p
r

� 1
r [w]

1
p
A p

r

[w]
1
r − 1

p
A∞

which completes the proof. ��
Remark 5 An interesting open problem is to find the optimal value of q such that
w ∈ Aq in terms of the constant [w]A∞ . It was proved in [14] that q > ecn [w]A∞ ,

with [w]Aq ≤ ee
cn [w]A∞ , where cn is a dimensional constant. These type of embedding

results has been studied in [7,16,23,27,32], and, for the one-dimesional case, they are
sharper.

By reproducing the proof of Theorem 4 with (3.7) instead of (3.6), we obtain the
following quantitative mixed bound for �T �H p

w →H p
w
.

Theorem 5 If 0 < p ≤ 1, w ∈ A∞ and T is a singular integral of homogeneous type,
then

�T �H p
w →H p

w
≤ C[w]

1
p
A p

r

[w]
1
2+ 1

r − 1
p

A∞ ,

where the constant C does not depend on the weight.

Remark 6 Note that in last theorem the quantitative constant is bigger than the one
proved in Theorem 2. However, for the operators of homogeneous type considered in
this section the bounds can be obtained for every p ∈ (0, 1].

4 Quantitative bounds for singular integrals of convolution type

In this section we obtain a quantitative bound for the H p
w → H p

w boundedness of
singular integrals of convolution type. The idea is to use a Calderón reproducing
formula and to improve the bound for the vector valued maximal Hardy–Littlewood
operator given in [22, (2.2)]. In fact we use an Aq − A∞ mixed estimate obtained in
[2] which is a sharp bound.

Let ψ be a Schwartz function on R
n which satisfies

�
Rn

ψ(x)xα dx = 0

for all multi-indexes α and

�
j∈Z

|ψ̂(2− jξ)|2 = 1
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for all ξ �= 0.

Definition 1 A function f defined onR
n is said to be inSM (Rn)whereM is a positive

integer, if there exists C > 0 such that f satisfies the following conditions:

(1) For |α| ≤ M − 1,

|Dα f (x)| ≤ C
1

(1 + |x |)n+M+|α| ;

(2) For |x − x �| ≤ 1
2 (1 + |x |) and |γ | = M

|Dγ f (x) − Dγ f (x �)| ≤ C
|x − x �|

(1 + |x |)n+2M ;

(3) For |α| ≤ M − 1

�
Rn

f (x)xα dx = 0.

If f ∈ SM (Rn) its norm is then defined by

� f �SM (Rn) := inf {C : (1) and (2) hold}.

To simplify notation we denote SM (Rn) by SM . For f ∈ (SM )�, the dual space of
SM , define the Littlewood–Paley-Stein square function of f by

g( f )(x) =
⎛
⎝�

j∈Z
|ψ j ∗ f (x)|2

⎞
⎠

1
2

where ψ j (x) = 2− jnψ(2− j x), with ψ as above.
For convenience, in this sectionwewill modify the definition of theweightedHardy

space introduced in (3.1).

Definition 2 Let 0 < p < ∞, w ∈ A∞. Let M = [( 2qw

p −1)n]+1, where [·] denotes
the integer function . We define the weighted Hardy spaces as follows

H
p
w = �

f ∈ (SM )� : g( f ) ∈ L p
w

�

and the norm of f in H
p
w is defined by

� f �
H

p
w

= �g( f )�L p
w(Rn).

Remark 7 In [6], the authors showed that the spaces H p
w and H

p
w, coincide (see [6,

Theorem 2.1 and Remark 2.1]). Moreover, they proved (see [6, Proposition 3.2]) that
the space SM is dense in H

p
w for any A∞ weight and 0 < p < ∞.
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760 M. E. Cejas, E. Dalmasso

Let φ ∈ C∞
0 (Rn) be supported in the unit ball and satisfying the same conditions

as ψ for a fixed M0 ≥ M , where M is the same as in the definition of H
p
w.

For j ∈ Z, we will consider the setD j of dyadic cubes Q of R
n with sides parallel

to the coordinate axes and side-length �(Q) = 2− j .
We define the discrete Littlewood–Paley function

gd( f )(x) =
⎛
⎝�

j∈Z

�
Q∈D j+N

|φ j ∗ f (xQ)|2χQ(x)

⎞
⎠

1
2

where xQ is a point in Q, φ j (x) = 2− jnφ(2 j x) and N is some fixed large integer. We
reserve the notation φ for gd .

We will consider singular integrals of convolution type T f = K ∗ f so that the
kernel K satisfies

(1) For all multi-indexes α, and x �= 0

|DαK (x)| ≤ Cα|x |−n−|α|; (4.1)

(2) For any 0 < ε < N < ∞
����
�

ε<|x |<N
K (x) dx

���� ≤ C . (4.2)

The next two lemmas involving functions onSM were proved in [22], and will be
useful in the proof of Theorem 7.

Lemma 2 [22] If ψ, ϕ ∈ SM, for any given positive integers a and b, there exists a
constant C depending only on a and b, such that

|ψi ∗ ϕ j (x)| ≤ C

�
i

j
∧ j

i

�a
(i ∨ j)b

(i ∨ j + |x |)n+b
, ∀ x ∈ R

n .

Lemma 3 [22] Let ψ ∈ SM, i, j ∈ Z and let Q be a dyadic cube in D j+N . Set
a, b ∈ N. Then, for any u, u∗ ∈ Q and any r satisfying n

n+b < r ≤ 1, we have

�
W∈Di+N

2−| j−i |a |W |2−( j∧i)b

(2− j∧i + |u − xW |)n+b
|ψi ∗ f (xW )|

≤ C2−| j−i |a2( 1r −1)n(N+(i− j)+)Mr

⎛
⎝ �

W∈Di+N

|ψi ∗ f (xW )|χW

⎞
⎠ (u∗),

where (i− j)+ = max {i − j, 0}, xW is a fixed point of the cubeW, Mrh = M(|h|r )1/r
and C is a constant depending on the dimension n.
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Mixed estimates for singular integrals on weighted Hardy spaces 761

Wewill need the following discrete Calderón’s reproducing formula, proved in [22,
Theorem 2.1] (c.f. [8] or [12]).

Theorem 6 [22] Suppose that ψ j is as in the definition of g. Then for any M ≥ 1,
we can choose a large N depending on M and ψ such that the following discrete
Calderón’s reproducing identity

f (x) =
�
j∈Z

�
Q∈D j+N

|Q|�ψ j (x − xQ)ψ j ∗ f (xQ) (4.3)

holds in SM and in the dual space (SM )�, where �ψ j (· − xQ) ∈ SM for each Q and
xQ is any fixed point in Q.

Next, we give the aforementioned sharp weighted estimate for the vector-valued
extension of the Hardy–Littlewood maximal operator given in [2].

Lemma 4 [2] Let 1 < p, q < ∞ and let w be a weight in Ap. We define the vector-
valued Hardy–Littlewood maximal operator Mq as

Mq f (x) =
⎛
⎝ ∞�

j=1

M f j (x)
q

⎞
⎠

1
q

.

Then,

�Mq f �L p
w

≤ C[w]
1
p
Ap

�
[w](

1
q − 1

p )+
A∞ + [σ ]

1
p
A∞

�
�| f |q�L p

w

where

| f |q(x) =
⎛
⎝ ∞�

j=1

| f j (x)|q
⎞
⎠

1
q

and we denote σ = w
− 1

p−1 the dual weight of w in Ap.

This result improved Theorem 1.12 from [4] since, as we stated in the introduction,
[w]A∞ ≤ cn[w]Aq , for cn a dimensional constant.

Wewill use the following inequality between the norms of Littlewood–Paley square
functions.

Note that in [22], the authorsmention that the normsof gd and g in L
p
w are equivalent,

but this is true up to a constant that depends on the weight. For our purposes, the
equivalence is not needed, so we just write here the inequality that it is useful for us
with the explicit dependence on the weight.

Lemma 5 Let w ∈ A∞ and n
n+M < r < min

�
p
qw

, 1
�
, then

�gd( f )�L p
w

≤ Cw�g( f )�L p
w
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762 M. E. Cejas, E. Dalmasso

where Cw = [w]1/pAp/r

�
[w](

r
2− r

p )+
A∞ +

�
w

− r
p−r

� r
p

A∞

� 1
r

. In other words, �gd( f )�L p
w

≤
Cw� f �

H
p
w
.

Proof Let us recall that

gd( f )(x) =
⎛
⎝�

j∈Z

�
Q∈D j+N

|φ j ∗ f (xQ)|2χQ(x)

⎞
⎠

1
2

where xQ is a fixed point in Q. According to theCalderón discrete reproducing formula
(4.3)

f (x) =
�
i∈Z

�
W∈Di+N

|W |�ψi (x − xW )ψi ∗ f (xW )

Then,

(φ j ∗ f )(xQ) =
�
i∈Z

�
W∈Di+N

|W |(φ j ∗ �ψi )(xQ − xW )(ψi ∗ f )(xW )

Now, due to Lemma 2 we have

|(φ j ∗ �ψi )(xQ − xW )| ≤ C2−| j−i |a 2−( j∧i)b

(2−( j∧i) + |xQ − xW |)n+b
, a, b ∈ N.

Then, applying Lemma 3 with a = b = M , we get

|(φ j ∗ f )(xQ)| ≤ C
�
i∈Z

�
W∈D i+N

|W | 2−| j−i |M2−( j∧i)M

(2−( j∧i) + |xQ − xW |)n+M
|ψi ∗ f (xW )|

≤ C
�
i∈Z

2−| j−i |M2( 1r −1)n(N+(i− j)+)Mr

⎛
⎝ �

W∈D i+N

|ψi ∗ f (xW )|χW

⎞
⎠ (u)

≤ C(N , M)
�
i∈Z

2−| j−i |M2( 1r −1)n(i− j)+Mr

⎛
⎝ �

W∈D i+N

|ψi ∗ f (xW )|χW

⎞
⎠ (u)

where u ∈ Q. Then, by Hölder’s inequality

|(φ j ∗ f )(xQ)|2 ≤ C
�
i∈Z

⎛
⎝Mr

⎛
⎝ �

W∈D i+N

|ψi ∗ f (xW )|χW

⎞
⎠ (u)

⎞
⎠

2 	�
i∈Z

2−2| j−i |M+( 1r −1)n(i− j)+



.
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Therefore, since
�

Q∈D j+N
χQ(x) = 1 for each j ∈ Z, and the above inequality is

independent of Q,

gd( f )(x) =
⎛
⎝�

j∈Z

�
Q∈D j+N

|φ j ∗ f (xQ)|2χQ(x)

⎞
⎠

1
2

≤ C

⎡
⎢⎣�

i∈Z

⎛
⎝M

⎛
⎝ �

W∈Di+N

|ψi ∗ f (xW )|χW

⎞
⎠

r

(u)

⎞
⎠

2
r
⎤
⎥⎦

r
2 · 1r

×
⎛
⎝�

i, j∈Z
2−2| j−i |M+( 1r −1)n(i− j)+

⎞
⎠

1
2

.

It is easy to see that the double-series is convergent since r > n
n+M and the sum only

depends on M . Then, if we set fi =
��

W∈Di+N
|ψi ∗ f (xW )|χW

�r
, from Lemma 4

with q = 2
r > 1 in L

p
r
w ( pr > 1),

�gd( f )�L p
w

≤ C[w]
r
p
A p

r

�
[w](

r
2− r

p )+
A∞ + [σ ]

r
p
A∞

�
��������

⎛
⎜⎝�

i∈Z

⎛
⎝ �

W∈D i+N

|ψi ∗ f (xW )|χW

⎞
⎠

2
⎞
⎟⎠

r
2

��������
L

p
r
w

= C[w]
r
p
A p

r

�
[w](

r
2− r

p )+
A∞ + [σ ]

r
p
A∞

�
��������

⎛
⎜⎝�

i∈Z

⎛
⎝ �

W∈D i+N

|ψi ∗ f (xW )|χW

⎞
⎠

2
⎞
⎟⎠

1
2

��������
L p

w

.

Notice that the above inequality holds for any xW in W , so we can take the infimum
in each cube and then use that the dyadic cubes are disjoint in each level to get

�gd ( f )�L p
w

≤ C[w]
r
p
A p

r

�
[w](

r
2 − r

p )+
A∞ + [σ ]

r
p
A∞

�
��������

⎛
⎜⎝�

i∈Z

⎛
⎝ �

W∈D i+N

inf
xW∈W |ψi ∗ f (xW )|χW

⎞
⎠

2
⎞
⎟⎠

1
2

��������
L p

w

≤ C[w]
r
p
A p

r

�
[w](

r
2 − r

p )+
A∞ + [σ ]

r
p
A∞

�������
	�

i∈Z
|ψi ∗ f |2


 1
2

������
L p

w

= C[w]
r
p
A p

r

�
[w](

r
2 − r

p )+
A∞ + [σ ]

r
p
A∞

�
�g( f )�L p

w
.

The proof is now complete. ��
We are now in position to state the main result of this section, which gives us a

precise quantitative bound for the operator norm on H
p
w (c.f. [22, Theorem 1.1]).
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Theorem 7 Let T be a singular integral of convolution type with kernel K satisfying
conditions (4.1) and (4.2). Let w ∈ A∞ and 0 < p < ∞. Then,

�T f �
H

p
w

≤ C[w]
r
p
A p

r

�
[w](

r
2− r

p )+
A∞ + [σ ]

r
p
A∞

�
� f �

H
p
w

where r satisfies n
n+M < r < min

�
p
qw

, 1
�
.

Proof Since L2 ∩ H
p
w is dense in H

p
w, by standard density arguments, we assume

f ∈ L2 ∩ H
p
w. The proof is very similar to the proof of Lemma 5. By Calderón’s

reproducing formula (4.3)

g(T f )(x) =
⎛
⎝�

j∈Z

�
Q∈D j+N

|ψ j ∗ K ∗ f (x)|2χQ(x)

⎞
⎠

1/2

=
⎡
⎢⎣�

j,Q

������ψ j ∗ K ∗
⎛
⎝�

i∈Z

�
W∈D i+N

|W |�ψi (x − xW )ψi ∗ f (xW )

⎞
⎠
������
2

χQ(x)

⎤
⎥⎦
1/2

=
⎡
⎢⎣�

j,Q

������
⎛
⎝�

i,W

ψ j ∗ K ∗ �ψi (x − xW )|W |ψi ∗ f (xW )

⎞
⎠
������
2

χQ(x)

⎤
⎥⎦
1/2

.

From the properties on K , K ∗ �ψi ∈ SM , so we can apply the almost orthogonality
property (Lemma 2) to K ∗ �ψi and ψ j with a = b = M . Then, as in the proof of
Lemma 5, we use Lemma 3, Hölder’s inequality, the properties of the dyadic cubes
and the restriction on r to get

g(T f )(x) ≤ C

⎛
⎜⎝�

i∈Z

⎛
⎝M

⎛
⎝ �

W∈Di+N

|ψi ∗ f (xW )|χW (x)

⎞
⎠

r⎞
⎠

2
r
⎞
⎟⎠

1
2

,

and now the proof continues in the same way. Thus, from Lemma 4 we obtain the
following quantitative bound

�T f �
H

p
w

≤ C[w]
r
p
A p

r

�
[w](

r
2− r

p )+
A∞ + [σ ]

r
p
A∞

�
�g( f )�L p

w
= � f �

H
p
w
.
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