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Abstract

We explain the origin of the difficulties that appear in a straightforward application of the QRPA in 12C, and we demonstrate
that it is imperative to use the projected QRPA (PQRPA). Satisfactory results, not only for the weak processes among the
ground states of the triad {12B, 12C, 12N}, but also for the inclusive ones are obtained. We sketch as well a new formalism for
the neutrino–nucleus interaction that furnishes very simple final formulae for the muon capture rate and neutrino induced cross
sections.  2002 Elsevier Science B.V. All rights reserved.
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New types of nuclear weak processes have been
measured in recent years. They are based on neutrino
and antineutrino interactions with complex nuclei and,
rather than being used to study the corresponding
cross sections, they are mainly aimed to inquire on
possible exotic properties of neutrino themselves, such
as neutrino oscillations and the associate neutrino
massiveness, which are not contained in the Standard
Model (SM) of elementary particles.

So, in neutrino oscillation experiments with liq-
uid scintillators, the charge-exchange reactions
12C(νe, e−)12N and 12C(νµ,µ−)12N, both exclusive
(to the 1+ ground state) and inclusive (to all final
states), are just tools. As such, and to be useful, the
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corresponding cross sections σ exc
e,µ and σ inc

e,µ must be
accurately accounted for by nuclear structure models.

From the recent works [1–4] we have learned,
however, that neither RPA nor QRPA are able to
explain the weak processes (β-decays, µ-capture, and
neutrino induced reactions) among the ground states
of the triad {12B, 12C, 12N}. In fact, in the RPA a
rescaling factor of the order of 4 is needed to bring
the calculations and data in agreement [1], and a
subsequent ad hoc inclusion of partial occupancy of
the p1/2 subshell reduces this factor to less than 2
[2,3]. But, when the RPA is supplemented with the
pairing correlations in a self-consistent way, i.e., in
the framework of a full QRPA [4], the exclusive cross
sections turn out to be again overestimated by a factor
of ∼= 4. Moreover, Volpe et al. [4] have called attention
to “difficulties in choosing the ground state of 12N
because the lowest state is not the most collective one”
when the QRPA is used.
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In the present Letter we explain the origin of the
difficulties that appear in a straightforward applica-
tion of the BCS approximation in a light nucleus
such as 12C, and we demonstrate that the problem
is circumvented by the employment of the particle
number projected BCS (PBCS). We show simultane-
ously that the proton–neutron QRPA is not a recom-
mended approach, and that the aforementioned RPA
puzzle is solved within the projected QRPA (PQRPA)
for the charge-exchange excitations [5]. The later
approach furnishes satisfactory results not only for
the weak processes among the ground states of the
triad {12B, 12C, 12N}, but also for the inclusive weak
processes. For numerical evaluation of the weak de-
cay observables we have found it suitable to develop
a new theoretical framework, which is similar to that
build up by Barbero et al. [6] for the neutrinoless dou-
ble beta decay. The motivation for that and the com-
plete formulation will be exposed elsewhere. Here we
just explain the notation and exhibit the final formu-
lae.

The weak Hamiltonian is expressed in the form
[6–8]

(1)HW(r)= G√
2
J †
µL

µ(r)+ h.c.,

where

(2)

Jµ = γ0

[
gVγµ + gM

2M
iσµνkν

− gAγµγ5 + gP

m�

kµγ5

]
,

is the hadronic current operator, and

(3)Lµ(r)= ūs�(p,E�)γµ(1 − γ5)usν (q,Eν)e
ir·k

is the plane waves approximation for the matrix
element of the leptonic current; G = (3.04545 ±
0.00006) × 10−12 is the Fermi coupling constant (in
natural units) [9],

(4)k = Pi −Pf ≡ {k0,k}
is the momentum transfer (Pi and Pf are momenta
of the initial and final nucleon (nucleus)), M is the
nucleon mass, m� is the mass of the charged lepton,
and gV, gA, gM and gP are, respectively, the vector,
axial-vector, weak-magnetism and pseudoscalar effec-
tive dimensionless coupling constants. Their numeri-

cal values are [7–9]

gV = 1, gA = 1.26, gM = κp − κn = 3.70,

(5)gP = gA
2Mm�

k2 +m2
π

.

The above estimates for gM and gP come from
the (well tested) conserved vector current (CVC)
hypothesis, and from the partially conserved axial
vector current (PCAC) hypothesis, respectively. In the
numerical calculation we will use an effective axial-
vector coupling gA = 1 [10–12]. The finite nuclear
size (FNS) effect is incorporated via the dipole form
factor with a cutoff Λ = 850 MeV, i.e., as [13]

(6)g → g

(
Λ2

Λ2 + k2

)2
.

To use (1) with the non-relativistic nuclear wave
functions, the Foldy–Wouthuysen transformation has
to be performed on the hadronic current (2). When the
velocity dependent terms are neglected,1 this yields
[16]

J0 = gV − (ḡA + ḡP1)σ · k̂,
(7)J = gAσ − iḡWσ × k̂ − ḡVk̂ − ḡP2(σ · k̂)k̂,

where the following short notation has been intro-
duced

ḡV = gV
|k|
2M

, ḡA = gA
|k|
2M

,

ḡW = (gV + gM)
|k|
2M

,

(8)ḡP1 = gP
|k|
2M

k0

m�

, ḡP2 = gP
|k|
2M

|k|
m�

.

For the neutrino–nucleus reaction k = p − q , with
p ≡ {E�,p} and q ≡ {Eν,q}, and the corresponding
cross section from the initial state |Ji〉 to the final state
|Jf 〉 reads

σ(E�, Jf )= |p|E�

2π
F(Z + 1,E�)

(9)×
1∫

−1

d(cosθ)Tσ
(|k|, Jf

)
,

1 The effect of the nucleon-velocity terms is of the order of a
few per cent, in both the neutrino–nucleus scattering [13] and in the
muon capture [14,15].
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where F(Z + 1,E�) is the Fermi function, θ ≡ q̂ · p̂,
and

Tσ
(|k|, Jf

)

(10)

≡ 1
2Ji + 1

∑
s�,Mi

∑
sν ,Mf

∣∣∣∣
∫

drψ∗
f (r)HW(r)ψi(r)

∣∣∣∣
2
,

with ψi(r) ≡ 〈r|JiMi〉 and ψf (r) ≡ 〈r|JfMf 〉 being
the nuclear wave functions. The transition amplitude
can be cast in the form

(11)

Tσ
(|k|, Jf

) =G2
(
MVKV +

∑
µ=−1,0,+1

Mµ
AK

µ
A

)
,

where

MV = 4π
2Ji + 1

∑
J

∣∣〈Jf |∣∣iJ jJ (|k|r)YJ (r̂)
∣∣|Ji〉∣∣2

,

Mµ
A = 4π

2Ji + 1

(12)

×
∑
J

∣∣∣∣
∑
L

√
2L+ 1

(
L 1 J

0 −µ µ

)

× 〈Jf |∣∣iLjL(|k|r)[YL(r̂)⊗ σ
]
J

∣∣|Ji〉
∣∣∣∣
2

are the nuclear matrix elements, and

KV = g2
VL4 + 2gVḡVL40 + ḡ2

VL0,

(13)

K
µ
A =



(gA − ḡP2)

2L0 + 2(gA − ḡP2)(ḡA + ḡP1)L40
+ (ḡA + ḡP1)

2L4, for µ= 0,
(gA +µḡW)2Lµ, for µ= ±1

are the effective coupling constants, which contain the
lepton traces

L4 = 1 + p · q
E�Eν

, L40 =
(
q0

Eν

+ p0

E�

)
,

L0 = 1 + 2q0p0 − p · q
E�Eν

,

(14)L±1 = 1 − q0p0

E�Eν

±
(
q0

Eν

− p0

E�

)
,

with

q0 = k̂ · q = Eν(|p| cosθ −Eν)

|k| ,

(15)p0 = k̂ · p = |p|(|p| −Eν cosθ)
|k|

and the momentum transfer k is along the z axis (k̂ ≡
ẑ ≡ ε0).

In going from the results for the neutrino–nucleus
reaction cross section to that for the muon capture rate
one should keep in mind that: (i) the roles of p and
q are interchanged within the matrix element of the
leptonic current, which brings in a minus sign in the
last term of L±1, (ii) the momentum transfer turns out
to be k = q − p, and therefore the signs on the right-
hand sides of (15) have to be changed, and (iii) the
threshold values (p → 0 : k → q, k0 → Eν −m�) must
be used for the lepton traces. All this yields

(16)L4 = L40 = L0 = 1, L±1 = 1 ∓ 1.

Finally, one should remember that instead of summing
over the initial lepton spins s�, as done in (10), one
has now to average on the same quantum number. The
resulting transition amplitude TΛ(Jf ) is again of the
form (11) but the effective charges are here:

KV(p → 0)= (gV + ḡV)
2,

K
µ
A(p → 0)= δ|µ|,1(gA − ḡW)2

(17)+ δµ,0(gA + ḡA − ḡP)
2,

with

ḡV = gV
Eν

2M
, ḡA = gA

Eν

2M
,

ḡW = (gV + gM)
Eν

2M
,

(18)ḡP = ḡP2 − ḡP1 = gP
Eν

2M
.

For the capture rate one gets [17]

(19)Λ(Jf )= E2
ν

2π
|φ1S |2TΛ(Jf ),

where φ1S is the muonic bound state wave function
evaluated at the origin. Note that the neutrino energy
is fixed by the energy of the final state through the
relation: Eν = mµ − (mn − mp) − E

µ
B − Ef + Ei ,

where E
µ
B is the binding energy of the muon in the

1S orbit.
Lastly, we mention that the B-values for the GT

beta transitions are defined and related to the f t-
values as [9]

(20)
|gA〈Jf ||σ ||Ji〉|2

2Ji + 1
≡ B(GT)= 6146

f t
s.
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To start the discussion on the difficulties found by
Volpe et al. [4], it should be remembered that, the
pn-QRPA yields the same energy spectra for the four
(Z ± 1,N ∓ 1) and (Z ± 1,N ± 1) nuclei, when the
BCS equations are solved in the parent (Z,N) nucleus
under the constraint

(21)
∑

k=n(p)

(2jk + 1)v2
jk

=N(Z).

This is a physically sound zero order approximation
when the nuclei in question are far from the closed
shells and possess a significant neutron excess. Yet, as
we show below, the use of the QRPA in N =Z nuclei
is not free from care.

Let us define the quasiparticle energies relative to
the Fermi levels:

(22)E
(±)
jk

= ±Ejk + λk, k = p,n,

where Ejk and λk are the BCS quasiparticle energies
and chemical potentials, respectively. In the particle–
hole limit the energies E(+)

jk
(E(−)

jk
) correspond to the

single-particle(–hole) excitations for the levels above
(below) the Fermi surface [18], and to the 2p1h (1p2h)
seniority-one excitations for levels below (above) the
Fermi surface. In nuclei with large neutron excess
E

(±)
jp

and E
(±)
jn

are in general quite different, but in
N = Z nuclei the proton and neutron spectra are al-
most equal, except for the Coulomb energy displace-
ment. As a consequence the unperturbed QRPA ener-
gies:

(23)Ejpj ′
n
=




E
(+)
jp

−E
(−)

j ′
n
, for (Z + 1,N − 1),

−E
(+)
jp

+E
(−)

j ′
n
, for (Z − 1,N + 1),

E
(+)
jp

+E
(−)

j ′
n
, for (Z + 1,N + 1),

−E
(+)
jp

−E
(−)

j ′
n
, for (Z − 1,N − 1)

are almost degenerate with Ej ′
pjn

, i.e., Ejpj ′
n

∼= Ej ′
pjn

,
for all four odd-odd (Z±1,N ∓1) and (Z±1,N ±1)
nuclei. Moreover, in the case of 12C, both the proton
and the neutron Fermi energies are placed almost in
the middle between the 1p3/2 and 1p1/2 shells. This
causes an additional degeneracy, namely E1p3/2

∼=
E1p1/2 , resulting in

(24)E3/2,1/2 ∼= E1/2,3/2 ∼= E3/2,3/2 ∼= E1/2,1/2,

for 12N, 12B, 14N and 10B. But we know that the
physically sound energy sequences are:

(25)

12N: E1/2,3/2(1p1h) < E3/2,3/2(2p2h)
� E1/2,1/2(2p2h) < E3/2,1/2(3p3h),

12B: E3/2,1/2(1p1h) < E3/2,3/2(2p2h)
� E1/2,1/2(2p2h) < E1/2,3/2(3p3h),

14N: E1/2,1/2(2p) < E1/2,3/2(3p1h)
� E3/2,1/2(3p1h) < E3/2,3/2(4p2h),

10B: E3/2,3/2(2h) < E3/2,1/2(1p3h)
� E1/2,3/2(1p3h) < E1/2,1/2(2p4h),

as can be easily seen from the scrutiny of the particle–
hole limits for the seniority-two pn-states, which are
indicated parenthetically in (25). The RPA correlations
are unable to remedy the situation and the degeneracy
in (24) among four lowest Epn is the cause for the
problems found in Ref. [4] regarding the ground state
of 12N.

Well aware of all these difficulties, Cha [19], in
his study of the Gamow–Teller (GT) resonances, has
solved the BCS equations in the daughter nuclei under
the constraints

(26)
∑

k=n(p)

(2jk + 1)ṽ2
jk

=N ± 1 (Z ∓ 1),

which gives way to the energy orderings (25). Thus,
the problem risen by Volpe et al. [4] can, in principle,
be solved by using the Cha’s recipe. However, the
price to pay is that a different QRPA equation has
to be worked out for each nucleus separately, i.e.,
one for the (Z + 1,N − 1) nucleus and the other
for the (Z − 1,N + 1) nucleus, being in each case
significant only the positive energy frequencies. This
means that we have to abandon the nice properties
of the particle–hole charge-exchange RPA, where: (1)
only one RPA equation is solved for the (Z±1,N∓1)
nuclei, and (2) both the positive and negative solutions
are physically meaningful, with the β+ spectrum
viewed as an extension of the β− spectrum to negative
energies [20–22]. Note also that, in order to fulfill
the GT sum rule, Cha has evaluated the transition
probabilities with the usual pairing factors u’s and
v’s, obtained from (21). None of the undesirable
features of the Cha’s method appear within the charge-
exchange PQRPA. This approach has been presented
in detail in Ref. [5], and we just mention here that the
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PBCS quasiparticle energies read:

E
(+)
j = RK

0 (j)+RK
11(jj)

IK(j)
− RK

0
IK

,

(27)E
(−)
j = −RK−2

0 (j)+RK−2
11 (jj)

IK−2(j)
+ RK−2

0
IK−2 ,

where K = N,Z and the quantities RK and IK are
defined in [5].

The numerical calculations were performed within
the nl = (1s,1p,1d,2s,1f,2p) configuration space,
and for the residual interaction we adopted the delta
force

(28)V = −4π(vsPs + vtPt )δ(r),

where vs and vt are given in units of MeV fm3.
The bare single-particle energies (s.p.e.) ej were

fixed from the experimental energies of the odd-mass
nuclei 11C, 11B, 13C and 13N. That is, we assume
that the ground states in 11C and 11B are pure quasi-
hole excitations E

(−)
1p3/2

, and that the lowest observed
1/2−,5/2+,1/2+,3/2+,7/2− and 3/2− states in 13C
and 13N are pure quasi-particle excitations E(+)

j with
j = (1p1/2,1d5/2,2s1/2,1d3/2,1f7/2, 2p3/2). This is
in essence the idea of the inverse-gap-equation (IGE)
method [23], which also fixes the value of the singlet
strength within the pairing channel (vpair

s ). We have
considered the faraway orbitals 1s1/2, 2p1/2 and 1f5/2

as well. Their s.p.e. were taken to by that of a harmonic
oscillator (HO) with standard parametrization. The
single-particle wave functions were also approximated
with that of the HO with the length parameter b =
1.67 fm, which corresponds to the estimate h̄ω =
45A−1/3 − 25A−2/3 MeV for the oscillator energy.

The BCS and PBCS results for neutrons are dis-
played in Table 1. The underlined quasiparticle ener-
gies correspond to single-hole and single-particle ex-
citations, while the non-underlined ones are basically
2h1p and 2p1h excitations. Note that, while the first
ones are fairly similar within the BCS and PBCS ap-
proaches, the last ones are quite different. (The result-
ing s.p.e. are also quite similar.) Analogous results are
obtained for protons, with the same value of vpair

s .
The unperturbed energies Ejpj ′

n
of lowest four

pn quasiparticle states within the BCS and PBCS
approximations are shown in Table 2. For comparison,
the results obtained with the Cha’s method are also
displayed in the same table. It is easy to see that,
while the standard BCS approximation exhibits the
degeneracy (24), the Cha’s recipe and the PBCS
approach produce the energy sequences (25), being
the energy separations between the 1p1h, 2p2h and
3p3h-like states significantly larger in the later case.
This does not take us by surprise since the role of
the number projection is precisely that of restoring the
correct number of particles and holes.

Table 1
BCS and PBCS results for neutrons. Eexp

j
stand for the experimental energies used in the fitting procedure, and ej are the resulting s.p.e.

The underlined quasiparticle energies correspond to single-hole excitations (for j = 1s1/2,1p3/2) and to single-particle excitations (for
j = 1p1/2,1d5/2,2s1/2,1d3/2,1f7/2,2p3/2). The non-underlined energies are mostly two hole–one particle and two particle–one hole
excitations. The fitted values of the pairing strengths vpair

s in units of MeV fm3 are also displayed

Shell E
exp
j BCS PBCS

E
(+)
j E

(−)
j ej E

(+)
j E

(−)
j ej

1s1/2 11.34 −35.13 −23.58 19.93 −34.99 −22.37
1p3/2 −18.72 −5.07 −18.72 −7.80 −1.28 −18.73 −7.24
1p1/2 −4.94 −4.94 −18.85 −2.07 −4.95 −22.33 −1.51
1d5/2 −1.09 −1.09 −22.70 2.12 −1.09 −26.82 2.16
2s1/2 −1.85 −1.86 −21.93 2.70 −1.85 −25.98 2.68
1d3/2 2.72 2.72 −26.51 6.24 2.73 −30.79 6.26
1f7/2 5.81 5.82 −29.61 8.14 5.83 −33.61 8.17
2p3/2 7.17 7.18 −30.98 11.49 7.16 −35.23 11.47
2p1/2 12.89 −36.69 17.30 12.89 −41.01 17.32
1f5/2 16.72 −40.52 19.18 16.72 −44.58 19.21

v
pair
s 23.16 23.92
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Table 2
Unperturbed energies Ejpj ′

n
(in units of MeV) of lowest four proton–neutron quasiparticle states in the neighborhood of 12C, within the

approximations: (a) BCS equations are solved in 12C with the condition (21), (b) BCS equations are solved in daughter nuclei, employing (24)
as suggested by Cha [19], and (c) number projected BCS (PBCS) equations are employed. The underlined energies are equal for all three cases,
because they are adjusted to the experimental data via the IGP procedure [23]

jpj
′
n Ejp +Ej ′

n

12N 12B 14N 10B

(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

1/2,3/2 14.0 16.8 16.8 16.8 11.2 15.2 18.7 −7.0 −4.8 −3.2 35.0 36.7 38.5
3/2,1/2 13.8 16.6 20.6 23.8 11.0 11.0 11.0 −7.2 −5.0 −3.5 34.8 36.6 38.3
1/2,1/2 14.1 16.9 18.7 20.4 11.3 13.1 14.8 −6.9 −6.9 −6.9 35.1 38.7 42.1
3/2,3/2 13.7 16.5 18.7 20.2 10.9 13.1 14.7 −7.3 −2.9 0.2 34.7 34.7 34.7

Table 3
Results for the energy of the Jπ = 1+

1 state in 12N in units of MeV, the average B(GT)-value for the β-decay from 12N and 12B, and the
µ-capture rates to the ground state (Λexc) and to all final states (Λinc) in 12B in units of 103 s−1. In the upper part of the table the smallest
(largest) estimates obtained in previous RPA calculations are shown. As explained in the text three different PQRPA calculations are presented.
The lower and upper experimental B(GT)-value correspond to 12N and 12B, respectively

E(1+
1 ) B(GT) Λexc Λinc

RPA [1] 1.94 (2.02) 22.8 (25.4) 57 (59)
RPA [2] 32.4 (34.8) 69 (72)
RPA + pair [2] 4.1 (7.3) 31 (36)
CRPA [3] 0.693 (0.776) 8.5 (9.3) 40 (42)
RPA [4] 13.74 2.03 25.4 51

PBCS 16.78 1.063 15.2 66
PQRPA (I) 17.89 0.568 7.8 46
PQRPA (II) 18.14 0.477 6.5 40
PQRPA (III) 18.13 0.480 6.5 42

Expt. 17.34 [27] 0.466–0.526 [28] 6.2 ± 0.3 [29] 38 ± 1 [30]

After having established truthful unperturbed
PQRPA energies we proceed with full calculations,
where the values of vs and vt within the particle–
particle (pp) and particle–hole (ph) channels are need-
ed. In similar calculations of double beta decaying nu-
clei [6,24], which possess significant neutron excess,
the following procedure has been pursued: (i) vph

s and
v

ph
t were taken from the study of energetics of the

GT resonances done by Nakayama et al. [25] (see
also Ref. [11]), and (ii) the pp strengths were fixed
on the basis of the isospin and SU(4) symmetries as:
v

pp
s ≡ v

pair
s , and v

pp
t � v

pp
s . Different to what happens

in the N >Z nuclei, such a parametrization is not suit-
able for the N = Z nuclei, and the best agreement
with data is obtained when the pp channel is totally
switched off. Thus we will exhibit here only the re-
sults for vpp

s = v
pp
t = 0, and the next three sets of ph

parameters:

Calculation I: vph
s = v

pair
s = 23.92 MeV fm3, and

v
ph
t = v

ph
s /0.6 = 39.86 MeV fm3. That is, the singlet

ph strength is taken to be the same as v
pair
s obtained

from the gap equation, while the triplet ph depth is
estimated from the relation used by Goswami and Pal
[26] in the RPA calculation of 12C.

Calculation II: v
ph
s = 27 MeV fm3, and v

ph
t =

64 MeV fm3. These values were suggested in Refs.
[11,25] and have been extensively used in the QRPA
calculations of 48Ca [6,24].

Calculation III: v
ph
s = v

ph
t = 45 MeV fm3. This

parametrization gives fairly good results for the ener-
gies of the Jπ = 0+

1 and 1+
1 states in 12B and 12N.

In Table 3 we confront our PBCS and PQRPA
results with previous RPA and QRPA calculations
[1–4], and with experiments [27–30] for: the energy
of the Jπ = 1+

1 state in 12N, the B(GT)-value for
the β-decay from 12N and 12B, and the exclusive
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Table 4
Results for averaged exclusive and inclusive neutrino–nucleus cross sections 〈σe〉 (in units of 10−42 cm2) and 〈σµ〉 (in units of 10−40 cm2).
(See caption to Table 1)

〈σ exc
e 〉 〈σ inc

e 〉 〈σ exc
µ 〉 〈σ inc

µ 〉
RPA [1] 36.0 (38.4) 42.3 (44.3) 2.48 (3.11) 21.1 (22.8)
RPA [2] 54.8 (68.2) 63.2 (76.3) 3.35 (3.80) 21.1 (22.4)
RPA + pair [2] 7.1 (16.0) 12.9 (22.7) 0.39 (0.77) 13.5 (15.2)
CRPA [3] 12.5 (13.9) 18.15 (19.28) 1.06 (1.06) 17.8 (18.2)
RPA [4] 50.0 55.1 2.09 19.2
QRPA [4] 42.9 52.0 1.97 20.3

PBCS 21.0 41.2 1.67 19.1
PQRPA (I) 9.9 21.6 0.72 14.6
PQRPA (II) 8.0 18.5 0.56 12.8
PQRPA (III) 8.1 17.4 0.56 13.4

Expt. 9.1 ± 0.4 ± 0.9 [36] 14.8 ± 0.7 ± 1.4 [36] 0.66 ± 0.1 ± 0.1 [37] 12.4 ± 0.3 ± 1.8 [37]
8.9 ± 0.3 ± 0.9 [38] 13.2 ± 0.4 ± 0.6 [38] 0.56 ± 0.08 ± 0.10 [39] 10.6 ± 0.3 ± 1.8 [39]

and inclusive µ-capture rates to 12B: Λ(Jπ
f = 1+

1 )

and
∑

Jπ
f
Λ(J π

f ). We do not show our QRPA results
because of the above mentioned difficulties with the
Jπ = 1+

1 ground states in 12N and 12B. In comparing
the calculations of B(GT) with data it should be
remembered that it is still not clear the origin of
the observed 10% difference measured f t values for
the GT β-decays from the ground states Jπ = 1+
in 12B and 12N to the ground state Jπ = 0+ in
12C: f t (12B) = (1.1669 ± 0.0037) × 104 seg, and
f t (12N) = (1.3178 ± 0.0084) × 104 seg [28]. In
the past this difference has been attributed mostly
to the violation of charge symmetry in the involved
nuclear states, and occasionally also to the second
class current (or induced tensor interaction) which
violates the G-parity [31–33].2 As this kind of effects
are not considered in the present work the above f t

values will be taken as lower and upper experimental
limits. The corresponding B-values, obtained from
(20) (BB(GT) = 0.526 and BN(GT) = 0.466) are
shown in Table 3. Due to the same reason, the small
difference (� 3%) between the theoretical results for
BB(GT) and BN(GT) is not physically relevant and
only the mean values (BB(GT) + BN(GT))/2 are
exhibited.

Similarly, in Table 4 are given the results for the ex-
clusive and inclusive flux-averaged neutrino scattering

2 Presently, the study of the G-parity irregular weak nucleon
current is still of interest [34,35].

cross sections to 12N: 〈σ�(J π
f = 1+

1 )〉,
∑

Jπ
f
〈σ�(J π

f )〉
with �= e,µ. They are defined as

(29)

〈
σ�(Jf )

〉 =
∫

dEν σ(E� =Ei −Ef +Eν,Jf )f̄ (Eν),

where f̄ (Eν) is the normalized neutrino flux. For
electron neutrinos it was approximated by the Michel
spectrum, and for the muon neutrinos we used that
from Ref. [40].

We wish to restate the ingredients that play a
part in the agreement between the data and calcula-
tions for the ground state processes within the triad
{12B, 12C, 12N}. They are: (a) the pairing short range
correlations, which are added to improve the descrip-
tion of the 12C ground state, (b) the RPA-type cor-
relations, which are repulsive in the particle–hole
channel, and (c) the effective axial-vector coupling
constant, gA = 1, which in principle simulates the re-
moval of the spin strength due to the coupling to the
∆ resonance [10–12,42]. For instance, these effects re-
duce the bare single-particle value B(GT)= (16/9)g2

A
by factors 1.7, 1.8–2.2 and 1.6, respectively. It is wor-
thy of note that the PBCS by itself reproduces better
the data than the majority of previous RPA and QRPA
calculations [1–4]. We have considered all orbitals
from 1s1/2 up to 1f5/2, but the valence p-shell cor-
relations (both pairing and RPA like) are definitely the
most important ones for the quenching of the 1+

1 ↔ 0+
1

transition rates. Yet, as discussed by Vogel et al. [3,
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Table 5
Results for the energies (in units of MeV) and the partial muon capture rates (in units of 103 s−1) the bound excited states in 12B. In the upper
part of the table are shown the previous theoretical calculations based on the RPA [1,41] (where only the results for Λ are reported) and the on
shell model [42]

Model Jπ
f

1+
1 2+

1 2−
1 1−

1

RPA [1,41] Λ 25.4 (22.8) � 10−3 0.04 (0.02) 0.22 (0.74)
SM [42] E 0.00 0.76 1.49 1.99

Λ 6.0 0.25 0.22 1.86

PBCS E 0.00 0.00 3.10 3.10
Λ 15.4 0.40 1.70 1.13

PQRPA (I) E 0.00 0.34 2.83 3.13
Λ 7.83 0.21 0.34 0.66

PQRPA (II) E 0.00 0.50 2.82 3.31
Λ 6.50 0.16 0.18 0.51

PQRPA (III) E 0.00 0.28 2.82 2.97
Λ 6.54 0.17 0.18 0.58

Expt [43,44] E 0.00 0.95 1.67 2.62
Λ 6.00 ± 0.40 0.21 ± 0.10 0.18 ± 0.10 0.62 ± 0.20

45], the effect of these correlations on the dipole and
quadrupole operators is very tiny.

In addition to the total µ-capture rates in Table 3,
we show the individual rates to the individual bound
states of 12B in Table 5. They represent another test for
our calculation and have been derived from the inten-
sities of the observed de-excitation γ rays following
the µ-capture [43,44]. The agreement between the ex-
periment and our PQRPA estimate for the energies of
the Jπ

f = 2+
1 ,2−

1 and 1−
1 states is only moderate, but

that for the capture rates is as good or even better than
in a recent shell model (SM) study [42].

In summary, we have shown that to account for the
weak decay observables around 12C in the framework
of the RPA, besides including the BCS correlations, it
is imperative to perform the particle number projec-
tion. Thus, this is the way out of the RPA puzzle in
12C. More, as far as we are acquainted with, such an
important effect of the projected linear response the-
ory for charge-exchange excitations has never before
been observed, indicating that it could be more rele-
vant in light N = Z nuclei than in heavy nuclei with
large neutron excess [5]. Thus, it could be interesting
enough to investigate the consequences of the PQRPA
in other N = Z and N ∼= Z nuclei. On the other hand,
the fact that we have been forced to switch off com-
pletely the residual interaction in the particle–particle
channel could indicate that some relevant piece of
physics is still lacking in our approach. In this sense

it would be very illuminating to redo the PQRPA cal-
culations with more realistic forces than the one used
here.

Acknowledgements

The authors acknowledge the support of ANPCyT
(Argentina) under grant BID 1201/OC-AR (PICT 03-
04296) and of CONICET under grant PIP 463. F.K.
and A.M. are fellows of the CONICET Argentina.

References

[1] E. Kolbe, K. Langanke, S. Krewald, Phys. Rev. C 49 (1994)
1122.

[2] N. Auerbach, N. Van Giai, O.K. Vorov, Phys. Rev. C 56 (1997)
2368.

[3] E. Kolbe, K. Langanke, P. Vogel, Nucl. Phys. A 652 (1999) 91.
[4] C. Volpe, N. Auerbach, G. Colò, T. Suzuki, N. Van Giai, Phys.

Rev. C 62 (2000) 015501.
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