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Abstract. — The dynamic and kinetic behavior of processes occurring in fractals with spatial
discrete scale invariance (DSI) is considered. Spatial DSI implies the existence of a fundamental
scaling ratio (b1). We address time-dependent physical processes, which as a consequence of
the time evolution develop a characteristic length of the form £ t'/% where z is the dynamic
exponent. So, we conjecture that the interplay between the physical process and the symmetry
properties of the fractal leads to the occurrence of time DSI evidenced by soft log-periodic
modulations of physical observables, with a fundamental time scaling ratio given by 7 = b5.
The conjecture is tested numerically for random walks, and representative systems of broad
universality classes in the fields of irreversible and equilibrium critical phenomena.

The understanding of the kinetic and dynamic behavior of the wide variety of phenomena
and processes, taking place in disordered and low-dimensional media, is a challenging issue
of increasing interdisciplinary interest [1,2]. The simplest and paradigmatic example is, most
likely, the effort devoted to the study of random walks [3]. However, many other examples
can also be quoted such as the dynamics of critical systems in condensed matter physics [2,4];
chemical reactions in catalysts, porous media, nano- and microcavities; annihilation reactions
of a wide diversity ranging from magnetic monopoles in the early stages of the Universe to
excitons in polymeric matrices [5]; epidemic propagation of diseases and forest fires in far from-
equilibrium systems [1,4, 6]; coarsening dynamics in many systems involving fluids, magnets,
and eventually the formation of opinion in social systems [4]; etc. In this letter we address
the subtle interplay between time-dependent processes and the symmetry properties of the
underlying structure or substrate where the considered process actually takes place. For this
purpose, fractal media that exhibit discrete scale invariance (DSI) [7] are considered. DSI is
a weak kind of scale invariance such that an observable O(x), obeys the scaling law

O(z) = p(b)O(bx), (1)

under the change x — bx. Here b is no longer an arbitrary real number, as in the case of
continuous scale invariance, but it can only take specific discrete values of the form b,, = (b1)",
where by is a fundamental scaling ratio. If an observable O(x) satisfies equation () for an
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arbitrary b, it necessary has to obey a power law of the type O(z) = Cx®, where « is an
exponent. But in the case of DSI, the solution of equation () yields

Ole) = a*F (11§§<(zi)>) ’ .

where F' is a periodic function of period one. The detection of soft oscillations in spatial
domain [7] is a signature of spatial DSI. Let us consider physical processes that develop
a time-dependent characteristic length £(¢) that increases monotonically, and analyze the
behavior of kinetic or dynamic observables, O(t), which characterize these physical processes.
If a biunivocal t = f(€) relationship holds, we conjecture O(€) = O((€)) to obey spatial DSI
of the form

O(&) = u(b7)O(b7%)- (3)
Now, if we assume that & oc t'/#, where z is a dynamic exponent, it is straightforward to show
that O(t) has to obey time DSI. In fact, by using equation ) for O(&) and replacing £ by its
explicit time dependence, one has

O“)_C%MZF(¢+W$iZ%>’ (4)

where C and ¢ are constants. So, if our conjecture given by equation ([B)) is correct, we would
expect to obtain a logarithmic periodic modulation of time observables characterized by a
time-scaling ratio 7 given by

T =105 (5)

A relationship between spatial and time DSI was implicitly suggested in connection with
the behaviour of earthquakes on a pre-existing hierarchical fault structure [8] and by ourselves
in order to account for the dynamic behaviour of a magnet on a fractal substrate [9]. This
relationship has also been established in the mathematical literature for the case of a random
walk on Sierpinski graphs [10]. In this letter we propose the conjecture given by equation(B])
to obtain an explicit relationship between spatial and time DSI according to equation(H).
Furthermore, we test our conjecture for three paradigmatic cases in detail, namely i) the
behavior of a single random walk and the diffusion-controlled reaction among random walkers
[3,5], ii) the contact process as an archetype of an epidemic process exhibiting irreversible
critical behavior [4,6,11], and iii) the Ising model that represents a broad universality of
reversible (equilibrium) critical phenomena [12].

While equations @) and (@) are expected to hold for processes occurring in all substrate
exhibiting spatial DSI, for the sake of simplicity in this paper we have simulated physical
processes on Sierpinski Carpets (SC), which have both infinite and finite ramification orders
(IR and FR, respectively), and fractal dimensions within the interval 1.631 < dp < 1.975. In
order to build up a generic SC (SCIR(b,c) or SCFR(b,c)), a square in d = 2—dimensions is
segmented into b? subsquares and ¢ of them are then removed, and this segmentation process
is iterated on the remaining subsquares a number k of segmentation steps. DSI may become
evident by measuring some topological property of the fractal, such as the average number of
sites belonging to the fractal as a function of the distance to the origin [13], e.g. see figure Il

Relevant kinetic observables of random walks are the average number of distinct sites
visited after N steps (Sy) and the mean square displacement from the origin (R?), given by

Sn(t)oct®/? and  R%(t) o t”, (6)
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Fig. 1 — Plot of the number of particles of the fractal located within a distance R from the origin 7,
(m(R,ro)), as a function of R. Notice that the vertical axis has been normalized by using the results
of the standard power-law fit with an exponent given by the fractal dimension dr = In(8)/In(3). For
the oscillation, the fit (shown by a continuous line) yields a frequency given by w = 27 /log(3), and
involves up to the 5" harmonic. The generating cell of the SCIR/(9,8) is shown in the top-left corner.

respectively [3,5]. Here we have taken N o ¢, while ds is the spectral dimension and v is
the random walk exponent. For homogeneous media in dimensions d > 2 one has d; = 2 and
v = 1 leading to classical (standard) diffusion. However, for d < 2 one has ds; < 2, and the
diffusion is anomalous, as diffusion controlled annihilation reactions (such as e.g. A+ A — 0)
that no longer obey the classical textbook equation for a second-order reaction, but instead
are described by the following anomalous rate equation [5]

d/:l—(t) = _kop(t)xvp -0, (7)

t

where p is the density of reacting walkers, k, is the rate constant, and the anomalous reaction
order is given by X = 1+2/d; [5]. FiguresBa), (b), and (c) show log-log plots of Sy, R? and
p versus t (notice that after a simple integration, equation (@) yields p t—ds/ 2), respectively.
Results are averaged over ng different configurations. The soft oscillatory modulations of the
power-law behavior of these observables become more evident after a proper normalization, as
shown in the insets of figure[2 Table I summarizes the results obtained by fitting the data with
equation @) up to the 2"? harmonic. An excellent agreement (within error bars) between the
relevant parameters is obtained: the exponent d,, evaluated for a single walk, agrees with the
result corresponding to the annihilation reaction; the period of the oscillation is independent
of the observable as is the exponent z obtained by applying equation (@). Furthermore, by
comparing equations (@) and (@), and taking R?(t) o< £(¢)?, it follows that z = 2/v, so that
the evaluation of R?(t) provides an independent test for the conjectured relationship given by
equation (B, (see the 5! column of Table I). The contact process (CP) [4,6,11], is a model
for the spreading of an epidemic. It is a one-component non-equilibrium lattice model with
spontaneous annihilation and autocatalytic creation of particles. In the CP each site is either
vacant or occupied by a single particle. Particles are annihilated at a rate p, independent of the
states of other sites, and vacancies become occupied at a rate M/Z, where M is the number of
occupied nearest-neighboring (NN) sites, and Z is the total number of NN sites. The vacuum
state of the CP is absorbing and it is reached for p exceeding a critical threshold ( p > p.). For
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Fig. 2 — Log-log plot of (a) Sn(t), (b) R*(t), and (c) p(t) versus t, respectively. Results obtained for
random walks on the SCFR(5,10) shown in (a). Each of the insets shows, on a linear-log scale, the
oscillatory modulation of the corresponding main panel, after previous subtraction and subsequent
normalization by the fitted power law. These quantities are denoted by Y;,,m = 1,2 and 3, as taken
form the upper to the lower panel, respectively.

p < p. the state is fluctuating with an stationary propagation of the activity. So, just at p. one
has a second-order irreversible phase transition (IPT). IPTs are often characterized by means
of dynamic (epidemic) measurements that allow avoiding undesired finite-size effects [4,11].
Epidemic measurements are started with a configuration very close to the absorbing state,
e.g. the vacuum state with a single particle in the center of the sample for the case of the
CP [11]. Subsequently, one measures the average number of particles (N(t)) at time ¢, the
probability that the system has not entered into the absorbing state (P(t)) at time ¢, and the
average mean-square distance of spreading (R?(¢)). In order to obtain appropriate statistic
one has to perform many epidemic runs (typically we performed N, ~ 4 x 10* different runs).
From the scaling Ansatz of IPTs it follows that, at criticality, the quantities defined above

TABLE I — Results obtained for random walks by fitting the data shown in figure[d by means of equation
[@). The dynamic exponents are obtained by using equation (@) with b1 = 5. More details in the text.

Observable Exponent log(7) z 2/v
Snv(t)  d. = 1.342(4) 1.785(15) 255(2)
p(t) de = 1.350(8)  1.72(3)  2.46(4)  —
R%(t) v = 0.809(3) 1.75(4)  2.50(6) 2.47(1)
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TABLE II — Results obtained by performing epidemics in the fractals listed in the first column. The
logarithmic period, and the dynamic exponents obtained by using equation [@), for the different ob-
servables, are listed in subsequent columns.

SCIR  log(T)n z log(T)p z log(T) g2 z 2/ze
(3,1) 0882(9) 1.85(2) — - 087(2) 1.83(4) 1.91(1)
(4,4)  1.122(4) 1.863(7) 1.18(2) 1.96(3) 1.12(2) 1.86(4) 1.867(5)
(6,16) 1.415(16) 1.82(2) 1.41(2) 1.81(2) 142(2) 1.83(2) 1.835(5)

obey, in nonfractal d—dimensional spaces, power-law behaviors of the form
N(t) < t7,(a) P(t) oct™°,(b) and R%(t) o t*<, (c) (8)

where 7, 0, and z. are the critical exponents. (Notice that, for the sake of clarity, we have used
v in equation (@) and z. (equation @(c)) for the exponent of the mean square displacement
of the randon walk and the epidemics, respectively.) FiguresBl (a) and (b) show that log-log
plots of N (t) and R?(t) versus t exhibit soft log-periodic oscillations modulating the power-law
behavior given by equations [§)(a) and (c), respectively. By fitting N(¢) with a modulated
power law of the type given by equation [@]), we can easily identify the critical threshold and
decouple the oscillations, as shown in the inset of figure B(a). Also, for R?(t), with the aid of
equation () (c) we obtained z. as listed in Table II. As in the case of the random walk, one has
that z = 2/z., so that the epidemic study allows us to perform independent measurements of
the dynamic exponent, see Table III. By considering the error bars, all results corresponding to
the CP, which are summarized in Table II, show excellent agreement: the period is independent
of the observable, as are the values of z, and the independent measurements of z are consistent.

The Ising model is a lattice system where each site ¢ is occupied by a two-state spin
variable o; = +1 [12]. In the absence of external magnetic fields, the Hamiltonian (H) is
given by H = —J Zfﬁ-/:l 0,0y, where J > 0 is the coupling constant and the summation
runs over nearest neighbor sites. In d > 1 dimensions the Ising model exhibit a continuous
phase transition between a ferromagnetic and a paramagnetic phase, which has become the
archetypical example for the study of critical phenomena. By starting from a fully ordered
configuration with magnetization M = 1, corresponding to the ground state at T' = 0, after
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Fig. 3 — Data corresponding to the CP. (a) Log-log plots of the number of active sites versus time
obtained for different values of p. In the left-top corner we show the generating cell. (b) Log-log plots
of R? versus time obtained at criticality. The insets show the modulating function.
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TABLE III — Critical exponent %, oscillation logarithmic period and dynamic exponent z for the Ising
model on several Sierpinski Carpets.

SC Vﬁ log(T) z
SCIR(5,1) 0.0508(4) 1.61(4) 2.30(6)
SCIR(3,1)  0.0341(1) 1.28(3) 2.69(6)
SCIR(4,4)  0.0110(1)  2.16(1) 3.59(1)
SCIR(5,9) 0.00214(5) 3.47(2) 4.97(3)

quenching to the critical point one observes a relaxation of the form M (t) t=B8/v% where g
and v are the order parameter and correlation length critical exponents, respectively. We have
shown that the relaxation of M (t) exhibits clear evidence of a log-periodic modulation, in the
case of the SCIR(4,4) [14] and SCIR(3,1) [9]. We now assume that the observed behavior
can be understood in terms of time DSI, allowing us to evaluate z. Furthermore, we have
performed additional simulations for different fractals, which are summarized in Table III.

Summing up, we have well established a relationship between discrete scaling symmetry
invariance, as it is present in fractal structures, and a corresponding symmetry in the time
domain for the kinetic and dynamic evolution of different physical systems defined in such
structures. We conjecture that the relationship can be obtained by making time observables
satisfy spatial DSI symmetry, when they are expresed in terms of the growing length, which
characterizes the time evolution. We have also shown that our conjecture implies the presence
of time logarithmic oscillations of period 7, linked to the fundamental scaling ratio of the
fractal (b1) and the dynamical exponent (z) (equation (). For the sake of simplicity, we have
tested numerically our conjecture for relevant archetypical cases on SC substrates. However,
our arguments are valid for any fractal exhibiting spatial DSI.
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