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Abstract. What is the origin of the sharp slowdown displayed by glassy
systems? Physical common sense suggests there must be a concomitant growing
correlation length, but finding this length has been nontrivial. In random first-
order theory, it is given by the size of amorphous excitations, which depends
on a balance between their mutual interfacial energy and their configurational
entropy. But how these excitations disappear when crossing over to the normal
high temperature phase is unclear, chiefly due to lack of data about the surface
tension. We measure the energy cost for creating amorphous excitations in a
model glass-former, and discover that the surface tension vanishes at a well-
defined spinodal energy, above which amorphous excitations cannot be sustained.
This spinodal therefore marks the true onset of glassiness.
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It is only recently that a static growing correlation length ξ has been clearly detected in
glass-forming liquids [1, 2], by measuring a point-to-set correlation function [3, 4]. The
idea is the following: consider a liquid region of size R subject to amorphous boundary
conditions provided by the surrounding liquid frozen into an equilibrium configuration.
The external particles act as a pinning field favoring internal configurations which best
match the frozen exterior. Clearly, the effect of the border on the innermost part of the
region becomes smaller as R grows larger. Less trivially, on lowering the temperature
the effect of the amorphous boundary conditions propagates deeper into the region.
More precisely, if we measure some correlation (or overlap) qc(R) between the initial
configuration of the region and that reached at infinite time under the effect of the
amorphous boundary conditions, the decay of qc(R) is slower with lower T [1, 2], which
shows the existence of an increasing static correlation length ξ. qc(R) is the point-to-
set correlation function. Interestingly it displays a strongly non-exponential decay at
low temperature, which is a unique thermodynamic landmark of the deeply supercooled
phase [2] and finds an explanation in the context of random first-order theory (RFOT).

According to RFOT, the decay of qc(R) is regulated by the competition between a
surface energy cost, Y Rθ, tending to keep the region to the same amorphous state as the
external configuration, and a configurational entropy gain, TΣRd, favoring a transition
to another of the exponentially many metastable amorphous states, N (R) ∼ exp(RdΣ),
available to the region [5]. The cost/gain terms balance at R = ξ ≡ (Y/TΣ)1/(d−θ): for
R < ξ the surface cost YcR

θ keeps the region in the same state as the external environment;
for R > ξ the entropic gain TΣRd dominates and the region is free to rearrange. RFOT
therefore identifies the scale of the decay of qc(R) with the typical size ξ of the rearranging
regions, and this is the static correlation length. Note that ξ is also the largest scale over
which it is sensible to define a metastable state: a state defined over a region much larger
than ξ is unstable against fragmentation into amorphous excitations of typical scale ξ.

The existence of many amorphous excitations is central to the mechanism of relaxation
of RFOT. But for such nontrivial excitations to exist, a nonzero surface tension is
necessarily required. Moreover, the regime of validity of RFOT is bounded by a spinodal
mechanism. While at mean-field level the spinodal transition corresponds to the point
where metastable states disappear [6], RFOT predicts that it is instead the surface tension
Y between finite dimensional amorphous excitations that vanishes at temperatures higher
than some spinodal value [7], loosely identified with the mode coupling temperature [8].
The aim of this work is to measure the surface tension between amorphous excitations
and to test the validity of the spinodal scenario. We expect however that such a scenario
may become very sharp only when choosing energy rather than temperature as the control
parameter. We will show that, with this choice, a spinodal transition is indeed present.

The determination of the surface free energy, between the amorphous excitations, is
very challenging, first, because the interfaces are hard to detect, and second, because their
lifetime is necessarily finite. Excitations are constantly forming and relaxing: this is the
relaxation mechanism of RFOT, through which the whole liquid state is slowly explored.
The study of the time evolution of the surface tension of artificially created excitations
within equilibrium configurations allows one to gain some physical insights about the
relation between the free energy needed to create them and their shape [9]. As a drawback,
one needs to introduce the lifetime of such excitations as an extra parameter. This time
dependence of the results makes the analysis quite onerous. Here we focus instead on the
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surface tension of inherent structures (ISs), i.e. local minima of the potential energy [10].
Although the IS approach measures internal energy rather than free energy, and though
the numerical value of the surface tension may change due to the approximation, the
existence of the putative spinodal point should not depend on the fact that we discard
entropy. The big advantage of ISs is the possibility of defining a control parameter
appropriate for studying a spinodal that would otherwise be very hard to detect. We
expect in fact that temperature will not fundamentally change this picture, but merely
blur it. Moreover, we shall show that the spinodal point is very close to the threshold
energy below which minima start to dominate the energy landscape [11, 12]. Thus within
the range of energies under study here the ISs approximate well enough the thermal
configurations. In systems with a non-analytic potential such as hard spheres an inherent
structure corresponds to a collectively jammed configuration, and different strategies for
computing their properties have been proposed (see for example [13]). In this case, density
instead of energy would be the control parameter.

We consider a set of ISs obtained by minimizing equilibrated instantaneous
configurations of a model soft-sphere glass-former9. Our lowest working temperature
is T = 0.89 Tc (Tc is the mode coupling temperature [8]). Given a pair α and β of ISs,
we exchange between them all particles located within a sphere of radius R. We then
minimize the two configurations thus obtained to produce two new ISs. Each of them
is a hybrid minimum, resembling the parent minima far from the surface of the sphere
but rearranged close to it (figure 1). Note that the hybrid configuration is nevertheless
a typical IS of the system: the only reason that we are able to visualize the interface is
that we know a priori the shape and position of the excitation and we can use the parent
configurations as references for calculating the overlap.

For each hybrid IS we compute the surface energy Es
αβ as Es

αβ = Eαβ−Eint
β −Eext

α , with

the parent IS contribution Eext/int =
P

i,j:|ri|≷R vij(ri − rj). Figure 2 shows the sample-
averaged surface energy, Es, versus R for several temperatures. There is a well-defined
relationship between surface energy and size, regulated by the temperature: at fixed R,
Es increases with decreasing T . The data do not correspond to a single power-law scaling,
so we propose

Es = Y∞Rθ − δRω, (1)

where Y∞ is the asymptotic surface tension and ω < θ. The sub-leading δRω correction
is quite natural. It is present in liquids (with ω = 1) due to curvature effects [14], and in
disordered systems, where it may arise either from bulk contributions, as in the random

9 The system is a 3D soft-sphere binary mixture [21]. Particles are of unit mass and belong to one of two species
μ = 1, 2, present in equal amounts and interacting via a potential

V =
NX

i>j

vij(|ri − rj |) =
NX

i>j

�
σμ(i) + σμ(j)

|ri − rj |
�12

,

where the radii σμ are fixed by the conditions σ2/σ1 = 1.2, (2σ1)
3 + 2(σ1 + σ2)

3 + (2σ2)
3 = 4`30, and `0 is the

unit of length. The particle density is ρ = N/V = l−3
0 . A smooth long-range cut-off is imposed by setting

vij(r) = Bij(a− r)3 +Cij for r > rc =
√

3 and vij(r) = Cij for r > a, where a, Bij , and Cij are fixed by requiring
continuity up to the second derivative of vij(r). Temperature is measured in units of energy. Simulations were
done with a Metropolis Monte Carlo method with particle swaps [22]. The mode coupling temperature Tc for
this system is Tc = 0.226 [23]. N = 16384 particles were considered in a box of length 25.4. Minimization of
instantaneous configurations was done with the LBFGS algorithm [24].
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Figure 1. Overlap between the configuration right after the exchange of the
spheres and the hybrid inherent structure after minimization. Only a thin slice
located at half the height of the 3D system is shown. Colors code for the
displacement of the particle after the artificial excitation was created (dark blue:
small displacement, high overlap; light blue: large displacement, small overlap).
Upper panel: two configurations at high temperature T = 1.33Tc. Lower panel:
two configurations at low temperature T = 0.89Tc. The hybrid minimum clearly
bears memory (high overlap, dark blue) of the parent ISs far from the boundary
of the sphere (white circle). On the other hand, particles move the along the
interface (low overlap, light blue).

field Ising model [15], or from interface roughening that lowers the surface energy, as in
the random bond Ising model [16].

We must choose the exponents of equation (1) with some criterion, because the
nonlinear fit with four parameters is marginally stable, and many sets of parameters
give good fits. Our data strongly suggest the conservative choice θ = 2, which seems
to describe the large R behavior better than the alternative θ = 3/2 predicted by a
wetting argument [17, 18]. The value θ = 2 is also found in spin models with finite range
interactions [19]. To fix ω, we take equation (1) as valid for the whole population of surface
energies (instead of just the average), and ascribe all fluctuations of Es

αβ the quantity

δαβ =
Y∞R2 − Es

αβ

Rω
. (2)
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Figure 2. Es versus excitation radius R at various temperatures. Full lines are
fits using equation (1), with θ = 2 and ω = 1.5. Dotted lines show the power
laws with exponents 2 and 3/2 for reference. Error bars are smaller than symbol
size.

We then fix ω at the value which makes the variance Var[δ(ω)] independent of R. This is
a typical behavior in disordered media [15, 16, 20] and finds some confirmation here from
the violation of the central limit theorem shown by the variance of Yαβ at large R (see
figure 5, inset). This procedure gives ω = 1.5(2).

With θ and ω thus fixed, equation (1) fits the Es(R) data very well (figure 2), and we
obtain the asymptotic surface tension Y∞ as a function of the temperature T (figure 3,
top). We find that Y∞ decreases for increasing T , and becomes quite small above Tc.
This behavior makes sense, indicating that amorphous excitations become softer as the
temperature is raised. This is indeed what we expect physically as the system moves
towards a spinodal point. Yet, the decrease of the surface tension is rather smooth, so
it is hard to sharply define a spinodal temperature. Since Tc roughly corresponds to the
point where activated processes become important for the relaxation of the system, one
might expect the spinodal and Tc to coincide [7]. However, our numeric data show that
this is not really the case: even though Tc is definitely within the range of temperatures
where Y∞ is becoming negligible, amorphous excitations with nonzero surface tension exist
even above Tc. On the other hand, the onset of glassiness is never sharp in temperature.
However, taking energy rather than temperature as a control parameter, a well-defined
spinodal point clearly emerges: the Y∞ versus eIS(T ) curve is nearly linear (figure 4, left),
and Y∞ vanishes at an energy eth.

It is quite interesting to note that eth is very close to the threshold energy, i.e. the value
below which minima start to dominate the energy landscape [11, 12]. More precisely, the
threshold is defined as the point where the instability index of saddles vanishes (figure 4,
right). Hence, the true spinodal point of amorphous excitations, fixing the upper limit
of stability of the RFOT mechanism, is the very same energy eth where a topological
transition from saddle to minima takes place. This sharp transition in phase space,
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Figure 3. Upper panel: Y∞ as a function of the quenching temperature of
the inherent structures. The vertical dotted line marks the mode coupling
temperature. The surface tension decreases on increasing T , although too
smoothly to indicate a sharp spinodal temperature. Lower panel: inherent
structure energy as a function of the quenching temperature.

namely the vanishing of the saddle index from above and of the surface tension from
below, becomes a smooth crossover when studied as a function of temperature. Our
result therefore indicates that energy, and not temperature, is the control parameter of
the glass transition and that eth truly marks the onset of glassiness: below the threshold
energy unstable saddles give way to stable minima, and a nonzero surface tension develops,
making it possible to sustain local amorphous excitations, whose relaxation is responsible
for the sharp increase of the relaxation time.

We next compute the distribution of the single-sample surface tension,

Yαβ ≡ Es
αβ

R2
. (3)

Numerical results [1] are inconsistent with the original version of RFOT, which assumes a
single value of Y for all pairs of amorphous excitations, so a generalized RFOT has been
proposed which assumes the existence of a broad distribution of Y [2] when considering
different pairs of ISs. The distribution P (Y, R, T ) for two values of R is shown in figure 5.
The first thing that we notice is that the distribution is quite broad. This confirms
the main assumption of generalized RFOT, reconciling the theory with the numerical
data. If surface tension had a single value, a region smaller than ξ would not be able
to rearrange, so a non-fluctuating surface tension implies a sharp drop of the point-to-
set correlation qc(R) at R ∼ ξ. With a fluctuating surface tension, on the other hand,
any region can decorrelate, provided there are target excitations with surface tension
Y < TΣRd−θ. Our finding is thus consistent with the smooth decay of the correlation
observed numerically [1, 2].
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Figure 4. Left: Y∞ (squares) versus parent IS energy. Right: intensive saddle
instability index k (circles) versus IS energy (data from [12]). Lines are linear
fits. Both the surface tension and the instability index seem to vanish at a similar
energy, the threshold eth, which is therefore the spinodal point.

Figure 5. Normalized histograms of the surface tension for T = 0.89Tc at two
values of R. The values of Y are computed for all the hybrid ISs at a given R via
the equation (3). Note that this distribution does not depend on the exponent
ω and that its average tends to Y∞(T ) for R → ∞. The distribution narrows
on increasing R. Solid lines are fits to P (Y ) = −d/dY exp [−(Y/yc)ν ]. Inset:
variance of Yαβ versus R. At large R its decay is clearly slower than 1/R2. Note
that Var[Yαβ ] = Var[Y∞] + Var[δαβ ]/R4−2ω . For Var[δαβ ] independent of R and
ω ∼ 3/2, Var[Yαβ] ∼ 1/R, compatible with our data.
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The second important result is that the distribution narrows as R grows. Since the
relevant length scale is ξ(T ), we may assume that the physical properties depend only on

P (Y, T ) ≡ P (Y, R = ξ(T ), T ). (4)

This P (Y, T ) narrows as T decreases, because ξ(T ) grows. But P (Y, T ) is related to
qc(R, T ) by [2]

qc(R, T ) =

Z ∞

TΣRd−θ

P (Y, T ) dY, (5)

so when T decreases, the decay of qc(R, T ) sharpens, in qualitative agreement with the
numerical finding of [2].

The distribution is well fitted by P (Y ) = −d/dY exp [−(Y/yc)
ν ] [2] (see figure 5).

The complementary cumulative distribution qc(y) ≡ R ∞
y

dY P (Y ) is then qc(y) ∼
exp[−(y/yc)

ν ]. This is the same functional form as was used in [2] to fit the decay of
the point-to-set correlation10. At the lowest temperature T = 0.89 Tc a fit of qc(y) yields
ν ≈ 4.2(1), encouragingly close to the value 4.0 ± 0.6 of [2]. This agreement between two
completely different protocols puts the generalized RFOT on a firmer basis.

The present study provides evidence for the existence of amorphous excitations in
glass-forming liquids, and of a surface tension distribution between such excitations with
the properties required by a generalized RFOT. The average surface tension vanishes
at eth, meaning that a spinodal mechanism prevents these excitations from existing for
configurations whose corresponding IS energy is higher than eth. We stress once more
that the spinodal transition is only visible if we choose energy, rather than temperature,
as a control parameter. Therefore, using ISs rather than thermal configurations is not an
arbitrary approximation, but rather a necessary condition for the surface tension analysis
to be fruitful. The fact that the distribution of Y broadens for e → eth implies that the
transition will look smooth: instead of disappearing abruptly (as in the mean field [6]),
metastable states slowly fade out, because excitations are becoming less and less costly
on average and because states are slowly merging with each other.
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