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Abstract

We study a non-local version of the sine-Gordon model connected to a many-body system with
backward and umklapp scattering processes. Using renormalization group methods we derive the
flow equations for the couplings and show how non-locality affects the gap in the spectrum of
charge-density excitations. We compare our results with previous predictions obtained through the
self-consistent harmonic approximation.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In general, Quantum Field Theories have been built in the context of local models. How-
ever, there exist physical situations that lead to non-local interactions in a straightforward
way. Let us mention, for instance, Wheeler and Feynman’s description of charged parti-
cles [1], string theories with non-local vertices [2], and non-local kinetic terms that appear
when bosonizing fermions in 2+1 dimensions [3,4]. As we shall see, several recently con-
sidered non-local field theories are related to the study of electronic systems in one spatial
dimension (1D) [5,6]. Indeed, in recent years the physics of 1D systems of strongly corre-
lated particles has become a very interesting subject since one can take advantage of the
simplicity of the models at hand and, at the same time, expect to make contact with exper-
iments. For instance, the recently discovered carbon nanotubes are perfect experimental
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realizations of 1D conductors [7]. On the other hand, as the dimensionality of a system
decreases, charge screening effects become less important and the long-range interaction
between electrons is expected to play a central role in determining the properties of the
system. In fact, from a theoretical point of view the effects of long-range interactions have
been recently discussed in connection to several problems such as the Fermi-edge singular-
ity [8], the insulator-metal transition [9], the role of the lattice through umklapp scattering
and size dependent effects [10], etc. In the specific context of carbon nanotubes, a low-
energy theory including Coulomb interactions has been also recently derived and analyzed
[11]. Non-local fermionic models have been also used in the study of fluctuation effects in
low-dimensional Spin–Peierls systems [12].

As shown in [13], starting from a non-local and non-covariant version of the Thirring
model [14], in which the fermionic densities and currents are coupled through bilocal,
distance-dependent potentials, one can make direct contact with the “g-ology” model
[15] currently used to describe different scattering processes characterized by coupling
functions g1, g2, g3 and g4. When one bosonizes this theory by either operational or
functional methods, due to the contributions of g1 (backscattering) [16] and g3 (umklapp)
[17] one finds an even more drastic departure from the local case. Indeed, instead of the
well-known integrable sine-Gordon model (SG) one gets a non-local extension of it, which,
as far as we know, is not exactly solvable. Recently, in Ref. [13], the physical content of this
model was explored by using the self-consistent harmonic approximation (SCHA) [18]. As
it is well known the SCHA is a non-controlled approximation, i.e., there is no perturbative
parameter involved. It is then desirable to have an alternative analysis of this problem.
This is the main motivation of the present work. We will apply the renormalization group
(RG) technique [19], usually employed in local cases, to the non-local sine-Gordon model
(NLSG) mentioned above. For simplicity we shall assume that non-locality plays a role
only in umklapp interactions (g3) whereas all other potentials are local, i.e., proportional
to delta functions. In Section 2 we briefly show how the NLSG action is obtained from the
non-local Thirring model. In Section 3 we derive the RG equations and compute the gap
in the charge-density spectrum. This allows us to determine the effect of non-contact g3
couplings. Finally, in Section 4, we discuss our results.

2. The model

Let us sketch the derivation of the NLSG action. We start from the fermionic (1 + 1)-
dimensional Quantum Field Theory with Euclidean action given by

(2.1)S = S0 + Sf s + Sbs + Sus,
where

(2.2)S0 =
∫
d2x �Ψ i/∂Ψ

is the unperturbed action associated to a linearized free dispersion relation. The contribu-
tions of the different scattering processes can be written as∫
(2.3)Sf s = −g
2

2
d2x d2y (�ΨγµΨ )(x)V(µ)(x, y)(�ΨγµΨ )(y)
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and

(2.4)Sbs + Sus = −g
′2

2

∫
d2x d2y (�ΨΓµΨ )(x)U(µ)(x, y)(�ΨΓµΨ )(y),

where the γ ′
µs are the usual two-dimensional Dirac matrices and Γ0 = 1, Γ1 = γ5. The

coupling potentials V(µ) and U(µ) are assumed to depend on the distance |x − y| and can
be expressed in terms of “g-ology” parameters as

(2.5)V(0)(x, y)= 1
g2 (g2 + g4)(x, y),

(2.6)V(1)(x, y)= 1
g2 (g2 − g4)(x, y),

(2.7)U(0)(x, y)= 1
g′2 (g3 + g1)(x, y),

(2.8)U(1)(x, y)= 1
g′2 (g3 − g1)(x, y).

In the above equations g and g′ are just numerical constants that could be set equal to
one. We keep them to facilitate comparison of our results with those corresponding to the
usual Thirring model. Indeed, this case is obtained by choosing g′ = 0 and V(0)(x, y) =
V(1)(x, y)= δ2(x − y). On the other hand, the non-covariant limit g′ = 0, V(1)(x, y)= 0
gives one version (g2 = g4) of the TL model [20].

The terms in the action containing g2 and g4 represent forward scattering events, in
which the associated momentum transfer is small. In the g2 processes the two branches
(left- and right-moving particles) are coupled, whereas in the g4 processes all four
participating electrons belong to the same branch. On the other hand, g1 and g3 are related
to scattering diagrams with larger momentum transfers of the order of 2kF (bs) and 4kF
(us) respectively (this last contribution is important only if the band is half-filled). For
simplicity, throughout this paper we will consider spinless electrons. The extension of our
results to the spin-1/2 case with spin-flipping interactions, though not trivial, could be done
by following the lines of Ref. [21].

At this point we consider the partition function Z expressed as a functional integral over
fermionic variables. The implementation of a generalized Hubbard–Stratonovich identity
[6] allows to write Z in terms of a fermionic determinant. Although this determinant is
highly non-trivial, one can combine a chiral change in the fermionic path-integral measure
with a formal expansion in g′ in order to obtain a bosonic representation (see Ref. [13] for
details). One thus establishes an equivalence between the original fermionic action and the
following bosonic action depending on five scalars Φ , η, C0, C1 and ϕ:

Sbos =
∫

d2p

(2π)2

[
Φ(p)Φ(−p)A(p)+ η(p)η(−p)B(p)+Φ(p)η(−p)C(p)

+ ϕ(p)ϕ(−p)p
2

2

]
1
∫

+
2

d2x d2y Cµ(x)U
−1
(µ)(x, y)Cµ(y)
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(2.9)+ g′Λc
π

∫
d2x

[
C(0)(x)f0(x)+ iC(1)(x)f1(x)

]
,

where

(2.10)A(p)= 1
2

[
p2

0V̂
−1
(1) (p)+ p2

1

(
V̂−1
(0) (p)+

g2

π

)]
,

(2.11)B(p)= 1
2

[
p2

0V̂
−1
(0) (p)+ p2

1

(
V̂−1
(1) (p)−

g2

π

)]
,

(2.12)C(p)= p0p1

(
V̂−1
(0) (p)− V̂ −1

(1) (p)+
g2

π

)
,

and

(2.13)f0(x)= cos
((√

4π ϕ − 2igΦ
)
(x)
)
,

(2.14)f1(x)= sin
((√

4π ϕ − 2igΦ
)
(x)
)
.

Since the integrals in C0 and C1 are quadratic these fields are easily integrated out and
one gets

(2.15)Z =N
∫

DΦDηDϕe−Seff[Φ,η,ϕ]

with

(2.16)Seff[Φ,η,ϕ] = S0 + Sint,

where

S0 =
∫

d2p

(2π)2

[
Φ(p)Φ(−p)A(p)+ η(p)η(−p)B(p)+Φ(p)η(−p)C(p)

(2.17)+ ϕ(p)ϕ(−p)p
2

2

]
,

Sint = − (Λc)
2

2π2

∫
d2x d2y g1(x, y) cos

[√
4π
(
ϕ(x)− ϕ(y))− 2ig

(
Φ(x)−Φ(y))]

(2.18)

− (Λc)2

2π2

∫
d2x d2y g3(x, y) cos

[√
4π
(
ϕ(x)+ ϕ(y))− 2ig

(
Φ(x)+Φ(y))].

It is now convenient to diagonalize the quadratic part of the effective action by
introducing the fields ζ , χ and φ:

(2.19)Φ = iζ

g̃
+ 2ig̃Bp2

∆+ 2Bg̃2p2 φ,

(2.20)η= −iC
2Bg̃

ζ − ig̃Cp2

∆+ 2Bg̃2p2 φ + 1
g̃
χ,
(2.21)ϕ = −ζ + ∆

∆+ 2Bg̃2p2 φ,
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where we have defined g̃2 = g2/π and ∆(p)= C(p)2 − 4A(p)B(p). We then obtain

S0 = 1
2

∫
d2p

(2π)2

[
ζ(p)

(
p2 + ∆

2Bg̃2

)
ζ(−p)+ χ(p)2B

g̃2 χ(−p)

(2.22)+ φ(p) p2∆

∆+ 2Bg̃2p2 φ(−p)
]
,

Sint = − (Λc)
2

2π2

∫
d2x d2y g1(x, y) cos

√
4π
[
φ(x)− φ(y)]

(2.23)− (Λc)2

2π2

∫
d2x d2y g3(x, y) cos

√
4π
[
φ(x)+ φ(y)].

One can see that the ζ and χ fields become completely decoupled from φ. Moreover, it
becomes apparent that the φ-dependent piece of the action Sint is the only one containing
potentially relevant contributions (i.e., gapped modes).

3. RG treatment of the non-local umklapp coupling

In this section we shall focus our attention on the non-local action derived above. For
simplicity, from now on we will consider the case in which g2(p) and g4(p) are constants
(local forward scattering) and g1 = 0, g3 �= 0, i.e., a pure non-local umklapp interaction.
Thus, we start from the action

S[φ] =
∫

d2p

(2π)2
φ(p)

F (p)

2
φ(−p)

(3.1)− (Λc)2

2π2

∫
d2x d2y g3(x, y) cos

√
4π
[
φ(x)+ φ(y)]

with

(3.2)F(p)= 1
Kv

(
p2

0 + v2p2
1
)
,

(3.3)K =
√

1 + g4/π − g2/π

1 + g4/π + g2/π
,

(3.4)v =
√(

1 + g4

π
+ g2

π

)(
1 + g4

π
− g2

π

)
,

where we have now expressed all formulae in terms of g coupling functions. In the local
case (g3 = δ2(x − y)) the action (3.1) corresponds to the well-known sine-Gordon model,
which is an integrable, exactly solvable field theory. In particular, a RG analysis shows
that the “stiffness constant”, K has to be lower than 0.5 in order to have a relevant cosine
interaction, i.e., to have a gap in the spectrum. Recently, by reinterpreting Bethe ansatz

results, Zamolodchikov obtained the exact expression for this gap [22]. Unfortunately, as
far as we know, the present non local version of the theory is not exactly soluble and one
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is then forced to consider an approximation. In Ref. [13] a SCHA was employed in order
to estimate the energy gap. But this is a non-controlled, non-perturbative approximation.
Besides this general disadvantage, the implementation of the SCHA technique led to a
set of coupled algebraic equations that could be numerically solved only for very weak
non-locality. It is then natural to try another method to attack the problem and eventually
improve the approximation. Let us consider the Wilsonian approach to the RG (see, for
instance, [19]). First of all we restrict our analysis to a non-local interaction of the form:

(3.5)g3(x − y)= g3(x1 − y1)δ(x0 − y0),

with

(3.6)g3(x1)= λ0δ(x1)− ε0

Λ2 ∂
2
1δ(x1),

where ∂2
1δ

2(x) is the second derivative of the delta function with respect to x1. At this point
it is worth mentioning that RG calculations involving fermionic non-local interactions
already exist in the literature. For instance, the authors of Ref. [12] used a Jordan–Wigner
fermion representation for the 1D Heisenberg–Ising model which includes not only a
non-local fermion-fermion interaction but also a linear fermion-lattice coupling. Due to
the curvature of the band, the non-trivial fermion-lattice coupling and the presence of
both forward and umklapp scattering, comparison of their RG equations with ours is not
straightforward. Let us point out, however, that in [12] fermions corresponding to nearest-
neighbor lattice sites interact through a potential of the form g(q) = C1 × cosq , i.e.,
a unique constant C1 is associated to g(q). As shown in the above equation (3.6), in the
present work we are interested in a coupling which depends at least on two constants λ
and ε. In fact, the derivation of RG equations for these coupling constants will be our next
task.

In condensed matter problems one is usually interested in the physics at long distances,
compared to a lattice spacing of the order of Λ−1. Since, in momentum space, this
corresponds to small k1 = k, it is natural to consider correlations between fields with
momenta 0< k <Λ/s, with s very large. These are the so-called “slow modes” φ<. On the
other hand, the “fast modes” φ> are those carrying momenta that satisfy Λ/s � k �Λ. In
the present approach to RG these fast modes are integrated in the path integral framework,
giving rise to an effective theory depending only on slow modes. From this action, in
turn, one can read the flow equations for the couplings. Indeed, writing the initial action
as S0 − Sint, to first order, after a suitable rescaling of coordinates and momenta and a
redefinition of the fields (see Appendix A for details) we obtain the following relationship
between the original and RG transformed actions:

Sint = (Λc)2

2π2

∫
d2x d2y

([
λ0 + λ0 (2 − 4K)t − 2Kε0t

]
δ2(x − y)

− ε − 4Kεt
Λ2 ∂2

1 δ
2(x − y)

)
cos

√
4π
(
φ(x)+ φ(y))

= (Λc)2

2

∫
d2x d2y

(
λδ2(x − y)− ε

2 ∂
2
1δ

2(x − y)
)

cos
√

4π
(
φ(x)+ φ(y))
2π Λ

(3.7)= S′
int.
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As usual, imposing the invariance of the action under RG, we get the flow equations for
the couplings λ and ε:

(3.8)
dλ

dt
= (2 − 4K)λ− 2Kε,

(3.9)
dε

dt
= −4Kε,

where ln s = t , with the initial conditions λ(0) = λ0 and ε(0) = ε0. The solution of this
system is elementary, yielding:

(3.10)λ(t)= (λ0 −Kε0) exp
[
(2 − 4K)t

]+Kε0 exp[−4Kt],

(3.11)ε(t)= ε0 exp[−4Kt].
From the last equation one clearly sees that the non-local piece of the interaction is
irrelevant, as expected. Concerning the local interaction one sees that it is relevant for
K < 1/2, i.e., non-locality does not modify this well-known condition already found for
the local SG model. Therefore, for K < 1/2, λ will grow with increasing t and there will
be a gap in the CD spectrum which can be estimated by determining the value t̃ for which
λ = 1. From now on we shall restrict our analysis to the case K < 1/2. The gap is then
given by 1E =Λµe−t̃ , where µ = c/(π

√
2)≈ 0.198. It is also convenient to define the

dimensionless gap m = 1E/Λ. From Eq. (3.10) one can thus derive an equation for m
which gives the behavior of the energy gap as function of the forward scattering potentials
(K) and the non-local contribution of the umklapp scattering (ε0). Before analyzing this
non-trivial equation it seems reasonable to check if it predicts sensible results for the local
case. To this end we set ε0 = 0 and λ= 1 in (3.10), obtaining:

(3.12)m0 = µλ
1

2−4K
0 .

This result can be compared with the exact solution obtained by Zamolodchikov [22]
and with the approximated result given by the SCHA method [13]. The corresponding
expressions for the gap are respectively given by:

(3.13)mZ = 2
−2K

1−2K√
π
µ

1
1−2K

Γ
(

K
1−2K

)
Γ
( 1

2−4K
)(π Γ (1 − 2K)

Γ (2K)

) 1
2−4K

λ
1

2−4K
0

and

(3.14)mscha = 2√
K
(4πK)

1
2−4K µ

1
1−2K λ

1
2−4K
0 .

In order to compare m0 and mscha with mZ in an efficient and easy to visualize way, we
have computed the relative error 1m/mZ as function of K for both approximations. The
results are depicted in Fig. 1 where one sees that our RG computation gives values of the
gap closer to the exact values for a wide range of the stiffness constant K . Interestingly,
the SCHA result works well when one approaches the end points of the interval.
Going back to the case ε0 �= 0, by combining Eqs. (3.8) and (3.9) one readily gets a
phase diagram in the ε–λ plane (see Fig. 2). There is a critical line given by λ = Kε. If
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Fig. 1. Relative error 1m/m as function of the stiffness constant, for the local case. The dashed line corresponds
to the SCHA whereas the solid line shows the RG result.

Fig. 2. Phase diagram in the ε–λ plane, for K = 0.25. The dashed line is the critical line λ=Kε.

the initial parameters are tuned to lie on this line, the system will flow to the Tomonaga–
Luttinger fixed point, at the origin. In this case, of course, the system remains gapless. On
the other hand, for initial conditions outside the critical line, the system flows to strong
coupling, giving rise to a gap m, as mentioned above. For simplicity let us consider the
case λ > ε and define the variable x =m/m0. The gap equation can then be written as

(3.15)x2 − ν

ε0
x2−4K + ν

ε0

(
1 − Kε0

λ0

)
= 0,

where ν = λ
−2K

1−2K
0 /K . This equation is one of our main results. For fixed values of K

and λ0 it gives the behaviour of the energy gap as function of the non-local contribution
to umklapp scattering, associated to non-contact interactions. The form of this formula
suggests that it could be easier to handle the inverted equation:

2−4K

(3.16)ε0(x)= εcritν

1 − x
ν − εcritx2 ,
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Fig. 3. Numerical solution of the gap equation for λ0 = 0.5 and K = 0.25. The gap m decreases for increasing ε0.

Fig. 4. Numerical solutions of the gap equations for λ0 = 0.5, K = 0.25, and 0 � ε0 � 0.1. The dashed line
corresponds to the SCHA whereas the solid line shows the RG result. The unit function is included to allow
comparison with the local case.

where εcrit = λ0/K . In Fig. 3 we show the numerical solution of this last equation for
λ0 = 0.5 andK = 0.25. We see that x decreases for increasing ε0, in qualitative agreement
with the SCHA prediction [13]. A quantitative comparison between both approximations
is given in Fig. 4, for the same fixed values of λ0 andK . Since the SCHA result obtained in
[13] is valid for small values of the coefficient associated to non-locality, we have plotted
the solutions in the interval 0 � ε0 � 0.1. We find that the gap decay predicted by RG,
for increasing non-locality, is much slower than the one obtained through the Gaussian
approximation.
As a final comment, we note that the RG treatment for non-local interactions depicted
in this work can be extended to a more general coupling function including an arbitrary
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number of even powers of p1. In coordinate space such an interaction can be written as

(3.17)g3(x)=
n∑
i=0
(−1)i

λi

Λ2i ∂
2iδ(x),

where λ1 = ε0. The corresponding set of RG equations for the λ′
i s can be obtained from

the expansion of the cosine integral function which appears when one integrates the fast
modes after the mode separation (see Appendix A). The result is

dλ0

dt
= (2 − 4K)λ0 − 2K

n∑
i=1

λi

...

dλj

dt
= (2 − 2j − 4K)λj − 2K

n∑
i=j+1

λi

...

(3.18)
dλn

dt
= (2 − 2n− 4K)λn.

The general solution of this system can be expressed as a combination of exponentials
and the computation of the gap cannot be done, in principle, in an analytical way. It is then
illustrative to consider a particular case in which this calculation is simplified. Indeed, for
small t , it can be proved by induction that the solutions of this system of equations are of
the form:

(3.19)λj (t)= λ0
j exp

[
t

(
2 − 2j − 4K − 2K

λ0
j

n∑
i=j+1

λ0
i

)]
.

In this limit one obtains the following expression for the gap:

(3.20)m= µλ1/2−4K−2K/λ0
0
∑n
i=1 λ

0
i

0 ,

which is consistent with the conditions λ0 ∼ 1− and K � 1/2.

4. Conclusions

In this paper we have considered a non-local extension of the sine-Gordon model.
This theory is obtained when one bosonizes a non-local and non-covariant version of the
Thirring model used to describe certain 1d many-body systems. Since the integrability
of this non-local sine-Gordon model has not been proved, one needs to implement some
approximation to study its physical content. We have performed a RG calculation up to
first order in the coupling function g3, which in a condensed matter context is associated
to the so-called umklapp scattering. We obtained an expression for the energy gap as

function of the non-local piece of the interaction ε0. For purely local interactions (the
exactly solvable SG) our result seems to be a sensible approximation, improving the
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SCHA predictions for a wide range of forward interactions. In the non-local case, in
which no exact answer is known, we predict decreasing values for the gap for increasing
values of ε0, in qualitative agreement with a previous SCHA computation. We were able
to give a precise comparison between both approximations in the interval 0 � ε0 � 0.1,
showing that the gap decrease, for increasing non-locality, is much weaker according
to the RG computation. Since, as is well known, the SCHA method is not a controlled
approximation, the present results contribute to a better understanding of the physics of
non-local field theories. We think that our results are also of interest in the context of
1D many-body systems (Luttinger liquids) in which most of the previous investigations
involving umklapp scattering do not consider non-local effects associated to long range
interactions [23].
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Appendix A

In order to illustrate the computation leading to the flow equations we first define the
free bosonic propagator:

(A.1)
〈
φ(k)φ(q)

〉
0 = 1

Z0

∫
Dφφ(k)φ(q)e−S0 = 1

Z0

δ2Z(j)

δj (k)δj (q)

∣∣∣∣
j=0

with

(A.2)Z(j)=
∫
Dφ exp

[
−
∫

d2p

2(2π)2
(
Φ(p)F(p)φ(−p)− J (p)φ(p))].

The result is

(A.3)
〈
φ(p)φ(q)

〉
0 = δ2(p+ q)4π2Kv

p2
0 + v2p2

1
.

The next step is the analysis of Sint, as given by the second term of Eq. (3.1). For
simplicity, in this appendix we disregard the overall constant (Λc)2/(2π2). Going to
momentum space and performing the separation in slow and fast modes φ< and φ>,
according to:

(A.4)φ(x)= 1
(2π)2

∫
d2pφ(p)eip.x ,
(A.5)φ(p)= φ<(p), |p1|< Λ

s
,
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(A.6)φ(p)= φ>(p), Λ

s
� |p1| �Λ,

we obtain

Sint =
∫
d2x dy1 g3(x1 − y1)

(A.7)

×
(

cos
[ √

4π
(2π)2

∫
d2pφ<(p)f (p,x, y1)

]
× cos

[ √
4π

(2π)2

∫
d2pφ>(p)f (p,x, y1)

]
− sin

[ √
4π

(2π)2

∫
d2pφ<(p)f (p,x, y1)

]
× sin

[ √
4π

(2π)2

∫
d2pφ>(p)f (p,x, y1)

])
,

where

(A.8)f (p,x, y1)= eip.x + ei(p0x0+p1x1).

Now we expand the functional integral up to first order in g3 and integrate over the fast
modes. One finds the following results:

(A.9)
〈
sin
[ √

4π
(2π)2

∫
d2p φ>(p)f (p,x, y1)

]〉
0
= 0

and 〈
cos
[ √

4π
(2π)2

∫
d2pφ>(p)f (p,x, y1)

]〉
0

= exp
(

−K
∫
dp1

(
θ(p1)− θ(−p1)

)1 + cos(p1(x1 − y1))

p1

)
(A.10)= exp

(
−K

[
2 ln s + 2Ci

(
Λ(x1 − y1)

)− 2Ci
(
Λ

s
(x1 − y1)

)])
,

where Ci(x) is the cosine integral function and the free vacuum expectation values are, of
course, taken with respect to fast modes. Rescaling momenta, coordinates and fields such
that the free piece of the action S0 remains invariant:

(A.11)p′ = sp, x ′ = s−1x, φ′(p′)= s−2φ<(p
′/s),

and using the fact that ln s = t, s � 1 + t , Sint can be written as

Sint =
∫
d2x ′ dy ′

1 g3
(
s(x ′

1 − y ′
1)
)

cos
[ √

4π
(2π)2

∫
d2pφ<(p)f (p,x, y1)

]
( [ ( ) K ( ) ] )
(A.12)× 1 + (3 − 4K)+K Λ(x ′
1 − y ′

1)
2 −

12
Λ(x ′

1 − y ′
1)

4
t ,
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where we have used the power expansion of the function Ci(x). Finally, using the explicit
expression for g3 in terms of λ0 and ε0 we obtain

Sint =
∫
d2x ′ d2y ′

[(
λ0 + λ0[2 − 4K]t − 2Kε0t

)
δ2(x ′

1 − y ′
1)

− ε0 − 4Kε0t

Λ2 ∂2
1 δ

2(x ′
1 − y ′

1)

]
cos

√
4π
[
φ(x ′)+ φ(y ′)

]
=
∫
d2x ′ d2y ′

[
λ′δ2(x ′

1 − y ′
1)−

ε′

Λ2 ∂
2
1δ

2(x ′
1 − y ′

1)

]
cos

√
4π
[
φ(x ′)+ φ(y ′)

]
(A.13)= S′

int,

which leads to the flow equations for λ and ε.
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