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Abstract – Pollination of passion fruit and other crops by species of carpenter bees of the 8 

genus Xylocopa Latreille significantly increases both the quality and quantity of fruits. To 9 

enhance pollination services, bee nests are either introduced into the crop area or females are 10 

encouraged to nest using trap-nests. Thus, knowledge of trap-nest preference, brood 11 

development, and nest parasitism is essential for effective and sustainable nest management 12 

practices. Xylocopa (Neoxylocopa) augusti Lepeletier is a promising pollinator in some areas 13 

of Argentina because of its high abundance, ability to buzz pollinate, and easy acceptance of 14 

trap-nests. However, limited information is available on the biology of this pollinator. Herein 15 

we provide detailed information on its nesting cycle, brood development, and parasitism from 16 

trap-nests at an urban area in Buenos Aires province, Argentina. Our study indicates that X. 17 

augusti is a solitary and likely univoltine species that shares some nesting and developmental 18 

features with other species in the subgenus Neoxylocopa, which might facilitate the adoption 19 

of existing management techniques developed for other species and regions. Biological 20 

information on Physocephala wulpi Camras (Diptera: Conopidae), a parasitoid of X. augusti, 21 

is also given for the first time.  22 

 23 

Pollination services / Physocephala / Parasitoid / Hyperparasitoid / Xylocopinae  24 

 25 

 26 

 27 

1. INTRODUCTION 28 

The economic value of animal pollination in agriculture is undeniable, as about 75% of the 29 

leading global food crops depend partially or fully on pollinators (Klein et al., 2007). For 30 
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example, while bees are essential for the pollination of some crops (e.g., almonds: Traynor, 31 

2017), for others less pollinator-dependent crops, bees might help to increase up to 50% the 32 

quality and quantity of their seeds and fruits (e.g., coffee: Roubik, 2002). Pollinators are also 33 

responsible for 40% of the world’s supply of nutrients (Eilers, Kremen, Greenleaf, Garber, & 34 

Klein, 2011), which means that pollinator loss could significantly affect global health due to 35 

the increase of malnutrition-related diseases (e.g., Chaplin-Kramer et al., 2014; Ellis, Myers, 36 

& Ricketts, 2015; Smith, Singh, Mozaffarian, & Myers, 2015).        37 

The management of pollinators is a sustainable alternative to the maintenance of 38 

agricultural production, particularly in view of recent declines of native pollinators 39 

worldwide and honey bee colony losses (e.g., Bommarco, Kleijn, & Potts, 2013; Junqueira & 40 

Augusto, 2017). Carpenter bees of the genus Xylocopa Latreille (Apidae: Xylocopini) are 41 

among the most promising crop pollinators due to their cosmopolitan distribution, long 42 

activity season, polylectic habits, easy acceptance of artificial substrates for nesting, their 43 

ability to buzz-pollinate, and being active at higher temperatures than honey bees 44 

(Buchmann, 2004; Hogendoorn, 2004; Keasar, 2010). 45 

 Xylocopa includes more than 470 species in 31 subgenera worldwide, most of them 46 

occurring in tropical and subtropical areas. The majority of species nest in solid wood, such 47 

as tree branches and trunks, but some nest in hollow plant stalks and soft wood, or even in the 48 

ground. Species are often robust and range from solitary to semisocial or primitively eusocial, 49 

where the oldest female (mother or sister) feeds both young females and males via 50 

trophallaxis (Michener, 2007; Lucia, Gonzalez, & Abrahamovich, 2015). A few species of 51 

Xylocopa have already been used as efficient crop pollinators of passion fruit (Passiflora 52 

ssp.), sunflowers (Helianthus annuus L.), squash (Cucurbita ssp.), tomato (Solanum 53 

lycopersicum L.), and eggplant (Solanum melongena L.) (Gerling, Velthuis, & Hefetz, 1989; 54 

Sihag, 1993a; Mardan, 1995; Hogendoorn, Steen, & Schwarz, 2000; Aguiar-Menezes, 55 

Menezes, Cassino, & Soares, 2002; Sadeh, Shmida, & Keasar, 2007). Pollination by 56 

carpenter bees increases the quantity and quality of the crop, as in the case of passion fruits 57 

that result in bigger and sweeter fruits when pollinated by these bees (e.g., Junqueira & 58 

Augusto, 2017).  59 

To increase pollination services, natural carpenter bee nests are introduced into the 60 

crop area or females are encouraged to nest using trap-nests, a method that consists of using 61 

bamboo canes or wooden blocks with tunnels of varying diameter to promote their nesting 62 

(e.g., Krombein, 1967; Freitas & Oliveira-Filho, 2003). Thus, knowledge on the natural 63 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

 

This article is protected by copyright. All rights reserved 

history as well as trap-nest preference, brood development, and nest parasitism is essential for 64 

effective and sustainable nest management practices.  65 

Xylocopa (Neoxylocopa) augusti Lepeletier is a widely distributed species in southern 66 

South America, occurring in Bolivia, Uruguay, Paraguay, Argentina, and southern Brazil 67 

(Moure, 2012; Lucia, Alvarez, & Abrahamovich, 2014a). In Argentina, it is more widespread 68 

in the east than in the west, occurring from Buenos Aires to Formosa province (Lucia, 69 

Alvarez, & Abrahamovich, 2014a). This species is a promising crop pollinator in Argentina 70 

because of its high abundance, docile behavior, ability to buzz-pollinate, and easy acceptance 71 

of trap-nests. In addition, the species uses a wide range of plant species to obtain pollen and 72 

nectar, including several crops of economic importance, such as H. annuus, S. melongena, 73 

Medicago sativa L. (Lucerne), Phaseolus vulgaris L. (beans), and Cucurbita moschata 74 

Duchesne ex Poir. (Tesón, Dagoberto, Lizarralde, & Loiácono, 1976; Telleria, 1999, Alvarez, 75 

Lucia, Ramello, Del Pino, & Abrahamovich, 2014; Lucia, Tellería, Ramello, & 76 

Abrahamovich, 2017).  77 

Despite the potential of X. augusti as a crop pollinator, limited information is 78 

available on its biology to facilitate the development of effective and sustainable management 79 

practices. Thus, the aim of this work is to provide detailed information on its nesting cycle, 80 

brood development, and parasitism from trap-nests established at an urban area in Buenos 81 

Aires province, Argentina.  82 

 83 

2. MATERIAL AND METHODS 84 

2.1. Study area and trap-nests  85 

We conducted observations at the Unidad de Vivero Forestal of the Universidad 86 

Nacional de La Plata (34°54'39"S, 57°55'37"W, 18 m.a.s.l.) and Vivero Forestal, Facultad de 87 

Ciencias Naturales y Museo, an urban area of the city of La Plata located in the northeastern 88 

Buenos Aires province, Argentina. This area, about 4 ha in extension, possess a variety of 89 

cultivated trees accompanied by weeds and adventitious species. The climate of the region is 90 

humid temperate, with the cold season extending from May to October, and the mean 91 

monthly temperature not reaching 18 °C. There is no a dry season and the average annual 92 

precipitation ranges from 800 to 1000 mm. Lucia et al. (2017) provide detailed information 93 

on the foraging behavior as well as local floral resources of X. augusti at the study area.  94 

Each September, between 2015 and 2018, we deployed about 1500 trap-nests at the 95 

study site, each consisting of an internode of wild cane (Arundo donax L., Poaceae) closed at 96 

one end by the node and open at the other. We cut and collected canes from plants growing 97 
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along roads and streams near the study area, and chose those with a best fit for X. augusti as 98 

approximated by its body size. Due to availability in the field, we obtained a variable number 99 

of internodes of different lengths and diameters. Thus, the canes we used as trap-nests ranged 100 

from 13.6 to 27.0 cm in length and from 12.50 to 17.00 mm in inner diameter. We placed 101 

trap-nets horizontally, in groups of 15–25, inside hollow bricks and empty plastic containers 102 

on top of open shelves, located between 1 and 2 m above ground. Each group of trap-nests 103 

contained a variable, random number of trap-nests of different dimensions (Figure 1). We 104 

recorded the presence or absence of bees daily by inspecting the entrance of each trap-nest. 105 

During these inspections, we also noted their guarding behavior at random times through the 106 

day, as well as sometimes early in the night. Bees occupied trap-nests as early as 5 to 10 days 107 

after we deployed them in the field. Because we intended to maintain a permanent population 108 

of X. augusti at the study area for other studies, we replaced the trap-nests we used for this 109 

study and left unoccupied nests for the following nesting season. 110 

To observe brood development, we opened completed nests lengthwise and secured 111 

both halves with tape. We reopened nests daily until adult emergence and kept them in the 112 

laboratory at room conditions (18–25 °C). We recorded the following nest data: number, 113 

width, and length of brood cells, cell partition thickness (center and periphery), inner 114 

diameter of nest entrance, and internode length. We took measurements of internal nest 115 

features using a caliber. We estimated sex ratio as the number of emerged females over the 116 

number of emerged males. To determine the average wet mass of larval provisions, we 117 

carefully removed them from the brood cells, weighed them with an electronic scale, and 118 

return them to the same cell. We documented details of the nest architecture, emergence 119 

phenology, and sex ratio from 52 trap-nests. We took brood cell dimensions from 79 trap-120 

nests and used a Panasonic® FZ18 digital camera (Panasonic, Japan) to record external nest 121 

features.  122 

We obtained adults of Physocephala (Diptera: Conopidae) from larvae developing 123 

inside the metasoma of dead female bees that we found inside the nest or near the nest 124 

entrance. We placed the metasoma of each bee individually in acrylic containers and kept 125 

them in the laboratory until emergence of adult conopid flies. We euthanized conopids 24 h 126 

after emergence, sexed, labeled, and numbered them with the corresponding bee specimen. 127 

We estimated bee body size by measuring the minimum intertegular distance (Cane, 1987) 128 

with an ocular micrometer on a Nikon SMZ745 stereomicroscope. To estimate relative age of 129 

carpenter bees that were parasitized by conopid flies, we record the degree of wing wear in a 130 

scale of one to five, with one being unworn and five heavily worn, as in Camillo and 131 
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Garófalo (1989). Associated organisms were identified using taxonomic keys and by 132 

comparison with specimens deposited in the División Entomología of Museo de La Plata, 133 

Argentina (MLP), as in the case of Coleoptera (i.e., Pinto & Bologna, 1999), or by specialists 134 

(Hymenoptera and Diptera).Voucher specimens of bees and associated organisms are in 135 

MLP.  136 

 137 

2.2. Data analysis  138 

We used an independence test (Chi-square analysis) to evaluate the relationship 139 

between the sex of the emerged bees and the position of the brood cell inside the nest from 140 

which they emerged. For comparison purposes, we used data of bees that emerged from the 141 

first four cells because nests ranged from one to six in their number of cells. We estimated 142 

total mortality of immature stages as the sum of the number of cells attacked by either 143 

parasites or pathogens, plus the number of cells containing dead larvae or pupae of unknown 144 

cause. To test for association between bee body size and sex of the emerged conopid fly, we 145 

used a Goodness of fit test. In addition, we tested for differences in the body size between 146 

sexes of the conopid flies using a non-parametric Wilcoxon test. We tested assumptions of 147 

each statistical test and conducted analyses with R statistical software, version 3.3.1 (R Core 148 

Team 2016).  149 

 150 

3. RESULTS 151 

3.1. Nest cycle and brood development 152 

 Overwinter females started to build their nests in early October and began to close the 153 

first cells in mid-October. Adult emerge occurred from early/mid-December throughout mid-154 

January but it peaked in late December. All nests consisted of a single adult, which defended 155 

the nest by blocking the nest entrance with either the dorsum of the metasoma or with the 156 

head. Blocking the nest with the head occurred throughout the day, primarily in response to 157 

other female of X. agusti trying to enter the nest. Bees blocked their nest entrance with their 158 

metasoma at night (Figure 1b), sometimes expelling a light brown or yellowish fluid from 159 

their anal opening, when we disturbed the nests. 160 

 Bees used trap-nests of all diameters. However, about half (58.4%) of trap-nest used 161 

by bees had diameters ranging between 14 and 16 mm. Each nest contained a linear series of 162 

one to six (  = 3.0 ±1.35, n = 52 trap-nests) barrel-shaped brood cells. Brood cells ranged 163 

from 15.35 to 24.23 mm ( = 19.27 ± 1.49, n = 178 cells) in length and their position inside 164 

the nest did not have an effect on its length (Table 1, Figure S1 in supporting information). 165 
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Cell partitions are smooth and concave on their outer surface, rough and flat on their inner  

surface. Cell partitions were thicker at the periphery ( = 5.14 ± 0.90 mm, 3.14–7.5, n = 113)  

than at the center (  = 1.65 ± 0.33 mm, 0.9–2.4, n = 102).   

 The egg-to-adult development time ranged from 44 to 66 days and was similar  

between sexes (W = 25, p = 0.11, n = 18). However, the larva-pupa period was shorter in  

males than in females (Table 2). The larvae feeding period lasted 8–18 days in females ( =  

15.4 ±3, n = 19) and 12 to 15 days in males ( = 12.8 ± 1.6, n = 5) after hatching. In females,  

pupae pigmentation began between 10 to 18 days after pupation ( = 14.8 ± 2.3, n = 23).  

Mass provision varied from 1.12 to 2.00 gr among cells ( = 1.57 ± 0.29, n = 16).   

  

3.2. Sex ratio  

The overall sex ratio was female-biased (3♀:1♂) based on the 52 nests we kept in the  

laboratory (83 ♀, 31 ♂), which was significantly different from a theoretical sex ratio 1:1 (ꭕ2 
 

= 24.85, df = 1, p < 0.001). Both sexes of bees emerged from cells at different positions  

inside the nest. However, females were more likely to emerge from the two innermost cells (1  

and 2) than males (Cell 1: ꭕ2 = 32.4, df = 1, p < 0.0001, n = 38♀, 2♂; Cell 2: ꭕ2 = 5.76, df = 1,  

p <0.05, n = 24♀, 10♂). In contrast, the outermost cells were not sex-biased (Cell 3: ꭕ2 =  

0.18, df = 1, p = 0.67, n = 10♀, 12♂; Cell 4: ꭕ2 = 2.57, df = 1, p = 0.11, n = 10♀, 4♂) (Table  

3, Figure 2, Figure S2 supporting information).   

  

3.3. Brood mortality  

Overall brood mortality was approximately 30%. Mortality was highest in the larval  

stage (25.5%, 41 out of 161 brood cells of 52 trap-nests) likely due to viruses, fungi, and  

unknown causes. The beetle Cissites maculata (Swederus) (Coleoptera: Meloidae) (Figure 3)  

and the sapid wasp (Hymenoptera: Sapigidae, likely Huarpea) were the only brood parasites  

we observed. The former species parasitized six cells of four nests while the latter two cells  

of two nests.   

  

3.4. Xylocopa adult mortality  

The conopid fly Physochepala wulpi Camras (Diptera: Conopidae) significantly  

attacked young bees (ꭕ2= 29.45; df = 4, p <0.0001), as inferred by the bees’ wing condition  

(1–3 stage of wing wear according Camillo and Garófalo (1989). Bee relative age and  

number of parasitized females was inversely correlated (cor = -0.77). The emergence period  
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of the conopid fly varied depending on the season in which we collected them. Larvae 199 

collected between late-spring (mid-November) and mid-summer (January) showed a 200 

significantly shorter developing period (♂: 29–43 days, = 35.38, median = 32, n = 19; ♀: 201 

29–46 days, = 34.07, median = 32, n = 15) than those collected during the late summer 202 

(mid-March) and beginning of autumn (early April) (♂: 186–296 days, = 235.6, median = 203 

237, n = 17; ♀: 191–280 days, = 235.6, median = 235, n = 17). The sex of the conopid fly 204 

was independent of the size of the host bee (OR = 2.12; IC = 0.31, 14.38; Wald statistic, p = 205 

0.44; n = 41).  206 

 207 

3.5 Conopid adult mortality 208 

The eulophid wasp Pediobius williamsoni (Girauld) (Hymenoptera: Eulophidae) 209 

parasitized 11 pupae of Physocephala wulpi. The development of P. williamsoni in the 210 

laboratory lasted from 25 to 79 days ( = 46.62 ± 19.1, n = 8). However, in two cases, it 211 

showed a longer development period (130 and 218 days) (Table S1 supporting information). 212 

 213 

4. DISCUSSION 214 

Cavity-nester bees, such as carpenter bees, are suitable pollinators for sustainable 215 

pollination in agroecosystems because they accept trap-nests, which then can be moved in 216 

order to increase pollination services. A few types of trap-nests have been employed to 217 

promote nesting of carpenter bees, namely bamboo canes, wood trunks, and wooden boards 218 

inside of Langstroth honey bee hives (Camillo & Garofalo, 1982; Freitas & Oliveira-Filho, 219 

2003; Pinilla-Gallego & Nates-Parra, 2015). However, as used in this work, canes appear to 220 

be preferable because they are affordable and easy to deploy and replace, as well as readily 221 

accepted by bees (Chaves-Alves, Junqueira, Rabelo, Oliveira, & Augusto, 2011). Despite the 222 

importance of carpenter bees for agriculture, their diversity, and worldwide distribution, only 223 

a few species are currently managed. This is a perhaps a reflection of our limited knowledge 224 

of many aspects of their biology. Although basic information on the nesting biology and nest 225 

architecture of carpenter bees is available for several species worldwide (e.g., Anzenberg, 226 

1977; Gerling, Hurd Jr., & Hefetz, 1983; Sihag, 1993a, 1993b; Vicidomini, 1996; Raju & 227 

Rao, 2006; Hongjamrassilp & Warrit, 2014; Ali, Shebl, Alqarni, Owayss, & Ansari, 2016), 228 

most studies are restricted to a few common species and from particular regions. For 229 

example, most information in South America is from Brazil (e.g., Sakagami & Laroca, 1971; 230 

Camillo & Garofalo, 1982; Camillo, Garófalo, & Muccillo, 1986; Viana, Kleinert, & Silva, 231 
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2002; Oliveira-Filho & Freitas, 2003; Bernardino & Gaglianone, 2008; Marchi & Melo, 232 

2010; Pereira & Garófalo, 2010), with few studies available from other regions (e.g., 233 

Gonzalez, Gonzalez, & Cuellar, 2009; Lucia et al., 2014a, 2015, 2017). Such a limitation 234 

impedes the effective development and implementation of sustainable practices for a wide 235 

range of species. For example, efforts to establish carpenter bees in bamboo canes in 236 

Colombia have had little to no success due to the incipient knowledge of the bees’ biology 237 

(Pinilla-Gallego and Nates-Parra 2015). Thus, the biological data present herein for X. 238 

augusti will add to this dearth of knowledge. 239 

In general, our findings on the life cycle and nest structure are similar to those 240 

recorded by Pereira and Garofalo (2010), Marchi and Melo (2010), and Camillo and Garofalo 241 

(1982) for other species of the subgenus Neoxylocopa Michener. The number of cells per nest 242 

in X. augusti and the egg-to-adult developing time are within the ranges of those reported for 243 

X. frontalis (Olivier) (1–6 cells; 53 days) and X. grisescens Lepeletier (2–5 cells; 55 days) 244 

(Pereira & Garofalo 2010). The female-biased sex ratio we observed in X. augusti has also 245 

been documented in X. frontalis (Marchi & Melo, 2010) and X. suspecta Moure & Camargo 246 

(Camilo et al., 1986). Similarly, the emergence of females from the innermost cells and males 247 

from the outermost cells in X. augusti, follows the pattern observed in other carpenter bees 248 

(e.g., Sakagami & Laroca, 1971; Pereira & Garofalo, 2010), as well as other solitary species 249 

(e.g., Jesus & Garófalo, 2000; Pitts-Singer & Cane, 2011).  Lastly, the dimensions of the 250 

brood cells and partitions documented from trap-nests are similar to those reported in natural 251 

nests for Xylocopa augusti (Lucia et al., 2014a). Thus, the features of the nesting biology of 252 

X. augusti studied here seem highly conserved among the species of the subgenus 253 

Neoxylocopa.   254 

Several pathogens and natural enemies are associated with carpenter bees during their 255 

life cycle, including brood parasites, parasitoids, virus, and entomopathogenic fungus (Hurd 256 

Jr., 1978; Lucia, Aquino, Hansson, & Abrahamovich, 2010, 2014b, 2015; Avalos-Hernández, 257 

Lucia, Álvarez, & Abrahamovich, 2011; Stuke, Lucia, & Abrahamovich, 2011; Reynaldi,  258 

Lucia, & Garcia, 2015; Lucia, 2016). However, infestation by fungus is among the most 259 

important causes of immature mortality (Gerling et al., 1989; Pereira & Garofalo, 2010). The 260 

entomopathogenic fungus Ascosphaera apis (Maasen ex Claussen) L.S. Olive and Spiltoir 261 

(Onygenales: Ascosphaeraceae) causes chalkbrood disease and was recently reported for X. 262 

augusti in Argentina (Reynaldi et al., 2015).  263 

The beetle Cissites maculata (Coleoptera: Meloideae) and sapygid wasps 264 

(Hymenoptera: Sapydidae) have also been reported as brood parasites in other species of 265 
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carpenter bees. For example, the sapygid wasp Huarpea fallax (Gerstaecker) was recorded 266 

from X. (Schonnherria) splendidula Lepeletier, X. (Neoxylocopa) augusti, and X. 267 

(Neoxylocopa) atamisquensis (Friese, 1923; Hurd Jr. & Moure, 1961) while H. wagneriella 268 

(duBuy) was recorded from nests of Xylocopa (Nanoxylocopa) ciliata Burmeister (Lucia, 269 

2016).  270 

Conopid flies are solitary and internal parasites of insects, usually in aculeate wasps, 271 

and especially in bees (Camras & Hurd, 1957). Species of the genus Physocephala Schiner 272 

have been recorded from several genera of neotropical bees, including carpenter bees. These 273 

flies attack adult female bees at flowers while they are foraging for nectar or pollen (Lucia et 274 

al., 2010; Stuke et al., 2011), a behavior we also observed in two occasions at our study site. 275 

However, little is known about the biology of these parasites. To date, most biological studies 276 

on conopid flies are from temperate areas and relating to the effect on species of bumble bees 277 

(e.g., Schmid-Hempel, Müller, Schmid-Hempel, & Shykoff, 1990; Schmid-Hempel & 278 

Schmid-Hempel, 1988). The interval between the collection date of the dead host bee and the 279 

emergence of the conopid fly in Xylocopa augusti varied according to the season, from 29–46 280 

days if collected in the late-spring and mid-summer to 186–296 days if collected in the late 281 

summer and beginning of the autumn. This is likely related to changes in the temperature as 282 

the winter season approaches, as it has been observed by Santos et al. (2008) in other species 283 

of Physocephala attacking the solitary bee Centris (Heterocentris) analis (Fabricius).  284 

Enhancing pollination services by using high numbers of trap-nests of Xylocopa 285 

augusti might increase the incidence of chalkbrood disease, conopids, and other parasites. 286 

Chalkbrood is commonly associated with larvae of both solitary and social species and could 287 

be devastating for the production of managed bees (Pitts-Singer & Cane, 2011). Likewise, 288 

conopid parasitism is common (30–70%) in natural populations of bumble bees in Europe 289 

and Canada, sometimes affecting colony size by increasing worker mortality and altering 290 

their foraging behavior (Schmid-Hempel et al., 1990; Otterstatter, Whidden, & Owen, 2002). 291 

Thus, further studies should address the impact of these diseases and parasites on managed 292 

populations of X. augusti. The eulophid wasp Pediobius williansoni, a parasite of the conopid 293 

fly Physocephala wulpi (Lucia et al., 2010), might also prove useful in the biological control 294 

of this species, if this ever becomes a problem.In summary, our study indicates that X. 295 

augusti is a solitary and likely univoltine species with some nesting and developmental 296 

features similar to other species in the subgenus Neoxylocopa. Knowing that the nesting 297 

biology of these species is conserved could be useful from a practical point of view, as it 298 

might facilitate the development and implementation of similar management techniques 299 
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across multiple species and regions.  Future studies on X. augusti should focus on 300 

productivity aspects, such as the effect of trap-nest dimensions on both rates of occupancy 301 

and the number of brood cells. Although we did not set up our experiment to assess 302 

occupancy rate, this value ranged from about 5 to 30 % each year and bees tended to occupy 303 

trap-nests with diameters between 14 and 16 mm. However, resource availability at the study 304 

site might have influenced the rate of nest establishment each season, and trap-nest 305 

preference might have resulted from having an abundance of those diameters. Trap-nest 306 

diameters that are closer to the bee’s body size are expected to have greater number of brood 307 

cells when compared to those that are much wider than the bee, as the latter requires an 308 

additional energetic cost to build and provisione. Similarly, longer trap-nests might allow 309 

females to build more brood cells than short trap-nests. However, at least for some species of 310 

cavity-nesters, tunnel diameter appears not to have a significant effect on brood productivity 311 

(Vitale, Gonzalez, & Vázquez, 2017). Likewise, at least in natural nests of some carpenter 312 

bees, the number of brood cells is independent of the tunnel length (Lucia et al. 2015). These 313 

observations suggest that for some bee species, and at least under natural conditions, tunnel 314 

dimensions might not be the main reproductive constrain. Doubtless, these aspects ought to 315 

be investigate for X. augusti. 316 
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 533 

 534 

 535 

 536 

Figure 1. Open shelves showing hollow bricks and plastic containers with trap-nests of 537 

Xylocopa (Neoxylocopa) augusti Lepeletier in Buenos Aires province, Argentina. a, each 538 

shelf was protected from direct sunlight and precipitation by a roof; b, photograph taken at 539 

night (20:30 h) showing bees guarding the nest entrances with the dorsum of the metasoma 540 

(black spots inside traps).   541 

 542 

Figure 2. Number of bees of each sex emerged from trap-nests of Xylocopa (Neoxylocopa) 543 

augusti Lepeletier in relation to the position inside the trap-nest in Buenos Aires province, 544 

Argentina 545 

 546 

Figure 3. Detail of the trap-nest and associated organisms of Xylocopa (Neoxylocopa) 547 

augusti Lepeletier in Buenos Aires province, Argentina. a, sagittal section of a trap-nest 548 

showing differential development stages; b, larva of conopid fly Physocephala wulpi Camras 549 

(Diptera: Conopidae) inside the metosoma of X. augusti; c–d, larva and pupa of P. wulpi; e, 550 

larvae of the host bee and the brood parasite Cissites maculata (Swederus) (Coleoptera: 551 

Meloideae) indicated by the arrow in the middle cell. 552 

 553 

Table 1. Brood cell length (mm) in relation to the position inside the trap-nest of Xylocopa 554 

(Neoxylocopa) augusti Lepeletier in Buenos Aires province, Argentina. Cells are numbered 555 

from 1 to 6 according to their relative position inside the nest, with one being the innermost 556 

cell, far from the nest entrance.  n = number of cells measured.  557 

 558 

Table 2. Duration (days) of each developmental stage of Xylocopa (Neoxylocopa) augusti 559 

Lepeletier using trap-nests in Buenos Aires province, Argentina.  560 

 561 

Table 3. Brood cell content, mortality, and sex emerged in relation to the position inside the 562 

trap-nest of Xylocopa (Neoxylocopa) augusti Lepeletier in Buenos Aires province, Argentina. 563 

n = number of cells examined.  564 
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Table 1.   

  

Cell number x  Max  Min Desv. n 

1  19.61 24.23 17.00 1.51 60 

2 19.32 21.50 17.00 1.29 51 

3 19.27 22.56 15.35 1.79 36 

4 18.57 21 15.90 1.39 21 

5 18.67 18.90 18.10 0.29 7 

6 17.88 18.32 17 0.76 3 

  

  

Table 2.   

 Female Male 

 Min Max x ±Dsv Min Max x ±Dsv 

Egg-Larva 4 6 4.6±0.65 (n =13) 4 6 4.8±0.8 (n =5) 

Larva-Pupa 16 37 24.6±6.2 (n =14) 18 21 19.2±2.57 (n =7) 

Pupa-Adult 18 28 21.7±2.5 (n =42) 18 30 22±3.2 (n =17) 

Complete cycle 46 66 53.6±6.5 (n =13) 44 50 47.2±2.1 (n =5) 

  

  

Table 3.   

Cell 

number  

Cells content  n % 

♀ 

% 

♂ 
Female Male Dead 

larvae 

Dead 

pupae 

% 

mortality 

1 38 2 11 1 23 52 95.0  5.0 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

 

This article is protected by copyright. All rights reserved 

2 24 10 9 2 24 45 70.6  29.4 

3 10 12 12 1 38 35 45.5 55.5  

4 9 4 7 – 33 21 71.0 29.0  

5 1 3 1 1 33 6 30.0  70.0 

6 1 – 1 – 50 2 100  – 

Total 83 31 41 5  161   
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