
Commun. Math. Phys. 89, 363-373 (1983) 
Communications in 
Mathematical 

Physics 
© Springer-Verlag 1983 

On Perturbation Theory for Regularized 
Determinants of Differential Operators 

R. E. Gamboa-Saravi*, M. A. Muschietti*, and J. E. Solomin* 

Universidad Nacional de La Plata, 1900 La Plata, Argentina 

Abstract. A perturbation theory for determinants of differential operators 
regularized through the ~-function technique is presented. The application of 
this approach to the study of chiral changes in the fermionic path-integral 
variables is discussed. 

1. Introduction 

In the Feynman path-integral approach to quantum theory one is naturally led to 
the computation of determinants of differential operators. These determinants 
clearly diverge because the eigenvalues 2j increase without bound. Therefore, it is 
necessary to adopt some regularization procedure. One technique which has 
proved to be very useful is the ~-function regularization [1]. When A is an elliptic 
invertible operator of order m >0, defined on some compact manifold M without 
boundary of dimension n, one forms a generalized ~-function from the eigenvalues 
2i of A: 

~(s,A) = ~R~-'. (1.1) 
J 

This series converges only for Res > n/m, but ~(s, A) can be analytically extended to 
a meromorphic function of s in the whole complex plane [2]. In particular it is 
regular at s=0.  The derivative of the ~-function at s = 0  is formally equal to 
- ~log2j .  One can therefore define the regularized determinant of A, Det(A), to 

J 
be exp ( -  d~/ds)[s: o. 

The purpose of this paper is to study the behavior of Det(A) when the operator 
A is perturbed by another operator of smaller order. To be more precise, we are 
going to prove in Sect. 2 that 

Det A + eJAj = Det(A)exp[eQ +e-c2+. . .  +~ cr+O(, 1)] (1:2) 
j=l 
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when o r d ( A ) < o r d ( A ) j = l , 2  . . . .  ,p. The coefficients c~ can, in principle, be 
computed in terms of the operators A and Aj. 

In Sect. 3 we generalize the definition of Det(A) to noninvertible operators. 
Finally, in Sect. 4 we apply our method to the computation of anomalous 
Jacobians arising from chiral transformations in the path-integral formulation of 
fermions coupled to SU(n) gauge fields. 

2. Invertible Operators 

Given an elliptic invertible operator A, of order m >0 defined on a compact 
manifold M without boundary, following Seeley [2], we define 

A~=~ -/S 2 ' ( 2 I - A ) - i d 2 ,  
ZTC f 

where F is a curve beginning at co, passing along the ray of minimal growth to a 
small circle about the origin, then clockwise about the circle, and back to co along 
the ray. 

We shall denote by K(x,y,B) the kernel of an operator B, and K(x,B) this 
kernel for x = y. It can be shown that the generalized ~-function associated to A 
(1.1), can be also written as 

~(s, A) = S TrK-s(x, A)d#x, (2.1) 
M 

where K~(x, A) = K(x, A ~) [2]. (We suppose the volume element d#x smooth in each 
coordinate system.) This alternative definition also applies to non-diagonalizable 
operators. ~f(M) will denote the space of continuous functions on M with norm 
/I [l~ =suplfl .  

The main result of this section is the following Theorem: 

Theorem. Let 2 be a finite-dimensional vector bundle over M (M a compact 
manifold without boundary of dimension n), and let F(~) be the space of its global 
sections. Let A be an invertible elliptic pseudo-differential operator of order m >0, 
defined on F(~) and A1,. . . ,A p differential operators on F(.~) such that 
o r d ( A ) < m -  1 for j=  1 ..... p. 

I f  the principal symbol of A, ~rm(A), satisfies Seeley's hypothesis [2] then 

K~ x,A+ ~ eiA~ ;/q(x,A)+ F~ dC(x,s)+~÷~g(~,R(~,s)), (2.2) 
i=1 / i=1 

where 

i) For - --1 < R e s <  --,1 K~(x, A), Fi(x, s) (i= 1, ..., rp) are ~(M)-valued analyt- 
m m 

ic functions of s. 
ii) F~(x,s) is the analytic extension in s of 

i 
1A1(2I- A)-- ld2t. K ( x , ~  ! 2 (2 I -  

/ 



Regularized Determinants 365 

iii) For Res<l/m,  IIK(x,e(~,s))lt~ and d-2K(x,R(~,s) ) are bounded for 
sufficiently small ~. l l 3  oD 

By integration on M Eq. (2.2) and its derivative with respect to s, one gets: 

Corollary 1. 

where 

i) ~(s) for i= 1 ..... p, and f(s, ~) are analytic functions of s / f  - 1 < Re(s) < 1 
m m 

ii, f l (s)= ~ T r ( K ( x , i -  ~ 2-s(2I - A) - IAI(2I -A)- ld2))d#~.  
\ \ Znr 

iii) If(s,e)l and d f(s,e) are bounded for sufficiently small ~ and s in a compact 

1 
subset of Res > - --. 

m 

Corollary 2. 

i) ~.olim ~' \(s' A + i: ~1 ~A~) = ~'(s, A), 

ii) cl);, ~ s, A + eiA i = f[(s). 
i=1 / l e : 0  

Proof of the Theorem. We shall denote by H z, 161K the Sobolev spaces of global 
sections of ~,~, and by IlBIII,2 the norm of the operator B:Ht-~H j. We set 

P 
A; = 2 eiA i. 

i=1 

For small e, the operator A +A'~ is also invertible and elliptic, and its principal 
symbol coincides with am(A ) . Then 

- i  ( A + A ' y =  ~-~!).s(.~.t-(A+A',))-ld.~., Re s < 0 .  

We shall expand this operator in powers of e. Then we write 

[21 -  (A + A'~)] -~ = [ I -  (21-  A)- 1A'e]  - l ( )uI  - A ) -  1 

= ~ E( /~ / -  A ) -  1A'e]n(.)~I - A ) -  1 (2.3) 
n=o 

This expansion holds for 2~F and t8[<e o, with sufficiently small ~o such that 
[I(2I-A)-~A'~H~.z< 1. Note that e o can be chosen independently of 2, for Z on F, 
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because 

p 

][(2I_A)-IA, ,t<= ~ gk[(2i_A)-lAk,, 
k = l  

P 

<--<- ~ ekI[(2l-- A)'- *il,-(m- *),,i[Akl[,,, (,.-1)- 
k = l  

Now, for 0 =p=< < m,. there exists (see [2]) a positive constant Cp such that 

[1(2I - A) 1Hs,s+p < Cp[2l- 1 +p/m, (2.4) 

if 2 is large enough, say 121 > C for suitable positive constant C. Hence, taking 
p=m-1 

I[(2I--A)-IAj[II, z<Cll21-1/'' for 12l>C. 

On the other hand, 11(2I-A)-Iltj,j+v is continuous in 2 for 26Sp(A), then it is 
uniformly bounded for 2 on F and t21 < C. 

Now, we write 

[2I - (A + A;)] -~ = (21-  A) -~ + ~ [ ( 2 I -  A)- ~A;]°(2I- A) 
n = l  

+ [(2I-A)-IA',]~+ I(2t-(A+A',)) t, 

where 

[(21 -- A ) -  1A'~]n = 3J(2I-- A)- 1Aj = dBy(2). 
j=] j=n 

The operators B~(2) are sums of finite products of the (21-  A)- 1A s and therefore 
bounded operators from H ~ to HI 

Hence 

(A+A;)S= ~!_~2s(2i_a)_ld2+ ~ -i  ! 2SE(2I- A)- 1A'~]'(21- A)- Id2 
Z g  F 

--i ! 2'((21- A)- IA'~)~ + 1(21 - (A + A'~))- ld)~ 

=AS+ j~ ~ s i e ~ !)?Cs(2)(M-A)-~d2 

+d+l i t ( \1~+~ 2~ !2" (2I-A) -1 ~ ea- JAs)] [2I-(A+A:)] 'd2,(2.5) 
j = l  

where each Ca(2) is a sum of operators B~.(2). 
We have that 

--i 5 2sca(2) (21- A)- ld2 

is a well defined operator for Res<0,  because 

t[ Cs(2) (2I - A)- 111,,~ < H Cs(2)H ~,~ [1(2I- A)- a [l~,t < C[21- * 
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for sufficiently large 2. By (2.4) for p=0 ,  IICs()01b,~ is uniformly bounded if)~ on F 
since so is [l(2I.-A)-IAiHz,u Also Tj(s) are Calderdn-Zygmund operators (as 

1 - n  
they are considered by Seeley in [2]). Thus, if Res<  .......... , ~(s) is an integral 

m 

operator whose kernel K(x,y, Tj(s)) is continuous for x = y ,  since 
Re(ord Tj(s)) < Re (ms -  1). 

In the last term of (2.5) 

R(S, 8,)= ~.~- ! l  l, s ()cI-- A) -1 =~1 8j-1Aj)I  ( ) , ] - (A  -J- AS) ) ld,~. 
J 

(2.6) 

By (2.4) taking p=m, p = m -  1, and p=0 ,  we see that 

and 

[ ;l ( M - A )  - I  ~, ~J 1Aj <Cl,  
\ j = l  l,I+r 

()~I_A)-1(j=~18J- lAj) ! l < Cl,.~, 1/m 

II (,~I- (A + A2)- 1 ]l~,l = I1(I- (,~I- A)- 1A;)- 1(21- A)- 1][ I,l < C~JA'I-1, 

for sufficiently small e (the constants C l depend only on I, r, A, Aj and not on e). 
From the above estimates we deduce that the norm II Ilu+~ of the integrand in 

(2.6) is bounded by CI2J-1-1/,,. Hence R(s, ~) is a bounded operator from H ~ to 

H ~+~ and it is well defined for Res < 1.  If one chooses r > n, R(s, e) has continuous 
m 

kernel because 5 ~  H-(,/2)-~ (~ > 0) (where 3~ is the Dirac f-function at the point x 
in M), so R(s, ~)~SyeH -('/2)-~+" CH ("/2)+~, and then K(x, y, R(s, e)) = {6~, R(s, e)Sy) 
verifies: 1) is a well defined continuous function of x,y; 2) is a ~(M xM)- 
valued analytic function of s; 3) it is bounded function for small e since 

IlR(s,~)ll_(~/2)_~,(~/2)+~<C for such e; 4)~sK(X,R(s,e,))=K X,~sR(S,e ) since 

1 
R(s,e) is an analytic function of s for Res<  -- valued in the space of continuous 

m 

operator from H l to H l+~ and" 5) d~R(s,e) is uniformly bounded 
' ds tl-(n/2)-cq(n/2)+ct 

for small e. 
We have then the estimates iii) of the theorem. 
From the above discussion and (2.5) we have 

rp 
Ks(x, A + A;) = Ks(x, A) + F~ ~JK(x, ~(s)) + e ~ + ~K(x, R(s, e)). 

j 1 

?1 
This equation has been proved for R e s < -  m' since (A+A'y,  A s and Tj(s) have 

continuous kernels for these values of s. Moreover, Ks(x , A + A'~) and Ks(x, A) 
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admit  meromorphic  extensions to the whole complex plane with poles only at 
-n+j  

s = , j e N ,  unless they are non-negative integers, and K(x, R(s, e)) is analytic 
m 

in s for R e s <  --.1 These continuations will be denoted by Fflx, s). 
m 

Finally, it is easy to see that 

i ! )s ( )~t_A)_IAI( .~j_A)_ ld;." T 1 (S) = 2~- 

Thus ii) follows. Q.E.D. 

Remark. We don't  know if the hypothesis ordAj < m can be dropped. 
Summarizing, our main result is 

Det(A + A'~) = Det(A) e x p -  [eft'(0) + e2fj(0) + . . .  + e¢f/(0) + 0(e ~+ ~)], (2.7) 

where 

ffls) = j Tr(Fflx, - s))@x, 
M 

with Fflx, s) = g(x,  Tfls)) = K x, ~ r 

J 
Cfl2) = ~ By.().), and B].(2) the coefficient of d in the expansion of 

n = l  

[e(2I-A)- 1A 1 + g 2 ( ) c I - A )  1A 2 + . . .  + g P ( ~ I - A )  - lApin .  

Remark. If Res is large enough to have ~ s = R e [ m ( - s - 1 ) ] + o r d A l < - n ,  
A -s-  1A~ is an integral operator with continuous kernel, and then of trace class, 
since it is pseudo-differential of order /3 .  So, for these values of s 

fl(s) = - s Tr(A-S-  1A1 ) (2.8) 

[if s is such that fls > - n ,  f,(s) is the analytic continuation of the right hand term in 
(2.8)]. 

Analogously, if A 1 . . . .  ,Aj commute with A, the function fi(s) can also be 
considered as a trace. For  instance, if A 1, A 2 commute with A, 

T i f2(s)= r [ ~  !2-*((21 - A)- lA2(2I  - A) -1 

+ (2I-- A ) [ A 1 ( 2 I -  A)- ~A~()~I- A)- ~)d.)~] 

= T r [ - s A - S  1A2]+ T r [ - s ( - s  - 1 ) A - s -  2A2], 

if 

R e [ m ( -  s -  1)] + o r d A  2 < - n, 
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and 

Re[m( -  s -  2)] +2  ordA 1 < - n .  

d z 
Example. For M =  S 1, A -  dx 2 + P, being P the orthogonal projection on the 

d 
constants, p = l  and A l = i  ~ .  We have that ((s ,A)=t+2((2s)  [((2s) is the 

numerical Riemann (-function], and then Det(A)=(Dc) 2. 
We obtain 

~2k 
logDet(A+eA~)=logDet(A)-  ~ ~-((2k)+R, . ,  

k = l  

since 

J£(O) = / 0 if k is odd 

t ((k) if k is even. 

It can be proved that R r ~  o , and then 
r~J3 

Det(A + eA1) = 
(2~) 2 

v(1 - e)F(1 + ~)' 

3. Non-Invertible Operators 

The above definitions and proofs hold only for an invertible operator A. 
Otherwise, i.e. when A admits 2=-0 as eigenvalue, any natural definition for 
determinant of A should vanish. However, it is interesting to keep the "product" of 
the other eigenvalues. This fact leads us to introduce the following generalized 
definition 

Det(A + ~i) 
Det'(A) = lira c~ N , (3.1) 

where e is a real positive parameter, and N = dim KerA (i.e. the dimension of the 
null set of A). We are going to prove that (3.1) is an adequate definition : we shall 
see that Det' (A) coincides with Det (A) if A is invertible, and in general, it coincides 
with Det(A+Pk,rA), where Pk~rA is the orthogonal projection on KerA. Def(A) 
can also be thought of as the regularized determinant of the operator A/(KerA) ±. 

Proposition. Let A be as in the theorem in the previous section, but not necessary 
invertible ; if A admits a complete orthogonat set of eigenfunctions, then the limit 
(3.t) exists and 

Det'(A) = Det(A + PkerA) • 

Proof If N = 0 ,  the result follows from Corollary 2, taking p =  1 and A 1 =I .  
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If N > 0 ,  note that for sufficiently small ~, A+o:I  is invertible and then 
n 

De t (A+eI )  is well defined. On the other hand, we know that for R e s > -  
m 

¢(s, A + ~I) = 2 (2j + ~)-s + N~-S,  
Aj~O 

and 

then 

~(s,A+Pkera+~I)= ~ (2j+~)-~+N(l+c~) -s,  
2 j r 0  

~(s, A + cd) - Ne -s = ~(s, A + PkerA -[- ~ I ) -  N(1 + c~)-s. 

Since both terms have analytic continuations to a neighbourhood of s=0 ,  and 
from the continuity established in Corollary 2-i) we have 

lim ~'(O,A+o:I)+Nlno~ = lim ~'(O,A+PkcrA+C~I)=~'(O,A+PkerA). Q.E.D. 
~--+0 ~--*0 

Note that for N =0  the hypothesis on the existence of a complete orthonor- 
real set of eigenfunctions is unnecessary. 

4. An Application of the Method: Chiral Changes in Fermionic Variables 

Recently Fujikawa [3J has shown that the Euclidean path-integral measure for 
gauge theories with fermions is not invariant under chiral transformations, and 
that it gives rise to a Jacobian related to the Adler-Bell-Jackiw anomaly [4]. In 
Fujikawa's work the Jacobian arising from the ys-transformation was regularized 
by means of some particular procedure, but such a choice appears not to be 
completely justified. More recently Andrianov, Bonora and one of us [5] have 
stressed the role played by the gauge invariance in Fujikawa's choice of the 
regularization procedure. 

In this section we are going to apply the approach we developed in the 
preceding sections in order to give a more rigorous derivation of Fujikawa's result 
and to clarify some related points. 

We are going to assume that the fields behave at the infinite so that it is 
possible to compactify to S" by stereographic projection (see for example [6]). 

Let us consider the "partition function" for Dirac fields coupled to an external 
SU(N) gauge field A u 

Z(D) = ~ ~ ~P~ ~ exp { - ~ ~ ( ~ -  ira) tI'dx}, (4.1) 

where the Euclidean Dirac operator is D = - i 7,(3 ~ + A ~) = D*, with A u = T"A~ and 
~*, = 7,, (T a are the N 2 - 1 antihermitian generators of the gauge group). We shall 
denote by D m the invertible operator D m = [9-ira. 

According to Berezin's integration rules I-7], the path-integral in Eq. (4.1) is 
formally the determinant of the operator Dm. But, as it is well known, it diverges. 
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Then, it must be regularized preserving the gauge invariance of the theory. Under a 
gauge transformation f2, we have 

A~,--*f2A~,f2"- 1 _ (St,~)f2-1, 

7 t ~ f 2 ~  and 7 ~ - ~ O  i.  

Then we have to demand that 

Zreg(ODO- 1) = Zreg(D). 

We can adopt the { function regularization technique [1] : 

Z~g(D~) = [Det (DmD*)] 1/2 __ e x p ( -  ½{'(0, g)2 + na2I)), (4.2) 

since if we take into account that the eigenvalues of OD~O- ~ and D~ coincide, it 
follows immediately from the series (1.1) that 

Det (t'2DmD*~l- 1) = Det (D~D*). 

If we perform the infinitesimal linear change of variables : 

~=f2sZ and ~=~f2s ,  (4.3) 

where f2 s = 1 +e75~(x), in the path integral defining Z(Dm) of Eq. (4.1), we shall 
obtain 

Det(D,,Dm) = 2 2 * J Det(t2sD,f2sD,,Os), (4.4) 

where J is the "Jacobian" associated to the linear transformation (4.3). If the 
operators were finite-dimensional, the usual properties of determinants would lead 
to 

logJ = - 2 log det(t25) = - 2eTr(TsqS), (4.5) 

and the Jacobian would depend on nothing but t25. This will not necessarily occur 
in the oo-dimensional case: through the regularization the Jacobian can depend on 

too. That is the reason we call them anomalous Jacobians. Note that in our 
approach J is finite from the beginning, since it is the quotient of two regularized 
determinants, as opposed to Fujikawa's method where it must be regularized. 

Under the transformation (4.3), the operator D~ transforms as 

D,.-~f25Dmf25 = D,. + ~;(y 5 qSD,. + D,.@/5) + O(e2). 

Then 

2 g: _ _  g~ g @ ~ (2 D f2 D (2 D D +g(2D i' ~D + D  D y q5+t qSD D ) 5 m 5 rn 5 -  m m m 5 rn m m 5 5 m m 

+ 0(~ 2) = D 2 + nazi + eA 1 + O(e2) • 

Therefore, from (4.2), (4.4), and (4.6), we obtain 

logJ = ½~'(0, (0 2 + nazi) + eA 1) -  ~'(0, ~2 + na2i)" 

(4.6) 



372 R .E .  Gamboa-Saravi,  M. A. Muschietti, and J. E. Solomin 

Using now the results of the corollaries of Sect. 2, we obtain 

e d  
+m I) (2Drn75¢)Drn+DmDm75d?+75¢oDmDrn)}]s=O log J -  2ds[STr{ (02  2 -s-1 , , , 

d 2 
= - 2e~s-s [sTr {(0 +rnZI)-S75¢o}]~=o . (4.7) 

Yr {...} can be written as 

tr(K_ s(X, 0 2 + m2 I)7 5~ )dt~ , 
M 

where tr stands for the trace of the color and 7-matrices. Since K s is analytic in a 

d T neighbourhood of s =0, Sdss r {...} ~ 0 s  o . Then, (4.7) reads 

logJ = - 2eTr {(0 2 + m2I) - s75dP}ls = 0. (4.8) 

Now, it is clear what is going on. The naive limit would lead to Eq. (4.5) as in the 
finite-dimensional case. But the trace of 75~b(x) does not exist, so (4.8) must be 
evaluated for sufficiently large Re s, and then analytically extended to s=0.  
Roughly speaking, one can say that the operator (02+m2I)  -~ regularizes the 
trace. In this process some dependence on this operator could, and it will, remain 
after the limit. It is important to notice that, in our evaluation of J, the regularizing 
operator has appeared naturally by adopting from the beginning the gauge 
invariant ~-function regularization procedure. 

If we write 

0(o+ 
(4.8) gives 

l ogd=  - 2 e  y [ K o ( D - D  ÷ + m 2 ) - K o ( D + D  - +m2)]c)(x)d#x. (4.9) 
M 

The Ko's can be evaluated after a rather lengthy but straightforward com- 
putation by means of Seeley's [2] formulae, taking into account that 

0 2 _D~Du 1 ~, v = + ~ [ 7 , 7  ]Fu~. 

Then, we finally reobtain Fujikawa's result for QCD4: 

log J =  8~z2~trF*vFU~c~dx. (4.10) 

In the case of QED 2 the anomalous Jacobian satisfies 

~e,~F~Odx. (4.11) log J =  - 2~n 

Note that (4.10) and (4.11) could also have been obtained from (4.8) as an 
application of Atiyah, Bott, and Patodi results [8]. 
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Note added in proof: After we sent this paper for publication, one of us (M.A.M.) has proved that 
if {A,:} is a family of pseudodifferential operators depending analytically on the parameter e and 
ord A, <ord  A o - m  for small e, then Ks(x, x, At) is an analytic function of e, in a neighbourhood of 

1 
e=0.  for Res<  --. Nevertheless, in this case, a formula such as (2.8) has not been found [9]. 
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