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Summary. We present two a-posteriori error estimators for elliptic partial dif-
ferential equations, when we use a mixed method. One is based on a adequate
evaluation of the residual of the finite element solution and the other on the
solution of a local problem. We prove their equivalence with the norm of the
error, when the data is locally smooth.

1. Introduction

Several a posteriori error estimators have been introduced for the approximation
by finite element methods of second order elliptic problems. Many of them are
defined by evaluating in some way the residual of the finite element solutions,
or by solving local problems for the error ([4], [1], [11], [2],[3], [12], [13]).

In many applications it is convenient to use mixed methods, which approx-
imates simultaneously the original scalar variable and its gradient. Many finite
element spaces have been introduced for this case, such as those of Raviart-
Thomas [10] and Brezzi-Douglas-Marini [6], for example. Error estimators for
mixed finite element methods have been introduced and analyzed in [11], [5],
for the Stokes equations. Although the structure of that problem and the mixed
formulation of second order scalar problems is the same, a straightforward ex-
tension of the techniques developed for the Stokes problem does not work in this
case. Moreover, for the equation treated here it is possible to estimate the error
for the vector variable (usually the most important) independently of the scalar
one [9]. For this reason it is interesting to look for estimators only for the error
of the vectorial variable.

In this paper we define estimators for the Raviart-Thomas and Brezzi-
Douglas-Marini spaces (Sect.2). The first type of estimators (Sect.3) is based
on the computation of adequate norms of the residual. We prove its equivalence
with the error, under some conditions of local regularity of the data. In Sect. 4,
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for the Raviart-Thomas space of lowest degree, we define an estimator, which
it is based on the solution of a local problem. By assuming that the solution in
the Brezzi-Douglas-Marini space of degree one approximates the exact solution
better than that in the Raviart-Thomas space, we prove that this estimator is
equivalent to the error.

2. Description of mixed method and finite element spaces

Let 2 be a bounded and simply connected polygon in R? and let u be the solution
of the problem

—Au=f in 2
@.1) { u=0 on0f2
In many applications [7], the variable of interest is & = —Vu and for that reason

it is reasonable to use a mixed finite element method which approximates o and
u. The problem (2.1) is decomposed into a first order system:

oc+Vu=0 in 2
2.2) dive=f in {2
u=0 ondf

and the correspondent weak formulation is

2.3)

(o, 7)—(div 7,u)=0 V1T € H(div, f2)
(dive,v)=(f,v) Yv € L*(£2)

where ( , ) denotes the L2-product, and

H(div, 2) = {7 € (L*(2))* :divT € L*(2) }

We shall use the standard notation for the Sobolev spaces H” (D), their norms
| lm.p and seminorms | |, p.

Let .7, be a regular family of triangulations of {2, as usual / stands for the
maximum meshsize; i.e., there exists a minimum angle smaller than all the angles
of all the triangles of all the meshes.

We shall use ¢, ¢, ¢, etc. to denote generic constants not necessarily the
same at each ocurrence. In general these constants only will depend on the
minimum angle but not on the meshsize #.

The Raviart-Thomas spaces [10] are defined for £ > 0 by
RT* = v}k x Wk, where

Vh = {T S H(diV, _Q) . T|T S Pk(T)+XPk(T) },
wi={ve L2(2):v|r € P(T)}

and where P;(T") denotes the spaces of polynomial of degree less than or
equal to k and Py (T) = (Px(T))?

The Brezzi-Douglas-Marini spaces [6] are defined for £ > 1 by
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BDM* =V} x WF, where
Vi ={r e Hdiv,2): 7|r € P(T) },
Wi ={velX(2):vlr € P_y(T)}.

The discrete problem is then given by: Find (o, u,) € V) x W} such that

(op,7)—(divT,up)=0 vr e vk
2.4
(dive,,v)=(f,v) Yo € Wf
Let €, = o — o, denote the error of the vector variable.
Let 7 € H(div, 2) such that divr = 0. Then 7 = curl ¢ , with o € H'(£2).
In this case, from (2.3) we obtain

(E/HT) = _(U/chrl 410) = Z |:—(r0t0'h,(p)7‘ - /8 gpo'htil
T

Te7

where for each triangle T, t is its unit tangent vector.
For each interior edge / of the triangulation.7; , let [o,.¢ ]; denote the jump
of .t across the edge / .
lont 1 ifl g o2
Let J, =
2(op.t) ifl COf2
Whit this notation we may write the residual equation:
For 7 =curly € H(div, (2)

1
(2.5) (en,7) = 2 —(rotay, P)r — 5 Y /[ Ji so]
Te 1CoTr

Given an integer k, let P} be the L? -projection onto W}. Since dive, €
Wk, from (2.3) and (2.4), we see that

(2.6) dive, =f — Pyf, for o, € RT* or o, € BDM*"!

3. Error estimators based on the residual

First we work with the RT*-spaces, k > 0.
For any T € .%,, we define

G.1) g =T lrotewll§ -+ 5 > 1Iill5,
lcoT

where |T| and |/| are the area of T and the length of /, resp. and let

(3.2) =3 )2

Te%
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Theorem 3.1 There exist two positive constants ¢ and c¢;, only depending on the
minimum angle of the mesh such that

1
(3.3) lenllo.e < el Gz +ITIIIf = PEFI3 ]2
TeF
(34) 1 < ellenllo,e

Proof. We first prove the upper bound (3.3). Since €, € L?({2), we may de-
compose it as €, = Vp +curlp, where p € H}({2) and ¢ € H'(£2). Then

Heh ”(2),() = (6h ) VP) + (eh ) Cl]l'l(p)

Since p € HJ(£2), Pkf € Wk, using (2.6), we get

(e, Vp) = —(diver,p)=— > (f —Pif.p — Pip)r
TeF
1
3.5) < e Y TR = Pifllorlph s
TeS,

Let o' € £L,(2)={w € H'(2) : w|r € Py+1(T) } be an interpolant of
such that

1
—PMor <c|T|2|pl, 7+ VTEF
(3.6) lo = llor <elT2lelyz V7€ 7
le —@'llos <clllzlgl, 7 VICOT

where 7 = J{T* €.7% : T and T* have a common vertex }

(" may be, for example, the Clement-interpolation [8].)

Since curl ' € th, then (e, curl ') = 0. By using (2.5), and (3.6) , we
may write

(€n, curlp) = (e, curl(p — ')

> |—totono—Hr =1 > [Jle -

TeF 1cor’
1 1
(3.7) < > LelotanllorlTI2leliz+3 Y clilloalti2lel 7]
Te% 1Cor
Since |p|i.r < |lexllo.rs |¢li.r < |l€xllo.r and the number of triangles in T

only depends on the minimum angle of .7, by using (3.5) and (3.7) we arrive at
the desired estimate (3.3).
In order to proof (3.4) we use the following lemma:

Lemma 3.1 Let T € .%,. Given qr € LX(T), p1.r € L*(1),] C OT, then 17 €
Py3(T) such that

&r,r)r =(qr,r)r Vr € P(T)
(38) Jirs= [rs v P

Pr=0 at the vertices of T
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1
(3.9) [brllo.r < ellgrlior+ Y H2lpr
1COT

0,1)

where c only dependends on the minimum angle.

Proof. Clearly (3.8) is a square linear system with (k + 1)(k +2)/2+3(k +2)+3
equations and unknowns. Easily we prove its uniqueness by considering the
case gr = 0 and p; 7 = 0 [ C OT. Moreover, we also prove that if f/ Yrs =0
Vs € Pr1(l), then ¢r|; = 0. Finally (3.9) follows by standard homogeneity
arguments. O

We apply the lemma for gr = —|T|rotoy, € Pi(T) and p;r = —|l|J; €
Prii(l) in each T € 7. Let us define ¢ such that ¢|7 = 7. Since 1) is
piecewise polynomial and continuous, then ¢ € H'(§2). By using (3.9) and a
inverse inequality

1 1
(3.10) leurl o, < c(IT|2 [rotanyllo.r + Y 112 ]1J;
leor

0,0)
This, in conjunction with (3.8) and the residual equation (2.5),yields

=Y [T rotonl3r+5 > [IABI= D [~(otos, ¢)r—

TeF [CcoT T e
Y [aur= Y @anvr < Y lefor fourtvlor <
icor ! TeF T ¢ J7h-

1
t)2llenllo. < cnllenllo.c

<c( Y (T rotaull};+3 D 1] |l]

Te.% I cor
This completes the proof. O

When the data f* is locally smooth, then the estimator is equivalent up to
higher order term to the error. In fact, we have the following theorem.

Theorem 3.2 Let us assume that f|r € H*"\(T) VT € .7 Then there exists a
positive constant ¢ such that

(3.11) ll€n ]

0o <c |n+r? Z i1,

Te%

Proof. By using the approximation properties of Pf, by (3.3) we obtain (3.11).
O
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Remark 3.1 Let us assume that there exists a triangulation .7~ such that f|r €
H*I(T) VT € .7, and let us also assume that all the triangulations .%, are
refinements of .7 . If there exists a constant ¢ > 0 not depending on / such that
ll€nllo.2 > c h**!, then for i < h*, the estimator is equivalent to the error.

Let us now consider the spaces BDM**! k > 0
For any T € .%,, we define

7 =T rotonl3 -+ 3 > 13, +ITIIf = PEFIR
| lcor
(3.12) 2

n=> n

TeT;

Theorem 3.3 There exist two constants cy, c; only depending on the regularity of
the mesh such that

(3.13) ll€nllo,2 < cim
2
(3.14) n<alledoet | DT =PSB | )
TS,

Moreover, if f|r € H"X(T), VT €.% , then there exists a positive constant
¢ such that

1

2

(3.15) n<cenllog+h [ D flinr | )
Te%

Proof. The proof of (3.13) is identical to (3.3).

By calling niT =|T|||rotoy, ||37T + Z 2] |7 H(Z)J and by repeating the proof

1cor
of (3.4) we obtain

(3.16) S nir<clealls

TeF

It remains only to analyze the term 13 = |T|||f — P{f1[5 1-
Let Biwa(T)={p € Pi+4(T): p =0 on OT}. We use the following lemma:

Lemma 3.2 Let T €.%, .Given g € L*(T), then 3! p € By.4(T) such that

(»,Nr=(g,")r Vr € Pi(T)

(3.17)
lp

lo,r < cllgllo,r c independ. of h
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For each T € .7, , we select g = |T|(f — Pff). Since |p|ir < ch 'pllo.r,
by using (3.17) we arrive at
1
pllo.r < el|T12mr
phir<cmr

Since p € HJ(2) ,Pf*'f — Pff € Pyi(T) by using (2.6) we may write

S omar= Y _UTI( = Pif.f = PE e +ITI(f = Pif.PEf = Pif)r]

TeF TeF

= > UTI( = Pifof = P e+, PEf = Pif)r]

TeZ
= > I = Pifof = PE O + (oo f = PiDr+ @ P f = 1]
TeZ,
= > UITI¢ = Pifof = PO = (Vp,en)r + (@, P = f)r]
TeZ

1 1
<c Y [mr T2 = P Mo +mrllenllo.r +morITI2 If = PFf]lo.r]

TeF
Hence
(3.18) domr<clleldo+ > ITII = PFYI3 1]
Te TES

By (3.16) and (3.18) we obtain (3.14).
Finally, by proceeding as in Theorem (2.2) we prove (3.15). O

Remark 3.2 If there exists ¢ > 0 not depending on h such that ||€; [|o.o > ¢ h¥*2,

then, analogously to the case of the RT*-spaces, the estimator is equivalent to
the error.

Remark 3.3 The lower bounds in (3.4) and (3.14) are indeed of a local character.
In fact it could be proved that

(3.19) nr<c | > lel s
T*eT

To do this, Lemma 3.1 should be applied to a lightly choice of g7 and p; 7.
(gr=0inT* CT/T and p; 7=0 onlCT/T)

(3.19) shows that the estimator 77 can be used to determine the triangles to
be refined since a big local estimator 77 implies a big error in 7.
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4. An error estimator based on the solution of a local problem

For the space RT?, it is simply to define a second estimator from a local problem,
which has the same structure as (2.5). With this purpose we define an adequate
discrete space. For the special case of the space RT°, rota;, = 0, and (2.5) may
be written as

@D (en,m)=) (—; Z/IJM) for T = curl ¢ € H(div, )

TeT, Icor

Let IT;, be the projection-operator onto R7° [10] such that, for 7 € H(div, £2)

(PP (divT),v) = (divIT,T,v) Vv W
that is
(divr,v)y = (divI,T,v)r Yv e Py(T)
It is known that [8],
4.2) |7 — IhTlor <chl|thir if 7|y € (YT

Let S°={r € BDM! : II,7 = 0}
In particular, for 7 € S ,since divT € V) we observe that divr = 0. Let
PXT)={p € Py(T): ¢ =0 at the vertices of T}

Lemma 4.1 S°={curly : o € H'(2): p|r € PXT)}

Proof. Let T € §° . Since divT = 0 there exists ¢ € H'(§2) such that T =
curl p, and |r € Po(T). For each edge / C OT, let x; denotes the midpoint of
[, and 7 its unit outer normal vector.

Since IT,T = 0, then 7.n9(x;) = 0. But 7.n(x;) = Ve.t(x;) = 0.Hence, by
choosing ¢ such that it vanishs at one of the vertices of T, it must vanish at all
them.

On the other hand, if ¢ € H'(£2) : ¢|r € PX(T), then T = curlp € BDM!,
and 7.1(x;) = 0. Then IT,7 =0, and hence 7 € S°. O

Let Sy = {curl ¢ : p € P)(T)}.
We define the following discrete problem:
To find ¢, € PY(T) such that

4.3) (curloy, curlp)r = =) Z Jio | Yo € PY(T)
1cor’

There exists a unique solution ¢;. Let ey = curl ;. Then ey € Sy. We define

ec HST celr=er

Let 0, € BDM! be the solution of (2.4).
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Let us suppose that o, approximates better than o, that is, there exists a
positive constant v < 1 such that

4.4 loz —allo,e < vllenllo,n

This condition can be seen as a saturation assumption in the sense of Bank-
Weiser [4]; that is, we assume that a higher order method gives a better ap-
proximation than a lower order one. This is (assimptotically) the case when the
solution u € H>"(£2) (e > 0). In practice, when reasonably refined meshes are
used, (4.4) is always true.

Then we have the following theorem.

Theorem 4.1 Under assumption (4.4), then there exist two positive constants ¢
and ¢y, only depending on the regularity of the mesh and on v such that, for
h<h*

(4.5) lenllo.2 < ci1llello,e

(4.6) lello,2 < c2 [|enllo,e

Proof. |enllo2 < llo — a2l * o2 — oullo,e-

Let €, = 05 — 0, € BDM!. By subtracting (2.4) from (2.3), and by using
(2.6), we obtain (o0 — 0,,€) =0

Moreover, since div(I],(€y)) = P,?(div €) =0, then (e, I1;€;) = 0.

€ — I e; € S°, because €, — I1,e; € BDM' and II,(e; — II€;) = 0. By
Lemma 4.1, there exists ¢ € H'(£2) ,p|r € PY(T) such that curly = € — Il €.
By using (4.1), (4.2) and (4.3) we may write

lellf.0 = (02— 0,€)+(er €)= (e, €2 — I}€&)
= Z - Z /JHP: Z(enez — Ile)r
rez  1cor’! e
< Y llerllor le2 = Muexllor < Y cllerllor i lealir
TeF, TeZ
< ¢ Y lerllorllellor < clleflo.e llello.o
TeT
Hence
4.7) le2llo,2 < clelfo,s

By (4.4) and (4.7) we arrive at

ll€nllo,2 < ll€nllo,2 +clello,e
and, since v < 1 we obtain the bound (4.5).
By the definition of the estimator (4.3)

(48) S llerlzy = 3~ (Z /, som)

Te% Te 1CoT
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For each edge / C T1 N T, let [¢;]4 = ; (SOTI/I + SOTZ/,) -that is, the average
across the edge -. [p/]4 € PY(I). Then, we may re-write (4.8)

(4.9) dolerlg =" -3 (Z /[@I]Ach)
1cor !

Te Te%

For each [, let ¢y € H'(£2) be the piecewise quadratic function such that
1r(x;) = 1 and vanishes at all nodes and remaining midpoints of .7, and we
consider ¢ =", [¢;]4(x;)¢;. Then ¢ € H'(£2) and satisfies

(4.10) /son:/[soz]AJz 1car VT e
1 l

Moreover, since ¢, € PY(T;),

leaCenl < S ler, Dl + e, &)
@.11) < eI 2 llenloon +llerlo.on]
and
@12)  llerloor < ch2lerlir=ch2lerlor foreach T e .7

By using (4.10)-(4.12) and reminding that ||curl;|jo.r < ¢, we obtain

IN

|eurl pfo,r

Z |[pr1aCen)| [|eurd ey [fo,r

lcor

¢ D ller

T*CT

(4.13)

IN

0,7

We return to (4.9). Since the number of triangles in 7 only depends of the
minimum angle, by using (4.10) ,(4.1) and (4.13) we obtain

> /lsDJz> =Y (e, curlp)y

1CoT TeF

> lerl3r = Z—;(

TEeZ TeA

(4.14)

IA

> llenllor lleurlollo.r < ¢ llexllo.c llello.
TeF

Which proves the theorem. 0O
Remark 4.1 The lower bound in (4.6) is also of a local character. It can be easily

shown that |ler||o,r < cnr. So, because of (3.19), the statements in Remark 3.3
are also valid for this estimator.
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5. Conclusions

We introduce estimators for the Raviart-Thomas and Brezzi-Douglas-Marini
spaces. These estimators are defined by means of evaluations of the residual,
in the same way as those by Babuska-Miller (for divergence type) and Verfurth
(for the mini-element discretization of the Stokes equations). These estimators
are equivalent to the error, without assuming neither additional regularity of the
solution nor any particular structure for the meshes.

In particular, for problems with corner singularities, the results are valid for
those typical meshes obtained when adaptive mesh-refinement techniques are
used. Actually, we can prove that we obtain local lower bounds for the error
of the numerical solution. These results are analogous to Babuska-Miller’s and
Verfurth’s ones for their problems and methods.

For the space RT°, we define other estimator, wich is similar to Bank-Weiser’s
one, in the sense that is based on the solution of local problems.This estimator
is also equivalent to the error under a saturation assumption. Once more, this
result is similar to that obtained by Bank-Weiser for their estimator.
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