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This is the first in a series of papers addressing the phenomenon of dimensional transmuta-
tion in nonrelativistic quantum mechanics within the framework of dimensional regulariza-
tion. Scale-invariant potentials are identified and their general properties are derived.
A strategy for dimensional renormalization of these systems in the strong-coupling regime is
presented, and the emergence of an energy scale is shown, both for the bound-state and scat-
tering sectors. Finally, dimensional transmutation is explicitly illustrated for the two-dimen-
sional delta-function potential. � 2001 Academic Press

1. INTRODUCTION

It is well known that, for various models of quantum field theory, a mass scale
emerges spontaneously through the renormalization procedure, even when the
original theory has no dimensional parameters. This phenomenon, called dimen-
sional transmutation, was first analyzed in the 1973 seminal work of Coleman and
Weinberg [1], where the scalar field of massless scalar electrodynamics was shown
to develop a nonzero but arbitrary expectation value; as a consequence, the par-
ticles of the theory acquire nonzero physical masses [2, 3]. In short, the
Coleman�Weinberg mechanism induces radiative corrections to the Higgs poten-
tial, thereby suggesting the relevance of dimensional transmutation for the genera-
tion of particle masses [3, 4].
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The main goal of this paper is to present a thorough investigation of dimensional
transmutation in nonrelativistic quantum mechanics, with a threefold purpose in
mind: (i) at the conceptual level, to show that quantum field theory is not a pre-
requisite for its existence; (ii) mathematically, to characterize the class of scale-
invariant potentials, as well as the subclass of potentials that display dimensional
transmutation; and (iii) at the practical level, to develop useful tools for the treat-
ment of a certain class of singular quantum-mechanical potentials.

In particular, our work offers additional insight into two problems that have
been extensively studied in the literature: the two-dimensional delta-function poten-
tial [2, 5, 6] and the inverse square potential [7�12]. Parenthetically, the family of
delta-function potentials that is discussed in this article is actually included in a
larger class of singular potentials whose apparent phenomenological usefulness has
been recognized for a long time, since the introduction of pseudopotentials [13] in
the early days of quantum mechanics [14] and with subsequent applications of the
zero-range potential in nuclear physics [15], condensed matter physics [16],
statistical mechanics [17], atomic physics [18], and particle physics [5]. Likewise,
the inverse square potential is related to the dipole potential, which has found
applications in molecular physics [19]. Even though earlier research on the subject
had relied solely on traditional quantum-mechanical techniques, this situation has
changed in recent years, with the introduction of numerous applications of quan-
tum field-theoretic tools and renormalization theory to the same problems. Specifi-
cally, among the many applications related directly or indirectly to our singular
potentials, the following are worth mentioning: (i) the mathematical formulation of
the theory of pseudopotentials [20], which started with the works of Ref. [21] and
includes the technique of self-adjoint extensions [6, 22, 23]; (ii) the study of the
nonrelativistic limit of the ,4 theory, with the concomitant question of its triviality
[24]; (iii) the basic conceptual understanding of quantum field theory mechanisms
in the simpler framework of quantum mechanics, including standard regularization
and renormalization of the singular potentials mentioned above [6, 12, 25�30],
anomalies [6, 26, 29], renormalization group analysis [12, 25, 28, 31�33], and
effective field theory approach [30, 34, 35]; (iv) the analysis of (2+1)-dimensional
theories, including gravity [36], as well as Chern�Simons theory [37], the
Aharonov�Bohm effect [23, 38], and the dynamics of anyons [39]; (v) new
applications of contact potentials in condensed matter physics, e.g., for the quan-
tum Hall effect [40]; and (vi) the modern formulation, using effective field theory
[41], of the nucleon�nucleon potential [42], which has led to a plethora of quan-
tum-mechanical pseudopotentials [30, 43]. Our paper naturally follows the trend
set by this extensive bibliography.

The main focus of our work will be on the concept of dimension, a term that has
been extensively used in the physics literature to describe two conceptually distinct
ideas. The meaning to which dimensional transmutation refers is that which relates
to measurement and which characterizes the class of physical quantities that exhibit
a certain type of power-law behavior (dimensional homogeneity) with respect to a
given choice of fundamental quantities [44]. In what follows, we will use the term
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dimensionality to denote the exponents of the associated homogeneous behavior for
any given physical quantity [45]. At first sight, dimensional transmutation is
paradoxical, because it produces a scale in a problem devoid of dimensional
parameters, in apparent violation of Buckingham's 6 theorem of orthodox dimen-
sional analysis [44]. However, this paradox can be ultimately resolved by invoking
the dimensional arbitrariness intrinsic in the renormalization framework [46].

The other widely used acceptation of dimension refers to a geometric concept, a
property of the space where events take place (e.g., space-time in relativistic
physics). In this paper we will extensively exploit the trivial connection between
these two concepts, that is, that the dimensionality of an element of volume in a
given space, expressed in terms of units of length, is equal to its geometric dimen-
sion. This connection has been largely used in the renormalization of relativistic
quantum field theories, where it is further reinforced by the implementation of
dimensional regularization [47, 48]. Correspondingly, we will use dimensional
regularization as a natural technique that renders obvious the spontaneous genera-
tion of a dimensional scale for a scale-invariant theory.

Our paper is organized as follows. In Section II we discuss the meaning of dimen-
sional transmutation in terms of dimensional analysis and renormalization theory.
Section III is devoted to the concept of scale-invariant potentials in nonrelativistic
quantum mechanics, where generic properties related to scaling and scale symmetry
are derived. Section IV establishes a general framework for the regularization of
scale-invariant potentials based upon dimensional continuation; this procedure is
later extended to a renormalization scheme in Section V, where dimensional trans-
mutation is shown to arise in the strong-coupling regime. Finally, an application of
the theory is illustrated in Section VI, which deals with some aspects of the two-
dimensional delta-function potential. The conclusions of our analysis are presented
in Section VII. The appendices deal with the necessary results regarding D-dimen-
sional Euclidean spaces, Green's functions, and scattering.

Additional applications for rotationally invariant problems will follow in the
second paper in this series [49].

II. DIMENSIONAL ANALYSIS, RENORMALIZATION, AND
DIMENSIONAL TRANSMUTATION

The description of a physical system in the context of a given theory, either in
terms of a Lagrangian or of a Hamiltonian, includes a certain number of
parameters. Usually, their values may all be fixed from the start by the laws of
nature, in the form of ``constants,'' but one always enjoys the mathematical freedom
to make some of them become variable parameters as needed. Then, for the discus-
sion that follows, these parameters will arbitrarily be classified into two groups:
``constant'' or fundamental and ``variable'' or dynamical. By varying the variable
parameters one introduces a whole class C of physical systems, all characterized by
the same values of the ``constants'' [50].
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Fundamental parameters are those that are fixed constants for all the members
of the given class of systems. Needless to say, they are dimensional because
``fundamental'' dimensionless parameters amount to plain numerical constants.
Typical fundamental parameters of choice are the dimensional universal constants
of nature, for example, � and c.

The second group is composed of the dynamical parameters that acquire different
values for the different members of the class C. As an example we could mention
the masses of particles or the coupling constants of the interactions.

The reduction in the number of dimensionally independent quantities can be
accomplished by arbitrarily assigning particular numerical values to a subset of the
fundamental parameters. This procedure amounts to the selection of a generalized
natural system of units, in which the number of fundamental dimensions is reduced.
For example, in relativistic quantum field theory, it is customary to choose c=1
and �=1, so that the theory is described in terms of a single fundamental dimen-
sion��usually taken as inverse length 4=L&1, which is equivalent to mass,
momentum, and energy. Even though all the physical dimensions can be restored
easily at any stage of the calculation, it is clear that great simplification is achieved
in the dimensional analysis of various physical quantities.

Similarly, in one-particle nonrelativistic quantum mechanics, one has the freedom
to use � and m (where m is the particle's mass) as fundamental parameters that
define a particular generalized natural system of units; in this paper, we will choose
�=1 and m=1�2. Then, we will be left with only one fundamental dimension,
which we will take again as inverse length 4=L&1 or momentum. Consequently,
in what follows, we will define the inverse-length dimensionality q=dim[Q] of a
physical quantity Q as the exponent that expresses its physical dimension 4q in
terms of inverse length, that is,

q=dim[Q]=
4

[Q]
�[Q]

�4
. (2.1)

For nonrelativistic quantum mechanics, Table I summarizes the dimensionalities of
the most common physical quantities.

Let us now explore the consequences of the possible existence of dimensional
parameters. For a given physical system, characterized by a Lagrangian or a
Hamiltonian, oftentimes there exists at least one dimensional parameter, which can
be used to define a system-specific or intrinsic scale. To illustrate how this is done,
let us consider the nonrelativistic quantum-mechanical dynamics of a single particle
in one dimension, such that the external-interaction potential contributes only one
dimensional parameter *; for example, for an attractive power-law potential, one
may study the possible existence of bound states through the Schro� dinger equation

_&
d 2

dx2+sgn(;) * |x|;& 9(x)=E9(x). (2.2)
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TABLE I

Physical Dimensions of Various Physical Quantities

Physical quantity Ordinary dimensions ``Natural'' dimensions Dimensionality

Length L L &1
Time T L2 &2

Velocity LT &1 L&1 1
Linear momentum MLT &1 L&1 1

Angular momentum ML2T &1 1 0
Energy ML2T &2 L&2 2

Cross section LD&1 LD&1 &(D&1)
Wave function (normalized) L&D�2 L&D�2 D�2

Note. ``Natural'' dimensions are defined by the choice �=1 and 2m=1. The geometric dimension of
position space is D.

Dimensional analysis shows that dim[*]=l=2+;; then *1�l will define a basic
unit of inverse length or momentum. Any dimensional quantity Q of dimensionality
q will then be equal to *q�l, up to a numerical factor; similarly, a function Q(x) of
position (or Q( p) of momentum), with dimensionality q, will then be equal to *q�l

times a dimensionless function of *1�lx (or of *&1�lp). In particular, a characteristic
ground-state energy may be estimated as *2�(2+;). In other words, dimensional
analysis gives nontrivial information about the system.

The obvious statements of the previous paragraph can be summarized in the 6
theorem of dimensional analysis [44], which we state here without proof, with the
intention of generalizing it later in this section. Consider a physical phenomenon
described by M dimensional characteristic parameters a1 , ..., aM , such that R of
them are dimensionally independent. Then, given an equation

F(a1 , ..., aM)=0 (2.3)

involving these M parameters, there exist N independent dimensionless power
products 61 , ..., 6N of a1 , ..., aM , such that Eq. (2.3) is equivalent to

8(61 , ..., 6N)=0, (2.4)

with

N=M&R. (2.5)

For example, working in a natural system of units with only one independent
dimension, it follows that N=M&1, which describes the situation of the previous
paragraph.

But what happens if the system exhibits no explicit dimensional dynamical
parameter at the level of the Lagrangian or Hamiltonian? As we will see in
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Section III, such a system is scale-invariant. An example is the power-law potential
&* |x|&2(;=&2) because its coupling * is dimensionless. Then, naive dimensional
analysis is at a loss to make any meaningful predictions. In this case, if a new scale
arises (for example, a bound state under a scale-invariant potential), dimensional
analysis implies that it has the following properties:

v It is spontaneously generated, in the sense that it characterizes the solution
of a theory that is scale-invariant at the level of the classical Lagrangian or
Hamiltonian. This amounts to an instance of quantum-mechanical breaking of
classical scale symmetry��also called scale anomaly [11, 37, 51].

v It is totally arbitrary because no privileged value is defined a priori within
the theory. If it were not arbitrary, it would violate the 6 theorem in an irrecon-
cilable way.

This manifestation of an arbitrary and spontaneously generated scale in a scale-
invariant theory is known as dimensional transmutation [1].

In short, in the solution to a well-posed question within the scale-invariant
theory, a dimensionally transmuted scale B may appear spontaneously. How does
it come into existence in apparent violation of naive dimensional analysis? Our goal
is to disentangle the mechanism that leads to this transmutation. This will be
implemented by means of a regularization-renormalization procedure. The regu-
larization technique introduces a dimensional parameter +, in terms of which the
scale B is expressed. Thus, a dimensional transfer takes place, whereby a dimen-
sionless parameter * is ``transmuted'' into or traded for a dimensional scale B. This
simple process can be represented diagrammatically in the form

Initial problem Technique Solution

Lagrangian�Hamiltonian Regularization�renormalization Physical quantity
dimensionless arbitrary measurable

coupling * dimensional scale +
wwwwwwwwwwwww�

dimensional scale B

We conclude this section by stating the modification of orthodox dimensional
analysis needed to encompass this anomalous behavior. As discussed in Ref. [46],
the usual assumption underlying the 6 theorem is that the function F (a1 , ..., aM) of
Eq. (2.3) is uniquely defined, an assumption that breaks down when the Lagrangian
does not describe a single theory but a class of theories parametrized with renor-
malization parameters. This manifests itself in a theory that is ill-defined or exhibits
singularities of some sort, in which case the Lagrangian or Hamiltonian cannot
represent a complete description of the physics; thus, renormalization is needed.
When the number of independent sliding scales or renormalization parameters is _,
the required modification is of the 6 theorem is obviously

N=M+_&R. (2.6)
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Equation (2.6) states that the number of ``available'' variables is M$=M+_, rather
than M; in particular, it provides the necessary freedom to permit the emergence of
dimensional transmutation. The framework for deriving conclusions directly from
Eq. (2.6) will be referred to as generalized dimensional analysis.

III. CHARACTERIZATION OF SCALE-INVARIANT POTENTIALS

A. Scale Symmetry and Homogeneity
In this section we set out to define and characterize mathematically the class of

scale-invariant potentials V(r) in one-particle nonrelativistic quantum physics. In a
strict sense, we are referring to a physical system whose classical action

S=| [ 1
2 mr* 2&V(r)] dt (3.1)

is invariant under the scale transformations r � *r, t � {t (with *>0 and {>0).
This scale symmetry is satisfied if and only if each one of the two terms of the non-
relativistic action��the kinetic-energy term � dt mr* 2�2 and the potential-energy term
&� dt V(r)��are left unchanged. Due to the spatial and time dependence of the non-
relativistic kinetic-energy term, this invariance condition is satisfied only when
*2={ (obviously consistent with the dimensional analysis of Table I), while the
invariance of the potential-energy term requires that

V(*r)=*&2V(r). (3.2)

As Eq. (3.2) is valid for all *>0, the class of scale-invariant potentials is identical
to that of homogeneous potentials of degree &2. As we will see next, this is the same
condition to be satisfied when the potential does not exhibit any explicit dimen-
sional scale.

B. Dimensional Scaling in Nonrelativistic Quantum Mechanics

One-particle nonrelativistic quantum mechanics in the presence of a stationary
potential V(r) is described in the D-dimensional position-space representation of
the Schro� dinger picture via the solutions of the time-independent Schro� dinger equa-
tion, which in natural units reads

[&{2+V(r)] 9(r)=E9(r). (3.3)

The analysis and interpretation of the solutions to Eq. (3.3) will become more
transparent when the transition to its dimensionless version is carried out. This can
be accomplished by rescaling all quantities appearing in Eq. (3.3) by means of a
dimensional parameter +, which we will assume to represent an inverse-length
standard; then, + will satisfy the properties:
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(i) inverse-length dimensionality,

dim[+]=1; (3.4)

(ii) positivity,

+>0. (3.5)

In general, there are many possible characteristic scales that may serve as +: they
could either be intrinsic to the system or arbitrary scales introduced via regulariza-
tion. In any case, we will not be concerned with the multi-scale case, because our
ultimate goal is to analyze the extreme scenario where there is no intrinsic dimen-
sional parameter, but an arbitrary sliding scale + is introduced by the regularization
procedure. Then any physical quantity Q of dimensionality q will be equal to a
numerical coefficient times +q, whence its dimensionless counterpart will be defined
as +&qQ. If, in addition, the quantity is a function of either position or momentum,
it will be of the form +q times a dimensionless function of the dimensionless position

!=+r, (3.6)

or of the dimensionless momentum

?=+&1p. (3.7)

Correspondingly, dimensional analysis predicts that the potential energy function
(whose dimensionality is 2) should have a dependence on the dimensional
parameter + given by

V(r, +)=+2V(+r), (3.8)

for arbitrary +. In particular, one can define the reduced function V(!), via
Eq. (3.8), in the form

V(!)=+&2V(+&1! , +), (3.9)

or straightforwardly by specializing to the unit value of the dimensional parameter,
i.e.,

V(!)=V(! , +=1). (3.10)

The right-hand side of Eq. (3.8) displays the two sources of possible scale
dependence of the potential: the one associated with the dimensionality of V as a
potential energy (i.e., +2) and the one associated with the functional form of the
potential (as described by V(+r)). Equation (3.8) implies that

+
� |V(r, +)|

�+
=2 |V(r, +)|+r } % |V(r, +)|, (3.11)
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TABLE II

Dimensionless Counterparts of Various Physical Quantities in Nonrelativistic Quantum Mechanics

Physical quantity Symbol Dimensionality Dimensionless form

Position r &1 !=+r
Linear momentum p 1 ?=+&1p

Kinetic energy &{2
r 2 &{2

! =&+&2{2
r

Potential energy V(r) 2 V(!)=+&2V(+&1! , +)
Energy E 2 '=+&2E

Wave function (normalized) 9(r) D�2 8(!)=+&D�29(+&1!)

where the first term on the right-hand side is the dimensionality of the potential
energy and the second term represents the degree of the functional dependence of
the potential energy with respect to the given scale. For example, for a power-law
potential V(r) B r;, the functional dependence amounts to V(!) B !;, whence
V(r, +) B +2+;, which describes the total scale dependence of the potential energy
function under arbitrary rescaling. Notice that, for ;=&2, V(r, +) is independent
of +; i.e., it is scale-independent (see the next section). Table II gives a list of the
various dimensionless quantities of interest.

Rescaling of Eq. (3.3) with the parameter + yields

[&{2
! +V(!)] 8(!)='8(!), (3.12)

which describes an eigenvalue problem for the dimensionless eigenfunctions 8(!),
with dimensionless eigenvalues

'=+&2E, (3.13)

in a space of arbitrary dimension D. In addition, it is convenient to normalize the
wave function 8(!) with respect to its dimensionless argument ! , that is,

|8(!)|2 d D!=|9(+&1!)| 2 d Dr, (3.14)

a condition that yields the rescaling

8(!)=+&D�29(+&1!). (3.15)

As usual, the solutions to Eq. (3.12) should be separately obtained and inter-
preted for the bound-state and scattering sectors. Additional conclusions about
these specific problems will be drawn in Subsections V.B, V.C, and V.D.

C. Absence of Explicit Dimensional Scales and Homogeneity Revisited
Let us now characterize the class of potentials that do not exhibit any dimen-

sional scale, in a space of arbitrary dimension D. We will resort to the general
framework developed in Subsection III.B, where we considered potentials that
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depend upon only one dimensional parameter or none (once the choice �=1 and
2m=1 has been made); from Eq. (3.8), the position and dimensional dependence of
the potential energy are such that

V(+r, +=1)=+&2V(r, +), (3.16)

for arbitrary +. In general, the function V(r, +) may have a nontrivial (i.e., not
quadratic) dependence with respect to the parameter +, as displayed in Eq. (3.11).
However, those potentials devoid of explicit dimensional scales are independent of
any dimensional parameter +; then their functional dependence is of the form
V=V(r) rather than of the form V=V(r, +). We can also say that the second argu-
ment in V=V(r, +) is actually spurious. An explicit mathematical statement of this
independence is

�
�+

V(r, +)=0. (3.17)

Even though this may be taken as the primary definition, it is convenient to derive
a more illuminating form by just eliminating the spurious + dependence in
Eq. (3.16), i.e.,

V(+r)=+&2V(r). (3.18)

Equation (3.18), valid for +>0 (Eq. (3.5)), is identical to our earlier homogeneous
property (3.2). An alternative derivation of this remarkably simple property can be
obtained directly from Eq. (3.11) or by differentiation of Eq. (3.16) with respect to
+; then (after setting the arbitrary scale equal to unity),

r } %V(r)=&2V(r), (3.19)

a relation that amounts to Euler's theorem for a homogeneous function of degree
&2. In conclusion, the classes of scale-invariant potentials and potentials without
any explicit dimensional scale are identical.

So far our discussion has only focused on the dimensions but not on the
magnitude of the potentials. It is now due time to introduce a dynamical coupling
parameter * to characterize the ``strength'' of a given potential, according to

V(r)=&*W(r), (3.20)

where W(r) is a homogeneous function of degree &2.
The homogeneity displayed by Eq. (3.18) has a straightforward consequence on

the position dependence of scale-invariant potentials. In effect, writing r=r r̂, where
r̂ is the unit position vector, we conclude that

V(r)=r&2V(r̂), (3.21)
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so that the general scale-invariant potential has either one of the following two
forms:

(i) A generalized inverse square potential in any number D of dimensions,

V(r)=&*
v(0(D))

r2 , (3.22)

where the dimensionless function v(0(D)) explicitly depends upon the D-dimen-
sional solid angle 0(D)#r̂. In particular, v=1 corresponds to the ordinary inverse
square potential [7�12],

V(r)=&
*
r2 , (3.23)

and v=cos % amounts to the dipole potential [19],

V(r)=&*
cos %

r2 , (3.24)

where % is the polar angle (measured from the orientation of the dipole moment)
and * is proportional to the magnitude of the dipole moment.

(ii) A homogeneous pseudopotential of degree &2, for which the most
general form is

V(r)=&*rD&2$(D)(r). (3.25)

It should be noticed that Eq. (3.25) can be transformed into a number of alternative
forms involving the radial delta function; in particular, it is equivalent to $(r)�r and
$$(r) [52]. In this class, the two-dimensional delta-function potential

V(r)=&*$(2)(r) (3.26)

is the best known example, which we will analyze in Section VI in order to illustrate
our general theory.

Equation (3.21) provides the limiting form of the scale-invariant potential at
infinity,

lim
r � �

V(r)=0 (3.27)

(which is identically true for pseudopotentials, for any r{0). Equation (3.27) then
implies that all states with E�0 are scattering states for any scale-invariant poten-
tial. The sign of * in Eqs. (3.20)�(3.26) has been chosen so that *>0 corresponds
to an attractive potential, wherever this concept is applicable.
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D. Scale Invariance and Eigenvalue Spectrum

The Hamiltonian Hr associated with a scale-invariant potential,

Hr =&{2&*W(r), (3.28)

is homogeneous of degree &2 with respect to the position vector, that is,

H`r=`&2Hr (3.29)

for arbitrary `, because both the kinetic and potential energies have the same
property. From our analysis of the last section, this is another way of saying that

H! =+&2H!�+=&{2
! &*W(!), (3.30)

where

W(!)=+&2W(!�+) (3.31)

(cf. Eq. (3.9)), is a dimensionless Hamiltonian totally independent of any explicit
dimensional scale.

A straightforward consequence of the scale invariance implied by Eq. (3.29) is the
breaking of the discrete character of the bound-state energy spectrum for attractive
potentials. Let us now show this. First, the Hamiltonian (3.30) associated with a
scale-invariant potential is an example of a local operator. As is well known, the
representative Ar of an abstract local operator A is defined via

Ar$(D)(r&r$)=(r| A |r$) , (3.32)

which implies that

Ar�(r)=(r| A |�) . (3.33)

Equation (3.29) refers to a particular case of a local operator with scale dimension
s, defined via

A`r=`&sAr , (3.34)

for some exponent s and for arbitrary scalar `>0. With arguments similar to those
of Subsection III.C, it is easy to see that s=dim[Ar ]. Thus, the Hamiltonian of
scale-invariant potentials is a local operator with scale dimension s=2.

The statement we wish to prove is that, for any local operator with scale dimen-
sion s, the spectrum can only be continuous. In effect, if �a(r) is an eigenfunction
with eigenvalue a,

Ar�a(r)=a�a(r), (3.35)

25DIMENSIONAL TRANSMUTATION, I



then the rescaling

r$=`r (3.36)

implies that

Ar�a(`r)=`sa�a(`r), (3.37)

whence �a(`r) is an eigenfunction of the same operator with eigenvalue `sa. As this
should be so for arbitrary `, one concludes that:

(i) If a is a finite eigenvalue, then all real numbers of the same sign are eigen-
values.

(ii) The eigenvalue spectrum is continuous.

Of course, this is what should be expected on intuitive grounds, because if the
spectrum were discrete then one would be able to identify preferential scales
where none is defined a priori. For example, the rescaling r$=`r for the plane-
wave eigenstates eik } r of the scale-invariant free-particle Hamiltonian amounts to a
rescaling of the corresponding momentum k$=`k, whence all positive energies
E=k$2=`2k2 can be reached by continuously varying the parameter `.

Therefore, for the Hamiltonian of attractive scale-invariant potentials, the corre-
sponding implications are

(i) The energy spectrum is either not bounded from below or, if it is, it can
only start at E=0 and be of the scattering type.

(ii) The bound-state energy spectrum, if it exists, is continuous.

Thus, it is clear that, for a given unregularized scale-invariant potential, in addi-
tion to the continuous scattering spectrum with energies 0�E<� (as required by
Eq. (3.27)), there are only three possibilities for the bound-state spectrum:

1. Spectrum devoid of bound states.

2. Continuous bound-state spectrum with energies between E=&� and
E=0.

3. Singular bound-state spectrum with a unique energy level at E=&�.

The fact that no other cases are possible is just a consequence of the scale sym-
metry.

In other words, in the first category the potential is so ``weak'' that if fails to
generate any bound states; in fact, this situation is familiar: it is characteristic of
any repulsive potential. The subtlety lies in that a ``weak'' attractive potential
behaves in all respects as a repulsive one: it only has a continuous scattering spec-
trum extending from E=0 to E=�. As an alternative, the potential may be so
``strong'' that it produces an example of the second category, where it breaks down
both the existence of a lower bound and the discrete nature of the bound-state spec-
trum. It is well known that both cases (categories 1 and 2) are realized by the
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inverse square potential with weak and strong coupling, respectively [7�12]. Yet,
the singular case of category 3 provides an alternative for a ``strong'' potential��a
behavior exhibited by the two-dimensional delta-function potential [2, 5, 6].

With regard to scattering, one may use the fact that the theory is scale-invariant
and that the poles of the scattering matrix on the imaginary energy axis correspond
to the bound states. These facts imply that:

(i) When there are no bound states, the scattering matrix has no poles and
is manifestly scale-invariant, i.e., independent of the energy.

(ii) When the spectrum is singular (either categories 2 or 3), the scattering
matrix exhibits the corresponding singular behavior.

A remark about the need for renormalization is in order. A theory that produces
no bound states and a scale-invariant S-matrix (category 1) needs no regulariza-
tion. In effect, such theory displays no divergence whatsoever and, as we have seen,
its spectrum is identical in every respect to that of repulsive potentials, so that scale-
invariance is maintained even in the quantum-mechanical theory. Instead,
regularization and renormalization are needed for cases 2 and 3 above, an issue to
which we now turn our attention.

IV. DIMENSIONAL TRANSMUTATION VIA
DIMENSIONAL REGULARIZATION

A. Dimensional Regularization of Scale-Invariant Potentials

Let us consider a scale-invariant potential V(r) in D0 dimensions. The corres-
ponding D0-dimensional Schro� dinger equation is

[&{2
r, D0

+V(r)] 9(r)=E9(r), (4.1)

where {2
r, D0

is the D0 -dimensional Laplacian.
We have seen in Subsection III.D that if V(r) is of the scale-invariant type, then

its unregularized bound-state spectrum is either nonexistent or not bounded from
below. Therefore, the difficulty here resides in that, in the initial dimension D0 , the
problem is singular and has to be regularized.

In this paper we will use dimensional regularization, a technique originally
developed for quantum field theory [47, 48] and which we now adapt to non-
relativistic quantum mechanics, The D-dimensional generalization of Eq. (4.1) is of
the form

[&{2
r, D+V (D)(r)] 9(r)=E9(r), (4.2)
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where

V (D)(r)=&*BW (D)(r), (4.3)

with *B being the bare coupling constant (see Subsection IV.B), while W (D)(r) is an
appropriate generalization to D dimensions of the original D0 -dimensional poten-
tial, with the only constraint

lim
D � D0

W (D)(r)=W(r), (4.4)

and with W(r) defined by Eq. (3.20).
Of course, the whole purpose of this regularization is to produce a scenario

where the generalized potential is no longer scale-invariant in a dimension close but
not equal to D0 . In other words, we require that, for arbitrary ={0, V (D0&=)(r) not
be a homogeneous function of degree &2.

Even though the requirement above allows infinitely many possible generaliza-
tions, a particularly simple prescription can be developed by the use of Fourier
transforms, just like it is done in quantum field theory. It turns out that a simple
property of Fourier analysis immediately suggests the generalization: if f (r) is a
D-dimensional homogeneous function of degree ;, then its Fourier transform f� (k)
is homogeneous of degree &(D+;). With this property in mind, we define the
Fourier transform of the original scale-invariant potential,

W� (k)=F(D0)[W(r)]=| d D0r e&ik } rW(r), (4.5)

which we analytically continue to D dimensions with the prescription that, in
Fourier space, the D-dimensional functional form should be the same as the
D0 -dimensional functional form, i.e,

W� (D)(k)=W� (k). (4.6)

Finally a D-dimensional inverse Fourier transform F&1
(D) provides the desired

generalization in the position representation, i.e.,

W (D)(r)=F&1
(D)[W� (k)]=|

d Dk
(2?)D eik } rW� (k), (4.7)

where all the vectors are now D-dimensional.
The process represented by Eqs. (4.5) and (4.7) involves a dimensional continua-

tion that can be summarized in the following succinct expression for the potential

W (D)(rD)=|
d DkD

(2?)D eikD } rD _| d D0rD0
e&ikD0 } rD0W(rD0

)&kD0 � kD

, (4.8)
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where the subscripts D and D0 explicitly indicate the dimension of the correspond-
ing vector and the symbol kD0

� kD stands for the dimensional ``jump'' in momen-
tum space that defines the dimensionally continued potential. The whole process
can be represented by means of the commutative diagram

real space reciprocal space

D0 dimensions: W(r)=W (D0 )(r) www�
F(D0 ) W� (k)=W� (D0 )(k)

DD0
� D DD0

� D , (4.9)

D dimensions: W (D)(r)
F

&1
(D) W� (D)(k)=W� (k)

where DD0 � D is a shorthand for dimensional continuation from D0 to D dimen-
sions. Correspondingly, the degree of homogeneity of a scale-invariant potential is
transformed according to

W(r) W� (k)
degree=&2 www�

F(D0 )
degree=2&D0

DD0
� D DD0

� D , (4.10)

W (D)(r) W� (D)(k)
degree=&2+= �ww

F
&1
(D)

degree=2&D0

where

==D0&D. (4.11)

Diagram (4.10) explicitly shows that the D-dimensional real-space continuation of
the potential is not of the scale-invariant type, because its degree of homogeneity is
&2+= (with ={0), rather than &2.

For example, when the criteria above are applied to the two-dimensional delta-
function and inverse square potentials, one obtains the dimensional continuations
summarized in Table III [53].

TABLE III

Dimensional Continuations W (D)(r) for the Two-Dimensional Delta-Function and
Inverse Square Potentials

Potential W(r) Dimension D0 Dimensional continuation W (D)(r)

$(2)(r) 2 $(D)(r)|D=2&=

r&2 Arbitrary ?=�21 (1&=�2) r&(2&=)
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B. Dimensional Transmutation of the Coupling Parameter

In the analysis above we have defined the appropriate functional dependence of
the dimensionally continued potential but we have not spelled out the dimen-
sionality change experienced by the coupling parameter. This change occurs in
Eq. (4.8), when the dimensional ``jump'' kD0

� kD is performed, according to

[W (D)(rD)]=4D&D0[W (D0)(rD0
)]. (4.12)

Equation (4.12) amounts to the ``creation'' of a physical dimension L&(D&D0)=L=.
If the physical dimensions of the potential energy are to remain unchanged, then
the bare coupling constant *B should acquire the physical dimensions L&=, that is,
its dimensionality should become dim[*B]==. A convenient way of parametrizing
this dimensionality change is by the introduction of an arbitrary inverse-length scale
+, i.e., by the replacement

* � *B=*+=, (4.13)

where * is dimensionless. When this dimensionality change is made explicit in
Eq. (4.8), we obtain a dimensionally continued potential

V (D)(r)=&*+=W (D)(r), (4.14)

=&*+= |
d DkD

(2?)D eikD } rD _| d D0rD0
e&ikD0 } rD0V(r0)&kD0 � kD

, (4.15)

i.e., the dimensional jump is performed simultaneously with the introduction of the
factor +=. Notice that Eqs. (4.8) and (4.15), as well as diagram (4.10) show that
even though

dim[V (D)(r)]=2, (4.16)

in fact

dim[W (D)(r)]=2&=. (4.17)

Thus, one can write

W (D)(r)=+2&=W(D)(+r), (4.18)

where W (D)(!) is the dimensionless counterpart of W (D)(r); then, from Eqs. (3.9),
(4.14), and (4.18),

V(D)(!)=&*W(D)(!). (4.19)
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The dimensionality change represented by Eq. (4.13) introduces a completely
arbitrary dimensional scale +. The replacement of a dimensionless coupling con-
stant by an arbitrary dimensional scale is the phenomenon of dimensional trans-
mutation seen from the dimensional-regularization viewpoint. In addition,
Eq. (4.13) indicates that the space dimension D plays a pivotal role in the deter-
mination of the physical dimensions of the coupling constant.

Equations (4.2) and (4.14) imply that the dimensionally regularized Schro� dinger
equation has the explicit form

[&{2
r, D&*+=W (D)(r)] 9(r)=E9(r), (4.20)

where W (D)(r) is a homogeneous function of degree &2+=. Ultimately, in order to
make the potential less singular, it is necessary to choose =>0 (that is, D<D0),
whence proper regularization is achieved in the limit

==0+. (4.21)

Alternatively, the dimensionally regularized Schro� dinger equation (4.20) can be
rewritten in the dimensionless form of Eq. (3.12), i.e.,

[&{2
!, D&*W (D)(!)] 8(!)='8(!). (4.22)

If the problem posed by Eq. (4.22) with the limit (4.21) is regular, then its solution
provides regular eigenfunctions 8(!) corresponding to the eigenvalues '. These
eigenvalues depend upon the dimensionless parameters = and *. Unlike the
dependence of ' on =, which is potential-dependent, the dependence of ' on * is the
same for all scale-invariant potentials. This can be understood as follows:

1. The Schro� dinger equation (4.22) is dimensionless and independent of +.

2. Instead, the Schro� dinger equation (4.20) is more explicit in that it displays
the dimensional scales E and +. In addition, * and + appear in it only in its second
term and through the bare coupling constant *B , Eq. (4.13). This can be made more
explicit by rewriting Eq. (4.20) in terms of *B , i.e.,

[&{2
r, D&*BW (D)(r)] 9(r)=E9(r). (4.23)

3. Equation (4.13) is the basis for the introduction of an effective inverse
length

+̂=*1�=
B =*1�=+, (4.24)

where *>0 is assumed because we only need to regularize the potential when it is
attractive. Equation (4.24) allows for the rescaling of the energy

'̂=+̂&2E=*&2�=', (4.25)
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of the potential energy

W� =+̂&(2&=)W=*&2�=+1W, (4.26)

as well as of the dimensionless position

!� =+̂r=*1�=!. (4.27)

Then, the Schro� dinger equation (4.23) takes the form

[&{2
!� , D&W� (D)(!� )] 8� (!� )='̂8� (!� ). (4.28)

Equations (4.20), (4.22), and (4.28) are equivalent before taking the limit ==0+.
When actually solving the Schro� dinger equation for a specific potential, it is more
straightforward to use (4.20) because it makes all the variables explicit, while (4.22)
is just a convenient way of relating the dimensional scales from scratch. On the
other hand, at the conceptual level, Eq. (4.28) provides the ``universal'' connection
between * and ' for all scale-invariant potentials. In other words, Eq. (4.25) defines
the relationship between the mathematical eigenvalues '̂ of Eq. (4.28) and the
physical or dimensional eigenvalues E of Eq. (4.20), which are explicit functions of
the parameters + and *. A convenient form of this ``universal'' condition satisfied by
the energy eigenvalues of Eq. (4.28) reads (from Eq. (4.25))

*5(=) |'(=)|&=�2=1, (4.29)

which, in terms of dimensional variables, explicitly states that

*+=5(=) |E(=)| &=�2=1. (4.30)

Any of the Eqs. (4.29) and (4.30) would be referred to as the ``master eigenvalue
equation,'' which provides the required energies if the mathematical function

5(=)=|'̂| =�2�0 (4.31)

is known. In fact, Eq. (4.31) shows that 5(=) is completely determined by the
functional form of the potential W� (D)(!� ), through the solution of the differential
equation (4.28). We shall refer to 5(=) as the ``energy generating function.''

In this paper, we will exemplify the regularization procedure and computation of
the energy generating function for the two-dimensional delta-function potential. A
more detailed discussion of this potential, as well as the corresponding treatment of
the inverse square potential, can be found in the second paper of this series [49].
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V. RENORMALIZATION OF SCALE-INVARIANT POTENTIALS

A. Regularized Bound-State Sector

The theory of Subsection IV.B applies equally well to both bound and scattering
states. In both cases, however, we may assume an attractive potential *>0, which
is the type that possibly requires renormalization.

Let us now consider the bound-state sector, for which Eq. (4.22) provides a dis-
crete sequence of energy eigenvalues 'n , in the regularized version of the theory.
These eigenvalues explicitly depend upon the discrete set of quantum numbers
n=(n1 , ..., nD), ordered as an increasing sequence in such a way that, for sufficiently
small =, En(=)�En$(=) if nj�n$j for all j=1, ..., D (additional ordering rules are
needed in the presence of degeneracies, but they are immaterial to our discussion).
In particular, the ground state will be labeled with the lowest numbers of the
sequence.

Our goal is to extract additional information from Eq. (4.29), which we now
rewrite

*5n(=) |'n(=)|&=�2=1, (5.1)

with 5n(=)=|'̂n | =�2. This can be accomplished by defining the variables

*(V)
n =[lim

= � 0
5n(=)]&1= lim

= � 0
|'̂n(=)|&=�2, (5.2)

such that

lim
= � 0

|'n(=)|=lim
= � 0 _

*
* (V)

n &
2�=

. (5.3)

In Eq. (5.3) one can see that the unregularized energy is critically dependent on the
ratio *�* (V)

n , in the limit = � 0. Thus, * (V)
n acts as a critical coupling strength for the

given energy level labeled by n. From now on, we will identify the following three
regimes:

(i) Strong coupling, characterized by *>* (V)
n , for which Eq. (5.3) gives a

bound state at &�.

(ii) Weak coupling, characterized by *<* (V)
n , for which Eq. (5.3) gets rid of

the bound state by pushing it all the way up to 0.

(iii) Critical coupling, characterized by *=* (V)
n , for which additional analysis

is needed.
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In fact, Eq. (5.3) implies the following behavior according to the values of the
critical coupling:

(a) * (V)
n =0 amounts to a strong coupling for all finite and positive *, a condi-

tion that is manifested by the ``collapse'' of the given bound state, 'n � &�.

(b) * (V)
n =� amounts to a weak coupling for all finite *>0, a condition that

is manifested by the loss of the regularized bound state, i.e., 'n � 0.

(c) 0<* (V)
n <� permits the existence of the three possible regimes.

A few results are implied by the above analysis. First, because of the assumed
ordering of quantum numbers, from Eq. (5.2), it follows that * (V)

n �* (V)
n$ , when

nj�n$j for all j=1, ..., D. In particular, for the ground state, which we will subse-
quently label with (gs), we define the ``principal'' critical coupling *(V), which
satisfies the condition

*(V)=* (V)
(gs)�* (V)

n . (5.4)

For example, if the coupling is weak for the ground state, it is also weak for all
other states, so that the unregularized theory is completely deprived from bound
states.

The analysis above assumes that * is independent of = and displays the singular
behavior associated with dimensional transmutation as = � 0. Renormalization is
called for in order to obtain meaningful results.

B. Renormalized Bound-State Sector

Equation (5.1) provides a regularization of the energy levels in terms of the
parameter =. In this section we introduce the general strategy for renormalization
and use it to reach a few general conclusions about dimensional transmutation.

In order to obtain finite results, it is necessary to renormalize the energy levels
by the following procedure:

(i) Letting the coupling constant * be a function of the regularization
parameter =, i.e., *=*(=).

(ii) Adjusting *(=) by comparison with a specific bound state, which is con-
veniently chosen to be the ground state of the theory; notice that if bound states
exist at all, the ground state is the only one that is guaranteed to exist. We will refer
to this procedure as ground-state renormalization.

Consequently, in the following analysis, it will prove useful to compare the values
of the function 5n(=) with its ground-state value 5(gs)(=), by means of the replace-
ment

5n(=)=5(gs)(=) _1+
=
2

Rn(=)& , (5.5)
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which defines a new function Rn(=), with the obvious implication that

R(gs)(=)=0. (5.6)

Then, the regularized dependence of the energy levels with respect to = can be
derived from (5.1) in the limit (4.21), and using Eq. (5.5), which implies

|'n(=)|=[*(=) 5(gs)(=)]2�= _1+
=
2

Rn(=)&
2�=

(5.7)

r[*(=) 5(gs)(=)]2�= exp[Rn(=)]. (5.8)

Furthermore, the analysis of the previous section shows that finite results follow
only if the coupling constant takes a critical value. For the ground state, this
requires that

*(=) t
(= � 0)

[5(gs)(=)]&1. (5.9)

Even though Eq. (5.9) is sufficient for renormalization purposes, let us consider a
more general expression

*(=)=[5(gs)(=)]&1 _1+
=
2

g(=)& . (5.10)

Equation (5.10) defines a residual coupling function g(=), which��according to the
definition of critical coupling, Eq. (5.2)��should have the limiting behavior

=g(=)=o(1). (5.11)

As a consequence, from Eqs. (5.8) and (5.10),

|'n(=)|=exp[ g(=)+Rn(=)], (5.12)

and

} 'n(=)
'(gs)(=) }=exp[Rn(=)]. (5.13)

From the form of Eqs. (5.12) and (5.13), it proves convenient to resolve both Rn(=)
and g(=) into their various components, i.e.,

Rn(=)=R (&)
n (=)+R (0)

n +R (+)
n (=) (5.14)

and

g(=)= g(&)(=)+ g(0)+ g(+)(=),
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where R (&)
n (=) and g(&)(=) are the divergent pieces; R (0)

n and g(0) are the limits, for
==0+, of the finite parts; and R (+)

n (=), g(+)(=)=o(1). Then Eq. (5.12) will again
give 0 or �, unless

[ g(&)(=)+R (&)
n (=)]+[ g(0)+R (0)

n ]+[ g(+)(=)+R (+)
n (=)]=O(1). (5.15)

From now on, the terms g(+)(=) and R (+)
n (=) can and will be omitted, as they are

clearly irrelevant at the level of the renormalized energies. In turn, in Eq. (5.15), the
terms [ g(&)(=)+R (&)

n (=)] would give a divergent contribution unless

g(&)(=)=&R (&)
n (=). (5.16)

Condition (5.16), in general, cannot be satisfied for all bound states, but it should
be satisfied, in particular, for the ground state, so that (from Eqs. (5.6) and (5.10))

*(=)=[5(gs)(=)]&1 _1+
=
2

g(0)+o(=)& (5.17)

and (from Eqs. (5.6) and (5.12))

|'(gs) |=e g(0)
. (5.18)

Once the ground-state renormalization is established, one can analyze the exist-
ence and properties of the excited states. In this regard, Eq. (5.4) selects only a sub-
set of the states of the regularized theory as bound states of the renormalized
theory, once the limit = � 0 is taken. More precisely, for any set of quantum num-
bers n for which Eq. (5.4) is a strict inequality, the coupling becomes weak in the
limit ==0+, so that the given state is merged with the continuum. Thus, the
equality

*(V)=* (V)
n (5.19)

is a necessary condition for the state labeled by n to survive as a bound state. Then,
for any state that satisfies Eq. (5.19), the function Rn(=) defined in (5.5) is con-
strained by the limiting form

=Rn(=)=o(1) (5.20)

and (from Eqs. (4.31) and (5.4)) satisfies the inequality

Rn(=)�0; (5.21)

in particular,

R (&)
n (=)�0. (5.22)
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If the inequality (5.22) were strict, then Eq. (5.13) would annihilate the state labeled
by n in the bound-state sector by exponential suppression; as a consequence, the
only alternative option for the state to ``survive,'' as allowed by the inequality
(5.22), is

R (&)
n (=)=0, (5.23)

in which case

} 'n(=)
'(gs)(=) }=exp[R (0)

n ]. (5.24)

It should be pointed out that, when Eqs. (5.19) and (5.23) are satisfied, the
inequality R (0)

n <0 (from Eq. (5.21)) guarantees that En>E(gs) .
In summary, Eqs. (5.19), (5.23), and (5.24) give the following conditions for the

existence of bound states. An excited state labeled with the index n{(gs) exists if:

(i) The critical coupling * (V)
n satisfies the equality (5.19).

(ii) The function R (&)
n (=) is identically zero (condition (5.23)) for the states

that already satisfy Eq. (5.19).

(iii) R (0)
n {R (0)

(gs) =0.

These are indeed very stringent conditions, so ``ordinarily'' dimensional trans-
mutation will produce a single bound state, as is the case for the two-dimensional
delta-function and inverse square potentials (Ref. [49]).

A final digression on strategy may provide a more direct path in a typical
problem. If the energy generating function 5n(=) admits the expansion

5n(=)=[Ln(=)]&1 _1+
=
2

Gn(=)& , (5.25)

with a power-law leading term

Ln(=)=an ={n (5.26)

(where an and {n are constants), and

=Gn(=)=o(1), (5.27)

then the following results will directly apply. First, the critical coupling will be
(from Eqs. (5.2), (5.25), and (5.27))

*(V)
n = lim

= � 0
Ln(=), (5.28)
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with a regularized coupling (Eq. (5.17))

*(=)=L(gs)(=) {1+
=
2

[ g (0)&G(gs)(=)]=+o(=), (5.29)

while the function Rn(=) of Eq. (5.5) will become

Rn(=) t
(= � 0)

Gn(=)&G(gs)(=), (5.30)

up to higher order corrections. Thus, the condition for the existence of the ground
state will be {(gs)�0, while the conditions for the existence of excited states will
amount to the existence of an index n{(gs), such that: (i) an=a (gs) and {n={(gs) ;
(ii) G (&)

n (=)=G (&)
(gs)(=); and (iii) G (0)

n {G (0)
(gs) .

We now turn to the scattering problem.

C. Renormalized Scattering Sector

For the scattering sector, the scattering amplitude f (D)
k (0(D)) and the differential

scattering cross section d_(D)(k, 0(D))�d0D=| f (D)
k (0(D))|2 are functions of the

energy E=k2 associated with the incident momentum k, as well as of the hyper-
spherical angles 0(D) (with d0D being the corresponding element of the D-dimen-
sional solid angle; see Appendix A).

As discussed in Subsection III.D and using the language developed in Subsec-
tions V.A and V.B, there are two distinct regimes for scattering.

In the weak-coupling regime, *<*(V), the scattering is well defined for all values
of the coupling constant (consistent with the inequality defining the weak-coupling
regime). In particular, this scattering is either scale-invariant (energy-independent)
or trivial and needs no regularization whatsoever. For example, the inverse square
potential gives scale-invariant scattering [7, 11], when *<(l+D�2&1)2 (where l is
the angular momentum quantum number), while the two-dimensional delta poten-
tial yields no scattering for *<0. These examples and issues will be analyzed in
greater detail in the second paper in this series.

Instead, in the strong-coupling regime, *>*(V), the coupling constant gets renor-
malized according to the theory developed in Subsection V.B. In particular, this
implies that the coupling parameter of the regularized theory is =-dependent, as dis-
played in Eq. (5.17), with a limiting critical value *=*(V)+0+. Moreover,
Eq. (4.29) is still applicable, as it was derived solely using scaling arguments��but
the function 5(=) will now have a different specific form, one that is no longer dis-
crete. Then, the scattering matrix and amplitude are determined from the
asymptotic form of the scattering wave function, which is an appropriate linear
combination of scattering solutions with arguments kr=('̂)1�2 |!� |=[5(=)]1�= |!� | .
Equation (4.29) then implies that the scattering depends upon

|'(=)|&=�2=1&
=
2

ln(k2�+2), (5.31)
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which, after taking the limit ==0+ and using Eq. (5.17), should provide a
breakdown of the scale symmetry through the logarithmic dependence ln(k2�+2).
This suggests that the scattering amplitude should be of the form

f (D)
k (0(D))=F(k, ln(k2�+2), 0(D)), (5.32)

where F is a dimensional quantity. This procedure will be illustrated for the two-
dimensional delta-function potential in Section VI.

In Eq. (5.32), the variable k2�+2 explicitly appears in a characteristic logarithmic
form. However, the function F is not dimensionless so that its form can be sim-
plified by the 6 theorem. We now turn to such dimensional considerations.

D. Dimensional Analysis Revisited

Let us now rephrase some of the results of Subsections V.B and V.C in terms of
dimensional variables.

The dimensional bound-state energies are arranged in a spectrum

En=+2'n , (5.33)

a conclusion that can be directly drawn from dimensional analysis. In particular,
the ground state defines a conventional characteristic scale

E(gs)=+2'(gs) ^ &+2, (5.34)

where the symbol ^ refers to the freedom to make a convenient choice of g(0), due
to its arbitrariness; in this case, we selected g(0)=0. This point will be further dis-
cussed and illustrated in Subsection VI.B for the particular case of the two-dimen-
sional delta-function potential. Equation (5.34) displays in its purest form the
emergence of an energy scale from the renormalization procedure; in addition, it
shows that naive generalized dimensional analysis (including renormalization
parameters according to Eq. (2.6)) gives straightforwardly the correct result.

Of course, Eq. (5.33) also refers to the excited states, if they exist. Again, by the
generalized 6 theorem, the only remaining information about the spectrum is con-
veyed by the ratios (cf. Eqs. (5.24) and (5.30))

\n=
'n

'(gs)

=exp[Rn(=)] t
(= � 0)

exp[Gn(=)&G(gs)(=)], (5.35)

which give its characteristic ``structure,'' with the restrictions discussed in Subsec-
tion V.B.

For the scattering sector, as the dimensionality of the cross section is &(D&1)
(``area'' of hypersurface), it follows that Eq. (5.32) can be rewritten in the form

f (D)
k (0(D))=k&(D&1)�26(ln(k2�+2), 0(D)), (5.36)
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where 6(u, 0(D)) is a dimensionless function of the dimensionless ratio u=(k�+)2.
Equation (5.36) will be valid, whether the system is capable of producing bound
states or not; in the weak-coupling regime, the function 6 is identically constant.
On the other hand, if there is at least one bound state, the existence of a charac-
teristic energy scale E(gs) , Eq. (5.34), yields an alternative form of (5.36),

f (D)
k (0(D))=k&(D&1)�268 (ln(k2�E(gs)), 0(D)), (5.37)

where 68 (ln(E�E(gs)), 0(D))=6(ln(E�+2), 0(D)) is another dimensionless function. In
fact, when the assignment g(0)=0 is made (Eq. (5.34)), the simple identity 68 =6
takes place.

Equations (5.33), (5.36), and (5.37) are just a consequence of generalized dimen-
sional analysis.

VI. TWO-DIMENSIONAL DELTA-FUNCTION POTENTIAL

One of the most basic properties of a quantum field theory is locality, which
leads to a nonrelativistic limit with highly singular potentials of zero range, also
known as pseudopotentials [14]. The simplest pseudopotentials are plain delta
functions, which display a large number of unusual features; however, in this sec-
tion we will only explore those properties that relate to the dimensional transmuta-
tion produced by the two-dimensional representative of this class. As we will see,
this potential displays all the characteristic fingerprints of dimensional transmuta-
tion that we discussed in previous sections. In fact, the two-dimensional delta-func-
tion potential has been extensively studied in the literature, mainly using cutoff
regularization [2, 6] and square-well regularization [54]. In our approach, we will
exclusively use dimensional regularization within the framework defined in Sections
IV and V.

Our strategy will be to compare the calculations with the predictions and
requirements of the general theory of Sections IV and V. However, we will use the
dimensional form (4.20) of the Schro� dinger equation from scratch, rather than any
of the dimensionless equations (4.22) or (4.28). In effect, the dimensionless counter-
parts are most useful at a theoretical level, in establishing the relationships between
all relevant parameters for our problem; yet, in practice, it is more direct to set up
the ``ordinary'' (dimensional) dimensionally regularized Schro� dinger equation.

A. Dimensional Regularization of the Two-Dimensional Delta-Function Potential

The two-dimensional delta-function potential is a particular zero-range or con-
tact interaction of the form

V(r)=&*$(2)(r). (6.1)
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We have already seen that this potential is scale-invariant. Using the techniques of
Section IV, we now apply the dimensional-continuation prescription of Eq. (4.8) to
W (2)(r)=$(2)(r), with D0=2, i.e.,

W (D)(rD)=|
d DkD

(2?)D eikD } rD _| d 2r2 e&ik2 } r2 $(2)(r2)&k2 � kD

,

=|
d DkD

(2?)D eikD } rD[1]k2 � kD

=|
d DkD

(2?)D eikD } rD=$(D)(r), (6.2)

which is the obvious dimensional extension of the original delta-function potential.
Thus, in what follows, we will consider the dimensionally regularized problem

[&{2
r, D&*+=$ (D)(r)] 9(r)=E9(r). (6.3)

Straightforward solution of Eq. (6.3) in this context should not be interpreted as a
way of drawing conclusions about the D-dimensional delta-function potential.
Instead, it is just the means to regularize the D0=2 case. Of course, one could
adjust the regularization to be applied around a value D0 {2; however, we will not
attempt such modification in this paper, as it is not directly relevant to dimensional
transmutation.

B. Bound-State Sector for a Two-Dimensional Delta-Function Potential

Equation (6.3) can be easily solved in momentum space; for the bound-state sec-
tor,

9� (q)=*+= 9(0)
q2&E

, (6.4)

which, via the inverse Fourier transform, yields the position-space eigenfunctions.
However, if we are only interested in the eigenvalue equation, it suffices to consider
the value of the wave function at the origin,

9(0)=|
d Dq

(2?)D 9� (q), (6.5)

so that Eq. (6.4) gives

*+=

(2?)D |
d Dq

q2+|E|
=1, (6.6)
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where E=&|E| (E<0 for the possible bound states). Equation (6.6) can be
straightforwardly integrated using Eq. (A13), which implies that

|
d Dq

q2+|E|
=?D�2 |E| D�2&11 \1&

D
2 + , (6.7)

and the regularized eigenvalue equation takes the form

*+=

4? \ |E|
4? +

D�2&1

1 \1&
D
2 +=1. (6.8)

It is a simple exercise to verify that Eq. (6.8) reduces to the familiar textbook result
}=- |E|=*�2 for D=1 [55]. On the other hand, the left-hand side is divergent
for D=2, 4, 6, ... . However, the restriction on the spatial dimension D of regular
potentials is even stronger because more stringent conditions are dictated by the
eigenfunctions, as we will see next. In our subsequent analysis, both for two-dimen-
sional delta-function and inverse square potentials, the dimension D will usually
appear in terms of the variable

&=D�2&1, (6.9)

which will thereby simplify the form of most formulas; for example, the eigenvalue
Eq. (6.8) reads (with ==&2&)

*+&2&

4? \ |E|
4? +

&

1 (&&)=1. (6.10)

Then the inverse Fourier transform,

9(r)=*+=9(0) |
eiq } r

q2+|E|
d Dq

(2?)D , (6.11)

is recognized to be proportional to the Green's function DD(r; }) for the modified
Helmholtz equation (see Appendix B, in particular Eqs. (B1)�(B3)),

9(r)=&*+=9(0) KD(r; }) (6.12)

=
*+=9(0)

2? \ }
2?r+

&

K&(}r), (6.13)

where }=- |E| , r=|r|, and K&(z) is the modified Bessel function of the second
kind of order &. The asymptotic behavior of the wave function 9(r) (and of the
Green's function KD(r; })) is governed by that of K&(z) [56],

K&(z) t
(z � �) � ?

2z
e&z[1+O(1�z)], (6.14)
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whence

9(r) t
(r � �) *+=9(0)

4? \ }
2?+

(D&3)�2 e&}r

r(D&1)�2 [1+O(1�r)], (6.15)

which displays the correct behavior for a bound-state wave function at infinity.
However, near the origin, the modified Bessel function has a singular behavior [57]
of the form

Kp(z) t
(z � 0) 1

2 _1 ( p) \z
2+

&p

+1 (&p) \z
2+

p

& [1+O(z2)], (6.16)

t
(z � 0) {

1
21 ( | p| )(2�z) | p| [1+O(z2)]
&[ln(z�2)+#][1+O( p, z2)]

for p{0
for pr0,

(6.17)

where # is the Euler�Mascheroni constant; then, the explicit form of the wave
function is

1(&)(}r�2)&2& for D>2

9(r) t
(r � 0) *+=9(0)

4? \}2

4?+
&

_{&2[ln(}r�2)+#] for D=2 (6.18)

1(&&) for 0<D<2,

which shows that the nature of the solution changes around &=0, i.e., for D=2.
This confirms the critical character of the dimension D=2 for the delta-function
potential. Notice that the wave functions are singular at the origin for any dimen-
sion D�2. Parenthetically, this is an example of an ultraviolet divergence: the wave
function is singular at small distances or due to large momenta (cf. Eq. (6.6)). For
D<2, we can regularize the two-dimensional delta-function potential and take the
limit & � 0 in Eq. (6.18), thus recovering self-consistently the eigenvalue equation
(6.10), which, with D=2&=, i.e., &=&=�2, reads

*+=

4? \ |E|
4? +

&=�2

1 \=
2+=1. (6.19)

Alternatively, in the language of Eq. (6.13), this eigenvalue equation can be simply
enforced by the condition

&*+=KD(0; })=1. (6.20)

Having completed the exploratory analysis of the bound-state sector and found
the eigenvalue equation ((6.8), (6.10), (6.19), or (6.20)) we are ready to compare
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these expressions with the general eigenvalue equation (5.1), which will now include
an energy generating function

5(=)=
1

4?
(4?)=�2 1 \ =

2+ . (6.21)

It is immediately apparent from Eq. (6.21) that the theory has only one bound
state, so that there is no need for a quantum number. In order to determine
whether this ground state survives the renormalization process, we should look at
the ==0+ limit of Eq. (6.21), which can be conveniently examined through the
expansion

5(=)=
1

2?= _1+
=
2

(ln 4?&#)+O(=2)& . (6.22)

From Eqs. (5.2) and (6.22), the critical coupling is found to be

*(V)=0, (6.23)

so that the theory looks asymptotically free but still engenders a unique bound
state. It should be noticed that this is achieved by the regularization of the coupling
constant through the strategy of Eq. (5.17) (or Eq. (5.29)), so that

*(=)=2?= {1+
=
2

[ g(0)&(ln 4?&#)]= , (6.24)

leading to a ground state

E(gs)=&+2e g(0)
. (6.25)

A final remark about renormalization shows additional parallels with the corres-
ponding field-theory problems. As usual, the arbitrariness in the choice of the finite
part g(0) can be used to simplify the expressions above in such a way that
|E(gs) |=+2, as displayed in Eq. (5.34). On the other hand, the singular nature of the
ground state has been tamed by subtracting the divergent part of Eq. (6.21), which
amounts to the subtraction of the pole 1�2?=. However, due to the arbitrariness
in the choice of g(0), at the level of the ground-state energy, we have also sub-
tracted��along with the pole��the term ln 4?&# (which is an artifact of the dimen-
sional-regularization technique). This is recognized to be the usual modified mini-
mal subtraction (MS) scheme [58].

In conclusion, the unregularized problem has a singular spectrum with a unique
energy level at &� and vanishing critical coupling. The regularization process
brings this level to a finite value, which, upon renormalization, becomes the unique
ground state of the two-dimensional delta-function potential.
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C. Scattering Sector for a Two-Dimensional Delta-Function Potential

The scattering sector of the Schro� dinger equation is described by its equivalent
Lippmann�Schwinger equation (C3), which, for a two-dimensional delta-function
potential (6.3), takes the simple form

9 (+)(r)=eik } r&*+=G (+)
D (r; k) 9 (+)(0), (6.26)

where G (+)
D (r; k) is the Green's function for the Helmholtz equation, with outgoing

boundary conditions (See Appendix B, in particular Eqs. (B4)�(B8)). In particular,
Eq. (6.26) implies that

9 (+)(0)=[1+*+=G (+)
D (0; k)]&1. (6.27)

The asymptotic form of Eq. (6.26) is obtained as described in Appendix C, accord-
ing to which (e.g., Eqs. (C5) and (C8)) the scattering amplitude becomes

f (D)
k (0(D))=&1D(k) *+=9 (+)(0), (6.28)

where

1D(k)=&
1

4? \
k

2?+
(D&3)�2

. (6.29)

Finally, Eqs. (6.27) and (6.28) provide the desired expression,

f (D)
k (0(D))=&1D(k)[(*+=)&1+G (+)

D (0; k)]&1. (6.30)

Equation (6.30) is singular for D�2, as can be seen from the divergent small-
argument limit of Eq. (B8). However, one can use the renormalization of the
bound-state sector to eliminate this divergence through the regularized coupling,
Eq. (6.24). More precisely, for an attractive potential, we found that the coupling
constant can be traded in favor of dimensional parameters, e.g., using the Green's
function KD(r; }) for the bound-state sector in Eq. (6.20). In other words, using the
renormalization for the bound-state sector, we will now obtain directly the renor-
malized scattering amplitude, which is explicitly given by the limit

fk(0(D))=1D(k) lim
r � 0

[KD(r; - E(gs) )&G (+)
D (r; k)]&1, (6.31)

where the replacement

}=- |E(gs) | (6.32)
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was made. Equation (6.31) already displays a remarkable property of the scattering
by a delta-function potential: it is isotropic, i.e., it only scatters s-waves, as it
corresponds intuitively to a contact interaction.

Let us now evaluate the limit in Eq. (6.31). First, from Eqs. (6.7) and (B2),

lim
r � 0

KD(r; - |E(gs) | )=&
1

(2?)D |
d Dq

q2+|E(gs) |

=&
1

(4?)D�2 |E(gs) |D�2&1 1 \1&
D
2 + . (6.33)

Next, limr � 0 G (+)
D (r; k) can be obtained by analytic continuation

G (+)
D (r; k)=KD(r; })|}2 � &(k2+i$) , (6.34)

where $=0+, which implies that

lim
r � 0

G (+)
D (r; k)=

1
(2?)D |

d Dq
k2&q2+i$

=&
1

(4?)D�2 (&k2&i$)D�2&1 1 \1&
D
2 + . (6.35)

Thus,

lim
r � 0

[G (+)
D (r; k)&KD(r; })]

=
1

(4?)D�2 1 \1&
D
2+ [|E(gs) |D�2&1&(&k2&i$)D�2&1], (6.36)

which can be evaluated in the limit = � 0+, with D=2&=,

lim
= � 0

lim
r � 0

[G (+)
D (r; k)&KD(r; })]=&

1
4?

(ln |E(gs) |&ln k2+i?), (6.37)

where the identity ln[&(k2+i$)]=ln k2&i? was used. Finally, the scattering
amplitude is obtained by replacing Eqs. (6.29) (with D=2) and (6.37) in (6.31), i.e.,

f (2)
k (0(2))=�2?

k _ln \ k2

E(gs)+&i?&
&1

. (6.38)

Equation (6.38) is seen to agree with the prediction of generalized dimensional
analysis, Eqs. (5.36)�(5.37), with a dimensionless variable 6(u)=- 2?[ln u&i?]&1,
and u=k2�E(gs) .
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Finally, the differential scattering cross section d_(2)(k, 0(2))�d02 , from Eq. (C9),
again agrees with the prediction of generalized dimensional analysis, Eqs.
(5.36)�(5.37), providing a dimensionless variable 6(u)=2?[(ln u)2+?2]&1, for the
energy ratio u=k2�E(gs) .

VII. CONCLUSIONS

Until recently, it had been generally assumed that generic field-theoretic tools
and concepts are useful only for systems with infinitely many degrees of freedom.
While this perception is essentially correct for ``regular'' systems, it is now
recognized, as discussed in our series of papers, that such techniques can be
generalized and used to extract meaningful physical results for certain ``singular''
systems with a finite number of degrees of freedom.

In this paper, we developed systematic uses of the techniques of dimensional
regularization and renormalization, and of the concept of dimensional transmuta-
tion, with the purpose of gathering information about the class of scale-invariant
potentials. Our discussion relied on dimensional regularization, which we argued
provides a generic tool for the treatment of all members of that class, by estab-
lishing a simple link between the two meanings of the word dimension. From our
fairly general investigation, we have learned that all scale-invariant potentials are
homogeneous of degree &2 and share a number of remarkable properties; here,
without attempting to give an exhaustive list, we summarize a few of the most out-
standing:

(i) There exists a critical coupling *(V) such that, for *<*(V) (weak coupling)
the Hamiltonian is self-adjoint but produces no bound states, while for *>*(V)

(strong coupling) it loses its self-adjoint character, generating a continuum of
bound states not bounded from below and requiring renormalization.

(ii) Solution of the regularized theory for strong coupling yields a master
eigenvalue equation (4.29), which condenses all the information about the given
scale-invariant potential and requires proper renormalization.

(iii) The ground state of a given ``strong'' scale-invariant potential exists
provided that *(V)=[lim= � 0 5n(=)]&1 (Eq. (5.2)) be finite.

(iv) Excited states exist under the demanding conditions listed after
Eq. (5.24). Thus, ``strong'' scale-invariant potentials have a tendency to suppress
excited states.

(v) The scattering sector remains scale-invariant or trivial in the weak-coupl-
ing regime, while it displays a logarithmic dependence ln(k2�+2), with respect to the
energy k2, in the strong-coupling regime.
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(vi) In short, in the strong-coupling regime, a given scale-invariant potential
leads to dimensional transmutation, which manifests itself on the existence of at
least one bound state and a scale-dependent scattering matrix. The dimensional
transmutation exhibited for strong coupling amounts to the emergence of a scale
anomaly, i.e., quantum-mechanical breaking of the classical scale symmetry.

Additional progress in understanding these singular quantum-mechanical systems
can best be achieved by studying specific cases. A first attempt was made in this
paper by considering some aspects of the two-dimensional delta-function potential.
In that regard, the second paper in this series [49] will present a more thorough
analysis of the two-dimensional delta-function potential, as well as a novel treat-
ment of the anomalous transmuting behavior of the inverse square potential.

APPENDIX A

Dimensional Regularization in D-Dimensional Euclidean Spaces

Just like for the corresponding case in quantum field theory [58], our approach
is based on the dimensional extension of mathematical expressions for a system that
is assumed to be embedded in a D-dimensional Euclidean space. Then, starting
from the Cartesian coordinates (x1 , ..., xD), one can introduce an alternative set of
D-dimensional hyperspherical polar coordinates (q0=r, q1=%1 , ..., qD&1=%D&1)
via the transformation equations

x1 =r cos %1

x2=r sin %1 cos %2

b

xj =r \ `
j&1

k=1

sin %k+ cos % j
(A.1)

b

xD=r `
D&1

k=1

sin %k ,

where the ranges for the hyperspherical polar variables are 0�%j�? for
j=1, ..., D&2; 0�,#%D&1�2?; and 0�r<�. All the basic geometric quantities
associated with hyperspherical coordinates can be constructed through the scale
coefficients hj for the diagonal metric (gij)=diag(h2

j )0� j�D&1 [59]; these coef-
ficients are straightforwardly given by h0=1, h1=r, and hj=r > j&1

k=1 sin %k (for
2� j�D&1), while their product is

h(D)= `
D&1

j=0

hj=rD&1 `
D&1

j=1

sinD& j&1 %j . (A2)
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In our series of papers, both the Laplacian operator and the element of volume
are needed. The Laplacian can be computed from [60]

{2
D =

1
h(D) :

D&1

j=0

�
�qj \

h(D)

h2
j

�
�qj+

=2 (D)
r +

1
r2 20(D) , (A3)

where its radial part is, explicitly,

2(D)
r =

1
rD&1

�
�r \rD&1 �

�r+ , (A4)

while its angular part is

20(D)= :
D&1

j=1
_\ `

j&1

k=1

sin2 %k+ sinD& j&1 %j&
&1 �

�%j \sinD& j&1 % j
�

�% j+ , (A5)

in which the notation 0(D)#(%1 , ..., %D&1) has been introduced and it is implied
that >k2

k=k1
#1 when k1>k2 (i.e., for j=1).

Similarly, the element of the D-dimensional solid angle becomes

d0D= `
D&1

j=1

h j d%j=h(D) `
D&1

j=1

d%j= `
D&1

j=1

sinD& j&1 %j d% j , (A6)

in terms of which the D-dimensional volume element is given by

d Dr=rD&1 d0D dr. (A7)

Equation (A6) can be integrated to a total D-dimensional solid angle

0D=| d0D=\ `
D&2

j=1
|

?

0
d%j sinD& j&1 %j+ |

2?

0
d%D&1 , (A8)

where the angular integrals can be evaluated using the beta-function identity [56],

|
?�2

0
sinm % d%=

1
2

B((m+1)�2, 1�2)=
- ? 1((m+1)�2)

21((m+2)�2)
, (A9)

whence

0D=
2?D�2

1(D�2)
. (A10)
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With the given element of volume, Eq. (A7), one can compute the integral of any
function f (r) that exhibits D-dimensional central symmetry, that is,

| f (r) d Dr=
2?D�2

1(D�2) |
�

0
rD&1f (r) dr. (A11)

In particular, Eqs. (A6)�(A11) are essential for the evaluation of expressions in
dimensional regularization, in conjunction with another beta-function identity
[56],

|
�

0

x2:&1

(x2+1):+; dx=
1
2

B(:, ;), (A12)

whence

|
(q2)n

(q2+a2)m d Dq=?D�2aD+2n&2m 1(n+D�2) 1(m&n&D�2)
1(D�2) 1(m)

. (A13)

Finally, let us consider the general D-dimensional Fourier transform f� (s) of a
function f (u), defined by

f� (s)=
nD

(2?)D�2 | d Du e�is } uf (u), (A14)

with an arbitrary normalization constant nD (usually nD=1 or nD=(2?)\D�2). Its
computation can be simplified considerably for the particular case when the func-
tion displays central symmetry, i.e., f (u)= f (u). In effect, for the integration of f (u),
selecting coordinates according to s } u=su cos %1 , it follows that

f� (s)=
nD

(2?)D�2 \ `
D&2

j=2
|

?

0
d% j sinD& j&1 % j+ |

2?

0
d%D&1

_|
�

0
du uD&1f (u) |

?

0
d%1 sinD&2 %1 e�isu cos %1

=nD(2?)&D�2 0D&1 |
�

0
du uD&1f (u) I(D�2&1, su), (A15)

where [56]

I(&, z)=|
?

0
e�iz cos % sin2& % d%=

1(&+1�2) 1(1�2)
(z�2)& J&(z), (A16)
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which implies that (&=D�2&1)

f� (s)=
nD

(2?)D�2 | d Du e&is } uf (u)

=
nD

sD�2&1 |
�

0
f (u) JD�2&1(su) uD�2 du. (A17)

Equation (A17), which is a Hankel transform, is sometimes referred to as Bochner's
theorem.

APPENDIX B

D-Dimensional Green's Functions

As an example of Bochner's theorem, we will now compute the infinite-space
Green's function for the D-dimensional Helmholtz equation. We will start with the
modified Helmholtz equation,

[{2
r, D&}2] KD(r, r$; })=$(D)(r&r$), (B1)

whose Green's function KD(r, r$; }) can be computed by applying translational
invariance, i.e., KD(r, r$; })=KD(R; }), with R=r&r$. Its Fourier transform
K� D(q; })=&(q2+}2)&1 leads to an integral expression

KD(R; })=&|
d Dq

(2?)D

eiq } R

q2+}2

=&(2?)&D�2 R&(D�2&1) |
�

0

qD�2JD�2&1(qR)
q2+}2 dq, (B2)

in which Eq. (A17) was used. Equation (B2) can be explicitly evaluated in terms of
the modified Bessel function of the second kind K&(}R), of order &=D�2&1, i.e.
[56],

KD(R; })=&
1

2? \
}

2?R+
&

K&(}R), (B3)

where the dimensional variable &=D�2&1 (cf. Eq. (6.9)) has been explicitly
introduced.

Likewise, for the ordinary Helmholtz equation,

[{2
r, D+k2] GD(r, r$; k)=$(D)(r&r$) (B4)
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in infinite space, translational invariance implies that GD(r, r$; k)=GD(R; k), with
R=r&r$. However, its Fourier transform G� D(q; k)=(k2&q2)&1 leads to an ill-
defined integral expression that needs to be evaluated by a prescription defining the
boundary conditions at infinity; for outgoing (+) and incoming (&) boundary
conditions,

G (\)
D (R; k)=|

d Dq
(2?)D

eiq } R

k2&q2\i$

=(2?)&D�2 R&(D�2&1) |
�

0

qD�2JD�2&1(qR)
k2&q2\i$

dq, (B5)

where Eq. (A17) was used and $=0+. Equation (B5) can be explicitly evaluated in
terms of Hankel functions of order &=D�2&1; in fact, it is easy to see that Eq. (B4)
can be obtained from (B1) with the replacement }=�ik, so that

G (\)
D (R; k)=KD(R; }=�ik), (B6)

and the choice of signs amounts to the choice of boundary conditions at infinity or
the i$ prescription. From the identity [57]

K&(�iz)=\
?i
2

e\i?&�2H (1, 2)
& (z), (B7)

Eq. (B6) is converted into

G (\)
D (R; k)=�

i
4 \

k
2?R+

&

H (1, 2)
& (kR). (B8)

Equations (B3) and (B8) are well known [61] and reduce to the familiar results in
one, two, and three dimensions [62].

APPENDIX C

Scattering in D Dimensions

Just as in the standard 3-D scattering formalism, the D-dimensional time-
independent operator Schro� dinger equation

(H0&E) |9) =&V |9) (C2)
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is equivalent to a Lippmann�Schwinger equation [63]

|9 (+))=|/) +(E&H0+i$)&1 V |9 (+)) (C2)

in which the state vector |9 (+)) is explicitly resolved into an incident wave |/)
(solution of the free-particle case) and a second term that represents the outgoing
scattered wave (with an appropriate boundary condition summarized by the
i$=i0+ prescription). In what follows, we will assume that |/)=|/k ) represents
a D-dimensional plane wave eik } r. Equation (C2) can be converted into the integral
form

9 (+)(r)=eik } r+| d Dr$G (+)
D (r, r$; k) V(r$) 9 (+)(r$), (C3)

by the introduction of one of the Green's functions computed in Appendix A,
namely, G (+)

D (r, r$; k)=(r| (E&H0+i$)&1 |r$) , which is a solution to Eq. (B4),
and explicitly given by Eq. (B8).

For the scattering problem, one is interested in the asymptotic form of the
Green's function, which follows from [56]

H (1)
& (z) t

(z � �) � 2
?z

e i(z&&?�2&?�4), (C4)

whence

G (+)
D (r, r$; k) = G (+)

D (R; k)

t
(r � �)

&
1

4? \
k

2?+
(D&3)�2

ei#D
e ikr

r(D&1)�2 e&ik$ } r$, (C5)

where k$=kr�r and

#D=(3&D)
?
4

. (C6)

From Eqs. (C3) and (C5), in the position representation,

9 (+)(r) t
(r � �) eik } r+ f (D)

k (0(D)) ei#D
eikr

r(D&1)�2 , (C7)

where the scattering amplitude

f (D)
k (0(D))=&

1
4? \

k
2?+

(D&3)�2

| d Dr$e&ik$ } r$V(r$) 9 (+)(r$) (C8)

leads to the usual expression for the differential scattering cross section,

d_(D)(k, 0(D))
d0D

=| f (D)
k (0(D))|2. (C9)
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