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Abstract. We present a numerical study of the critical wetting behavior of an Ising magnet confined be-
tween two walls, separated by a distance L, where short-range inhomogeneous surface magnetic fields
act. So, samples are assumed to have a size L × M , L being the width and M the length, respec-
tively. By considering surface fields varying spatially with a given wavelength or period (λ), H1(x, λ)
with 1 ≤ x ≤ M , we found that the wetting temperature is given by the exact result of Abraham [D.B.
Abraham, Phys. Rev. Lett. 44, 1165 (1980)] provided that an effective field given by the spacial average

value (Heff ≡ 1
λ

R λ

0
H1(x, λ)dx > 0) is considered. The above results hold in the low wavelength regime,

while for λ → ∞ and a bivaluated surface field (i.e., Hmax for x ≤ M/2, and δHmax for x > M/2, with
0 < δ < 1), one observes two almost independent wetting transitions, both being compatible with Abra-
ham’s exact results corresponding to Hmax and δHmax, respectively. On the other hand, for H1(x, λ) 6= 0
but Heff = 0 bulk standard critical behavior results is observed.

1 Introduction

The study and characterization of the properties of both
single component systems and mixtures in confined en-
vironments have since long time attracted considerable
attention due to their relevance in many practical appli-
cations, as well as by the emerging interesting physical
challenges. In fact, confined geometries strongly modify
the phase behavior of physical systems through a combi-
nation of finite-size effects (arising from the finite thick-
ness of the confining container) and surface effects (arising
from the interaction of the physical system with the walls),
the understanding of these modifications being a topic
of relevance in statistical physics, thermodynamics, mate-
rial science, nanoscience, etc. [1–12]. In particular, critical
wetting transitions become significantly modified in con-
fined geometries since, additionally, one has to consider
the constraining effect that the external boundaries exert
on interfacial fluctuations. Within this context, it is worth
mentioning that while huge effort has been devoted to
understanding critical wetting transitions in many physi-
cal systems (fluids, colloids, polymers, ferromagnets, etc.)
confined between homogeneous walls [1–9], the study of
the influence of inhomogeneous and rough confining sur-
faces has received less attention.
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Since it is well known that the surface structure can
dramatically change wetting properties, the study of wet-
ting in structured surfaces is a topic that deserves exten-
sive research [9]. In fact, recent advances in nano- and
microtechnology [10,12] allow for the construction of pat-
terned surfaces, where wetting properties can be varied
spatially in a controlled fashion, as well as structured sur-
faces such that the surface geometry can be controlled
but the chemical structure is the same along the sur-
face [9,13,14]. The ability to control wettability is impor-
tant for a wide range of technological applications, e.g.,
when precise microfluidic handling is required. In this way,
by using predesigned surfaces roughness at a micro- or
nanoscale, one can enhance the wetting properties of solid
material. In fact, it is known that surface roughness af-
fects wetting properties since the effective contact angle
becomes smaller when the roughness increases [15–18].
Also, the combined effects of roughness and heterogeneity
can dramatically change the wettability of a surface lead-
ing, e.g., to superhydrophobicity [14]. Furthermore, rough
surfaces can be created by adding square pillars on a flat
surface. In this way, the surface roughness can be altered
by varying the pillar width and interpillar spacing [19,20].
In this case by means of molecular simulations, it has been
shown that a hydrophilic surface can be converted into a
hydrophobic one by changing its roughness [19].

http://www.epj.org
http://dx.doi.org/10.1140/epjb/e2014-50336-5


Page 2 of 11 Eur. Phys. J. B (2014) 87: 303

Within this broad context, the aim of this paper is to
contribute to understanding the effects caused by surface
heterogeneity on the wetting behavior from a basic point
of view based on statistical physics and numerical simu-
lations. For this purpose, we consider geometrically uni-
form (flat) confinement surfaces where their heterogeneity
can be modeled by a suitable change of the interaction
energy between different components of the surface and
the confined system. Also, we will focus our study on the
d = 2 Ising ferromagnet in the L × M (L � M) ge-
ometry, where at the confinement walls, separated by a
distance L, laterally inhomogeneous (short-range) surface
magnetic fields act [21]. In fact, it is well known that the
d = 2 Ising magnet confined between antisymmetric walls
exhibits a localization-delocalization transition of the in-
terface between domains of different orientations, which is
the precursor of a true wetting transition occurring in the
thermodynamic limit [21–26]. Within this context, let us
mention that recently we have proposed a scaling theory
for wetting transitions that has been numerically tested
for the Blume-Capel model confined between walls where
homogeneous magnetic surface fields are applied [24,25].
Therefore, the present paper is an attempt to take ad-
vantage of that existing theory in order to generalize its
validity to the case of inhomogeneous fields.

Similar geometries (with inhomogeneous surface fields)
have previously been employed in order to study the crit-
ical Casimir force in thin films and in the Ising univer-
sality class [27,28]. In fact, Parisen Toldin et al. [27,28]
considered that one of the confining surfaces is homoge-
neous, while the opposing one is chemically striped, such
that there is a laterally alternating adsorption preference,
which is implemented by laterally inhomogeneous surface
fields alternating in sign. Also, it is worth mentioning
that in a recent paper, Fytas and Selke [29] have stud-
ied wetting transitions by using the three-state Blume-
Capel model. These authors have employed special bound-
ary conditions, modifying the exchange interaction at one
of the boundaries by introducing, at one wall, the surface
coupling α×J between the boundary spins and the neigh-
boring bulk spins, with 0 ≤ α ≤ 1. Otherwise, the cou-
plings between neighbor spins are always J . Additionally,
very recently we studied wetting transitions by considering
flat confinement walls, but the magnetic field is taken to be
nonuniform by adopting the values H1, δH1, H1, δH1, . . .
for adjacent sites along the walls [21]. Here −1 < δ < 1 is a
parameter that allows us to control the degree of nonuni-
formity of the surface field. Of course, the case δ = 1
(uniform field) corresponds to the standard case whose
phase diagram was worked out exactly by Abraham [30],
such that

H1w(T )/J ≡ F (T )

= (kBT/2J)
�

cosh−1
�
cosh(2J/kBT )

− sinh(2J/kBT ) exp(−2J/kBT )
�	

, (1)

where H1w is the value of the surface field for the second-
order wetting transition that takes place at the corre-
sponding wetting temperature T ≡ Tw, and kB is the
Boltzmann constant.

Based on numerical Monte Carlo results and ground
state considerations, we conjectured that these inhomoge-
neous surface wetting transitions may occur at effective
fields given by [21]

Heff/J = F (T ). (2)

We consider a nonuniform field varying along the x direc-
tion parallel to the walls but having a spatial wavelength
or period λ ≤ M . The effective field Heff at a λ coarse-
grained level is given by a simple average, namely,

Heff =
1
λ

λX

x=1

H1(x, λ), (3)

and equation (2) holds for Heff > 0, so that the inhomoge-
neous surface field has essentially a preferential direction
and the formation of antiferromagnetic surface structures
is avoided. So, in this paper we present a more extensive
study of wetting behavior in the case of periodically vary-
ing fields of larger wavelength (2 ≤ λ ≤ 128). Also, the
long wavelength regime, namely, λ → ∞, is studied.

Finally, it is worth discuss and stress the relevance of
the present manuscript for the understanding of critical
phenomena in confined geometries and in d = 2 dimen-
sions, within the broad context of basic studies in the
field of statistical mechanics, as well as to discuss possi-
ble scenarios for the applications of our findings for the
study of adsorption phenomena [31] and magnetism in
two-dimensions [32]. In fact, phase transitions in adsorbed
monolayers at surfaces [31,32] are both of practical and
fundamental interest: the understanding of physical and
chemical properties of surfaces with adsorbed layers is
a prerequisite for the description of phenomena such as
catalysis, corrosion, nucleation and growth upon crystal
formation, etc. Then, let us recall that our confined ge-
ometry of size L × M is a suitable model for a terrace
of an stepped surface [23], where L is taken as the ter-
race width, being M its length. Furthermore, the square
lattice used in our study represents the (100) surface of
a cubic crystal. Then, we assume that the substrate sur-
face provides a strongly corrugated adsorption potential,
so that adsorption can be described in terms of the lattice
gas model. Now even the surfaces of single crystals are
never perfectly flat but contain surface steps, and such
steps clearly affect adsorption phenomena [31,32].

While in most cases adsorption takes place prefer-
entially at the steps (e.g. for i = 1 or i = L in our
sample with 1 ≤ i ≤ L), see e.g. [33], recent studies
of Xe adsorption at surface steps have indicated differ-
ences in the preferred adsorption sites on different metals.
On Pt(111), these sites are on the low-coordination top
edges of steps [34,35]; whereas on other surfaces such as
Cu(110) [36], Ag(111) [37], and Cu(111) [38], these sites
are at the high coordination lower edges. On the other
hand, in some cases preferential adsorption on terraces
has also been reported [39]. Such differences in the inter-
action of adsorbed species at surface steps can have con-
sequences for the subsequent growth of the films. Within
this context, it is worth mentioning that the adsorption
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and desorption of Xe on Pt(997), which is a stepped sur-
face having terraces of Pt(111), have been the subject of
several experimental studies [40–43]. In these studies it has
been demonstrated that, at certain temperatures the ad-
sorption of Xe on Pt(997) occurs row by row, namely the
discrete and sequential growth of rows of Xe along the step
edges has been reported. Such a row by row growth be-
comes more disordered when increasing the temperature,
by keeping the gas pressure constant [41]. A similar growth
mechanism was also observed for Kr on the same surface.
These results on the displacement of the interface between
Xe (or Kr) occupied and empty surface sites are fully con-
sistent with the interface localization-delocalization tran-
sition reported in our study: in fact, in our simulations the
early detachment of the interface from the wall is equiva-
lent to a smooth growth of rows of adsorbed species in the
direction parallel to the steps, while the onset of disorder
when the temperature is increased resembles the delocal-
ization of the interface, which is the precursor of wetting
in the thermodynamic limit. On the other hand, high-
resolution thermal desorption experiments interpreted by
using a lattice gas model [42] allow the determination of
the binding energies of three different sites on the terraces,
as well as the lateral Xe-Xe interaction within the terrace
and along the steps. The result was that the binding ener-
gies for the Xe were 264, 398, and 287 meV for adsorption
on the terrace, at the top of the step, and at the bottom
of the step, respectively. So, our choice of different surface
magnetic fields at the walls (in our magnetic terminology)
are supported by the fact that these fields are straightfor-
wardly mapped into binding energies at step sites when
using the lattice gas framework [23].

The understanding of adsorption on stepped surfaces is
also relevant for the characterisation of adsorbed metallic,
dielectric, and semiconductor monolayers. In fact, recently
Wagner et al. [44] have shown that the structure of NaCl
layers formed on Cu(110) strongly depends on the pres-
ence of surface steps. Also, it has been shown that the
preferential adsorption at steps can be used for the mono-
lithic growth of ultrathin Ge nanowires on Si(001) with
exotic physical properties [45]. Furthermore, the growth
of Fe nanostripes on a vicinal Cu(111) surface has been
investigated on the atomic scale by means of various ex-
perimental techniques [46] as well as by performing molec-
ular dynamics and kinetic Monte Carlo simulations [47].

On the other hand, it is widely recognized that ultra-
thin ferromagnetic films are ideal model systems for sta-
tistical mechanics models such as the Ising or Heisenberg
model, in particular, for the study of critical phenom-
ena [32]. Within this context Zdyb and Bauer [48] have
recently reported a multitechnic study of the adsorption
of gold on W(100) stepped surfaces, showing that the ob-
served order disorder transition in the adsorbed Au mono-
layer can be ascribed to the Ising universality class with
critical exponents β = 1/8 and ν = 0.99±0.007. The effec-
tive dependence of the exponent β on the terrace width
can be explained within the framework of the theory of
finite size effects, in particular, for Ising model lattices,
which predicts a shift of the critical temperature and the

rounding of the order parameter (compare e.g. Fig. 2 of
Ref. [48] and Fig. 8 of the present paper). Scaling plots
of the experimental results (Fig. 5 of Ref. [48]) are in full
agreement with our numerical results (inset of Fig. 8a of
the present paper). These results point out that a coarse
graning of inhomogeneous wall fields of small wavelength,
as proposed in this paper, may play a relevant role in
interpretation of adsorption experiments on stepped sur-
faces where the binding energies at step sites are expected
to be largely inhomogeneous. Rounding and shiftting of
order-disorder transitions due to surface steps have also
been reported for the adsorption of Fe on W(110) [32], in
agreement with our findings discussed in the context of
Figures 8a and 8b.

It is worth mentioning that periodically varying in-
homogeneous fields, as used in our simulations, naturally
emerge in crystalline alloys and solid compounds, where
different chemical species are present along the steps,
see e.g. the recent study and analysis of the structure
of atomic steps on the MgO(100) stepped surface [49],
and the characterization of the electronic properties of
the Si(557)-Au stepped surface [50]. Also, inhomogeneous
steps can also be obtained by oxydation of stepped sur-
faces, see e.g. [51]. Furthermore, chemical heterogeneous
steps capable to influence adsorption phenomena at the
terraces, can also be achieved by using modern techniques
developed for the construction of nano and micro struc-
tured surfaces [9–14]. Another scenery for the study of
the effect of periodically varying fields is the use of peri-
odically magnetized audio tapes and other magnetically
based storage devices [52]. In fact, these materials have
recently been used as substrates for study the adsorption
of living and dead magnetotactic bacteria, as well as mag-
netic nanoparticles [52].

On the other hand, our results raise interesting theo-
retical challenges in the field of statistical physics. In fact,
very recently it has been shown that the presence, at the
confinement walls, of randomly distributed (mobile) non-
magnetic impurities could change the nature of the wet-
ting transition, e.g. from critical to complete wetting [53].
In this way, the naive interpretation suggesting that these
nonmagnetic species simply screen out the strength of the
surface fields does not hold, namely one can not replace
the surface magnetic field by some coarse grained effective
field and describe the whole scenery within the context of
critical wetting with the aid of equation (1). This result is
in contrast with the findings reported in the present paper,
where we conjectured that the coarse grained inhomoge-
neous fields can be used as effective fields extending the
validity of Abraham’s exact results for wetting with short
range interactions. We also expect that transfer matrix
calculations could shed light on these intriguing results,
since that technique has proved to be useful in order to
understand wetting behaviour in stripped geometries (see
e.g. [54,55] and references therein), however this task is
beyond the scope of the present paper.

The paper is organized as follows: in Section 2, we
describe the geometry used to simulate the confined Ising
ferromagnet, while Section 3 is devoted to a brief overview
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of theoretical considerations. In Section 4, we provide a
brief description of the simulation procedure, and our re-
sults are presented and discussed in Section 5. Finally, we
state our conclusions in Section 6.

2 The Ising model with inhomogeneous
confinement walls

We consider the Hamiltonian of the Ising magnet in the
d = 2 dimensional square lattice in an L × M geometry,
where each lattice site i carries a spin Si that can take only
two values, Si = ±1 [21]. Periodic boundary conditions
are assumed along the x direction, where the lattice is M
rows long, while free boundary conditions are used in the
y direction where the lattice is L lines long. Furthermore,
short-range nonuniform competitive surface fields H1(x)
and HL(x) act on the first and last rows, respectively.
Thus the Hamiltonian reads

H = −J
X

hi,ji
SiSj−H1(x)

X

i∈row1

Si−HL(x)
X

i∈rowL

Si, (4)

where J > 0 is the coupling constant between spins placed
at nearest-neighbor sites, and the surface fields H1(x) and
HL(x) act only on the spins placed in the first (y = 1) and
last (y = L) rows, respectively. Notice that the magnetic
fields are measured in units of the coupling constant J .
For the study of wetting transitions, or more rigorously
localization-delocalization effective transitions occurring
in finite samples, it is convenient to adopt the antisym-
metric situation H1(x) = −HL(x) < 0 and then consider
the thermodynamic limit ((L −→ ∞, M −→ ∞)).

In the present work we studied in detail the influence
of three different surface fields, as follows.

(i) Nonuniform fields varying spatially with a fixed wave-
length (λ), given by

H1(x, λ) = Hmax sin2(2πx/λ), (5)

where Hmax is the amplitude of the field and the
fields acting at opposite walls are antisymmetric, so
their average values are hH1i = Hmax/2 and hHLi =
−Hmax/2, respectively. Here one has Heff = Hmax/2
(see Eqs. (4) and (5)).

(ii) As in case (i) but assuming a sinusoidal dependence
such that the average values of the fields at the walls
vanish, i.e.,

H1(x, λ) = Hmax sin(2πx/λ), (6)

with hH1i = hHLi = Heff = 0.
(iii) Finally, in order to investigate the long-wavelength

behavior we considered a bivaluated field of the form

H1(x, λ) =

(
Hmax for 1 ≤ x ≤ λ/2,

δHmax for λ/2 < x ≤ λ,
(7)

with Heff = Hmax(1 + δ)/2, when 0 < δ ≤ 1.

By using the surface magnetic fields given by equa-
tions (5)–(7), actually two phase transitions can be
observed: one at the bulk critical temperature (Tcb)
that is the standard order-disorder critical temperature
of the Ising magnet, which is exactly known, namely,
exp

�
2J

kBTcb

�
=

√
2 + 1, Tcb ' 2.27J/kB [56]. The other, a

wetting transition is expected to occur at Tw(Heff) < Tcb,
at least for Heff > 0. This wetting transition is of second
order throughout the regime 0 < Heff < J .

3 Theoretical considerations

Recent developments in a finite-size scaling theory [24,25],
which rationalize wetting transitions in systems with
short-range interactions between the walls and the con-
fined material as a bulk critical phenomenon with order
parameter critical exponent β = 0, allow for a precise de-
termination of the critical points and therefore, the con-
struction of suitable phase diagrams.

During the simulations, we evaluated the total ther-
mal average absolute magnetization of the film, h|m|i, the
square value of the magnetization hm2i and the fourth-
order cumulant U . The total magnetization of the sample
involves the summation over the total number of spins
(N = L × M) in the sample, i.e.,

m =
1
N

NX

i=1

Si. (8)

The thermal expectation h|m|iT for T < Tcb will be
nonzero for the standard order-disorder transition. In con-
trast, for wetting transitions the absolute value of total
magnetization h|m|i undergoes a transition from a nonzero
value (corresponding to the presence of a localized inter-
face between domains of opposite magnetization) to zero
just when the interface becomes delocalized at the effective
wetting transition temperature, which can be obtained
from simulation results in finite samples but must be ex-
trapolated to the thermodynamic limit in order to obtain
the true critical point.

Based on theses considerations, it has been pro-
posed [24,25] that the distribution function PL,M (m)
of the total magnetization in a finite geometry scales
as [57,58]

PL,M (m) = ξ
β/νk
k P̃

�
Lνk/ν⊥

M
,
M

ξk
, mξ

β/νk
k

�

, (9)

an expression that generalizes the standard scaling law
for isotropic systems having linear dimension L in all spa-
tial directions [59] to the case with anisotropic correla-
tion length exponents νk and ν⊥ in the directions parallel
and perpendicular to the interface, respectively. Now, the
fact that M scales with νk and L scales with ν⊥ can be
used to show that the finite-size dependence on either L
or M enters in the scaling function through “the gener-
alized aspect ratio” c ≡ Lνk/ν⊥/M rather than through
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the isotropic case where the “aspect ratio” L/M has to
be used. The prefactor ξ

β/νk
k in equation (9) ensures that

the probability distribution PL,M (m) can be properly nor-
malized. Also, by taking suitable moments of PL,M (m) one
can derive the following expressions:

h| m |i =
Z 1

−1

dm | m | PL,M (m)

= ξ
−β/νk
k m̃

�
Lνk/ν⊥

M
,
M

ξk

�

, (10)

and

hm2ki = ξ
−2kβ/νk
k m̃2k

�
Lνk/ν⊥

M
,
M

ξk

�

, (11)

k = 1, 2, . . ., where m̃ and m̃2k are scaling functions that
do not need to be specified here. By using (10) and (11)
we can obtain the Binder cumulant (U) given by

U(T ) = 1 − hm4i
[3hm2i2] , (12)

which in turn is a valuable observable in numerical simu-
lations (see also below).

Note that for critical wetting in d = 2 dimensions there
is a single independent critical exponent given by [3]

νk = 2. (13)

Also, the hyperscaling relationship for interfacial phenom-
ena νk = 2 − αs [3] implies αs = 0 for the critical diver-
gence of the surface specific heat. Furthermore, the corre-
lation lengths describing the fluctuations of the interface
scale as

ζ2
⊥ ∝ ζk, ζ⊥ ∼ (T − Tw)−ν⊥ , (14)

so that ν⊥ = 1 [6,7]. Now, by focusing our attention in
equations (9)–(11), it follows that for a full scaling de-
scription of critical wetting in d = 2 dimension one needs
to fix the value of β. In recent papers [24,25] by using scal-
ing arguments, we showed that β = 0 for critical wetting
with short-range forces. From the practical point of view,
the key results reviewed in this section, namely, β = 0,
νk = 2 and ν⊥ = 1 for critical wetting with short-range
surface fields, imply that plots of the magnetization and all
its moments, say observables O(T, L), will exhibit generic
scaling relationships of the form

O(T, L) = Õ((T − Tw)L1/νk , c), (15)

where Õ is a suitable scaling function, which does not
need to be specified here, that depends on L and the gen-
eralized aspect ratio c ≡ Lνk/ν⊥/M (or equivalently on
M = L2/c and c). In this way, those observables mea-
sured for different sample sizes will show a common inter-
section point provided that the “generalized aspect ratio”
c ≡ Lνk/ν⊥/M is kept constant. This intersection point
allows for precise determinations of wetting transition
points.

4 Brief comments on the simulation
procedure

Simulations are performed by using lattices of width L =
12, 18, 24, 36, and 48. Also, in most of the numerical work
we chose a particular value of the generalized aspect ratio,
namely, c = L2/M = 9/8. Of course, the value of the con-
stant c in principle is arbitrary and the results on the lo-
cation of Tw(H1w) should not depend on this choice. Peri-
odic boundary conditions are applied along the x direction
(parallel to the confinement walls of length M), while free
boundary conditions are taken at the walls where surface
fields act. Monte Carlo simulations were then performed
using the standard Metropolis algorithm; see e.g., [60] for
a review. Typical runs are performed over 20×106 Monte
Carlo steps per lattice site (MCS), disregarding the first
5 × 106 MCS to allow the system to reach equilibrium.
Note that for systems far below bulk criticality exposed
to boundary fields, cluster algorithms do not present any
advantages [61].

5 Results and discussions

Let us first analyze the case where Hmax(x) > 0, so that
Heff > 0 too. In particular by choosing H1(x) as given by
equation (5), we found that plots of the absolute magne-
tization h|m|i, the second moment of the magnetization
hm2i, and the cumulant U versus the temperature exhibit
a common intersection point, in agreement with the scal-
ing theory outlined in Section 3 (see also [24,25]), which
allows us to locate the wetting critical temperature (see
Figs. 1–3). In all cases we choose Hmax/J = 1.0, so that ac-
cording to equation (5) one has Heff = 1/2. Furthermore,
the plots shown Figures 1–3 (which have been obtained
for λ = 4, 16, and 32, respectively) confirm that Tw is
independent of λ (within our error bars), i.e., we obtained
Tw = 0.875(15), as expected if the conjecture outlined in
Section 3 holds. We further analyzed the case λ = 128
obtaining Tw = 0.91(3), where large error bars are a con-
sequence of the larger samples needed in the simulations
and the corresponding smaller statistics of our data.

Furthermore, a more convincing test of the conjecture
arises from the fact that the exact result worked out by
Abraham (Eq. (1)) yields Tw(Heff = 1/2) = 0.8615, in ex-
cellent agreement with our measurements. For the sake of
completeness, we also tested the finite-size scaling of h|m|i,
hm2i, and U given by equations (10)–(12), as shown in the
insets of Figures 1–3, respectively. In all cases we obtained
quite reasonable master curves, independent of λ, by using
Tw = 0.875 as a single adjustable parameter.

Since a systematic study on the validity of the conjec-
ture in the λ → ∞ limit appears as a formidable computa-
tional task, due to the larger lattices needed, we addressed
the test by an alternative way: considering a bivaluated
surface field given by equation (7). In fact, for that situ-
ation one has λ ≡ M , so that the extrapolation M → ∞
(with L =

√
cM) gives insight into the dependence of wet-

ting transitions on the long-wavelength variations of the
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Fig. 1. Plots of (a) the average absolute value of the magne-
tization (h|m|i), (b) the average square magnetization (hm2i),
and (c) the cumulant (U) versus the temperature relative to the
bulk critical point, obtained for samples of different sizes (as
indicated). Data corresponding to fields given by equation (5)
with λ = 4 and Hmax/J = 1.00, so that Heff = 0.50 (see
Eq. (3)). All sample sizes have the same generalized aspect
ratio c = L2/M = 9/8. The common intersection point at
Tw/Tcb = 0.855 ± 0.01 allows us to locate the critical wetting
temperature [24]. The insets in these figures show the corre-
sponding scaling plots of the observable already shown in the
main panel. Further details are given in the text.

surface field, with H1(x) > 0. Figures 4 and 5 show plots
of h|m|i, hm2i, and U versus T obtained for x = λ/4 and
x = 3λ/4 1, respectively. Since we take Hmax = 0.7227,
Figure 4 yields a wetting critical point Tw = 0.699, in
full agreement with Tw(Hmax = 0.7227) = 0.702843, that

1 In order to obtain realiable statistics, the observables are
averaged wihin the range x − L ≤ x∗ ≤ x + L, with x∗ = λ/4
and x∗ = 3λ/4.
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Fig. 2. Plots of (a) the average absolute value of the magne-
tization (h|m|i), (b) the average square magnetization (hm2i),
and (c) the cumulant (U) versus the temperature relative to the
bulk critical point, obtained for samples of different sizes (as
indicated). Data corresponding to fields given by equation (5)
with λ = 16 and Hmax/J = 1.00, so that Heff = 0.50 (see
Eq. (3)). All sample sizes have the same generalized aspect
ratio c = L2/M = 9/8. The common intersection point at
Tw/Tcb = 0.872 ± 0.01 allows us to locate the critical wetting
temperature [24]. The insets in these figures show the corre-
sponding scaling plots of the observable already shown in the
main panel. Further details are given in the text.

follows from Abraham’s exact solution. On the other hand,
for x = 3λ/4 (with δHmax = 0.7227/2) we obtained
Tw = 0.919, again in full agreement with Abraham’s ex-
act result, namely, Tw(Hmax = 0.36135) = 0.931029. So,
we conclude that the Ising strip in the presence of two
fields acting along the wall, i.e., our M → ∞ limit of
H1(x, λ) given by equation (7), behaves as two almost
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Fig. 3. Plots of (a) the average absolute value of the magne-
tization (h|m|i), (b) the average square magnetization (hm2i),
and (c) the cumulant (U) versus the temperature relative to the
bulk critical point, obtained for samples of different sizes (as
indicated). Data corresponding to fields given by equation (5)
with λ = 32 and Hmax/J = 1.00, so that Heff = 0.50 (see
Eq. (3)). All sample sizes have the same generalized aspect
ratio c = L2/M = 9/8. The common intersection point at
Tw/Tcb = 0.879 ± 0.01 allows us to locate the critical wetting
temperature [24]. The insets in these figures show the corre-
sponding scaling plots of the observable already shown in the
main panel. Further details are given in the text.

independent systems, each of them having its own critical
wetting temperature.

In order to illustrate this statement, Figure 6 shows a
comparison of magnetization profiles obtained at (i) T '
Tw(x = λ/4) and at (ii) T ' Tw(x = 3λ/4). For case (i)
one has that by choosing x = λ/4 the profile is almost lin-
ear as expected for the wet phase, while for x = 3λ/4 the
profile corresponds to a typical nonwet state with the in-
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Fig. 4. Plots of (a) the average absolute value of the magne-
tization (h|m|i), (b) the average square magnetization (hm2i),
and (c) the cumulant (U) versus the temperature relative to
the bulk critical point, obtained for samples of different sizes
(as indicated). Data were obtained within a wide interval cen-
tered around x = λ/4 1, where Hmax/J = 0.7227 (see Eq. (7)).
The common intersection point at Tw/Tcb = 0.699±0.01 allows
us to locate the critical wetting temperature [24]. The insets in
these figures show the zoom of plots of the observable already
shown in the main panel. Further details are given in the text.

terface localized close to the right-hand side of the sample.
In contrast, for case (ii) the profile measured for x = λ/4
is deep in the wet phase (T = 0.92 � Tcw = 0.699), while
the profile obtained for x = 3λ/4 is just in the wet phase.
In fact, our results are also confirmed by the snapshot con-
figurations shown in Figure 7. Figure 7a was obtained for
T/Tcb = 0.69 ' Tw/Tcb(x = λ/4), where one observes that
the lower part of the figure (where one has Hmax = 0.7227)
corresponds to a wet state with the interface highly fluctu-
ating along the middle of the sample, while the upper part
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Fig. 5. Plots of (a) the average absolute value of the magneti-
zation (h|m|i), (b) the average square magnetization (hm2i),
and (c) the cumulant (U) versus the temperature relative
to the bulk critical point, obtained for samples of different
sizes (as indicated). Data were obtained within a wide inter-
val centered around x = 3λ/4 1, where δHmax/J = 0.7227/2
(δ = 0.50) (see Eq. (7)). The common intersection point at
Tw/Tcb = 0.919 ± 0.01 allows us to locate the critical wetting
temperature [24]. The insets in these figures show the zoom
of plots of the observable already shown in the main panel.
Further details are given in the text.

of the figure (with Hmax = 0.7227/2) shows a clear nonwet
phase. Figure 7b shows a zoom obtained close to the center
of the sample (x ' λ/2 ' M/2) so that the abrupt change
in the location of the interface can already be clearly seen.
On the other hand, Figure 7c corresponds to a configu-
ration taken at T/Tcb = 0.93 ' Tw/Tcb (Hmax = 0.36).
Here, both the upper and the lower parts of the sample
are wet and the zoom of the central part of the sample
(x ≈ λ/2 = M/2) does not exhibit any particular fea-
ture in contrast with the case measured at T = 0.69 (see
Fig. 7b).
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Fig. 6. Plots of the magnetization profiles m(y) versus the row
index y obtained for samples of size L = 34, M = 4096, and
surface fields given by equation (7), with Hmax/J = 0.7227,
δ = 0.50 and λ = M = 4096. (a) Data measured at x = λ/4 1,
T/Tcb = 0.69 ' Tw/Tcb(Hmax = 0.7227), (b) data measured at
x = 3λ/4 1, for T/Tcb = 0.69 < Tw/Tcb(Hmax = 0.7227), (c)
data measured at x = λ/4, T/Tcb = 0.92 > Tw/Tcb(Hmax =
0.7227), (d) data measured at x = 3λ/4, T/Tcb = 0.92 '
Tw/Tcb(Hmax = 0.7227/2).

Also, for the sake of completeness it is worth mention-
ing that for x ' λ/2, i.e., when the magnitude of the
surface field changes abruptly, the magnetization largely
fluctuates and the behavior of the system in that region
cannot be well described in terms of wetting arguments
(for a qualitative insight into that situation, see the mid-
dle part of the snapshot shown in Figs. 7a and 7b).

Finally, let us analyze the case of a spatially os-
cillatory surface field, as given by equation (6), with
hH1(x)i = 0 = Heff , and within the short wavelength
regime (more specifically, for λ = 4), where one has that
for nλ+1, nλ+2, nλ+3, and nλ+4 (n = 0, 1, 2, . . .M/4)
the field adopts discrete values given by Hmax, 0, −Hmax

and 0, respectively. So, it is expected this “antiferromag-
netic like” surface field would be unable to induce the
formation of magnetic domains of different orientations
with a well-defined interface running along the x direc-
tion. In this situation, the system will undergo a standard
order-disorder transition in the bulk rather than a wetting
transition. Now, by considering Ising strips at criticality
confined between walls with free boundary conditions and
a coarse grained vanishing surface field, it is known that
the system shows patterns of alternating domains of dif-
ferent magnetization (with interfaces running perpendicu-
larly to confinement walls) [62]. So, one has to analyze the
data by means of (isotropic) finite size scaling methods,
i.e., by keeping the aspect ratio L/M = constant, rather
than by the generalizad aspect ratio c = L2/M = constant
as in the case of anisotropic scaling of wetting transitions.
Figures 8a and 8b show plots of h|m|i and U versus T ob-
tained for samples of different sizes, respectively. The cu-
mulants (Fig. 8b) exhibit a common intersection point for
T/Tcb = 0.99(2), so that we are actually in the presence of
the standard (bulk) order-disorder transition of the Ising
magnet. Furthermore, the data obey standard finite-size
scaling, as shown in the insets of Figure 8, namely, one
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Fig. 7. Snapshot configurations obtained for lattices of size
L = 34 and M = λ = 4096, and a bivaluated surface field
given by equation (7) with H1/J = 0.7227 and δ = 0.50. In (a)
we take T/Tcb = 0.69, while (b) shows a zoom of (a) taken close
to the center of the sample 1448 ≤ x ≤ 2648, (c) corresponds
to T/Tcb = 0.93, while (d) shows the zoom of the central part
of (c) taken for 1448 ≤ x ≤ 2648. Spins pointing up are shown
in blue (dark grey in the printed version) while spins pointing
down are left in white.

obtains data collapse by assuming [62]

h| m |i ∼ L−β/νm̃
�
(T − Tcb)L1/ν , L/M

�
, (16)

and
U ∼ Ũ

�
(T − Tcb)L1/ν , L/M

�
, (17)

where m̃ and Ũ are suitable scaling functions that do not
need to be specified here. Also, β = 1/8 and ν = 1 are the
order parameter and correlation length critical exponents
corresponding to the d = 2 Ising universality class.

It is worth mentioning that our results shown in Fig-
ure 8 are in full agreement with the experiments per-
formed by Zdyb and Bauer [48] for the adsorption of gold
on W(100) stepped surfaces. In fact, the observed order
disorder transition in the adsorbed Au monolayer can be
ascribed to the Ising universality class with critical expo-
nents β = 1/8 and ν = 0.99 ± 0.007. Also, the effective

0.85 0.9 0.95 1 1.05
T/T

cb

0

0.2

0.4

0.6

0.8

1

<
|m

|>

L=12
L=24
L=36
L=48 0 1 2 3 4 5 6

L|T/T
cb

-1.00|
0

0.5

1

1.5

L
1/

8 <
|m

|>

(a)

0.85 0.9 0.95 1 1.05 1.1
T/T

cb

0

0.1

0.2

0.3

0.4

0.5

0.6

U

L=12
L=24
L=36
L=48

0.1 1 10
L|T/T

cb
 -1.00|

0.01

0.1

1

U

(b)

Fig. 8. Plots of (a) the average absolute value of the magne-
tization (h|m|i) and (b) the cumulant (U) versus the tempera-
ture relative to the bulk critical point obtained for samples of
different sizes (as indicated). Data corresponding to λ = 4 and
Hmax/J = 0.7227, L = 12, M = 256, L = 24 M = 512, L = 36
M = 768 and L = 48 M = 1024. All sample sizes have the
same aspect ratio c = L/M = 3/128. The intersection point
of the cumulant at Tw/Tcb = 0.99 ± 0.01 allows us to locate
the critical temperature. The insets in these figures show the
corresponding scaling plots of the observable already shown in
the main panel. Further details are given in the text.

dependence of the exponent β on the terrace width can
be explained within the framework of the theory of finite
size effects, which predicts a shift of the critical temper-
ature and the rounding of the order parameter, cf. equa-
tions (16) and (17).

6 Conclusions

Based on the exact solution of the critical wetting phase
diagram developed by Abraham [30] for the case of short-
range homogeneous fields acting at the walls of a confined
Ising magnet, as well as on a recently proposed anisotropic
finite-size scaling theory describing that situation [24,25],
we addressed critical wetting behavior in the presence
of inhomogeneous short-range surface fields. By assum-
ing a spatial dependence of the fields given by H1(x, λ),
1 ≤ x ≤ M , where M is the length of the confinement
wall and λ is the spatial wavelength or period, we found
that in some cases the situation can be rationalized in
terms of an effective field Heff ≡ 1

λ

R λ

0
H1(x, λ)dx (where

M = nλ, so Heff is a coarse-grained surface field up to
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a certain wavelength or spatial period λ). For example,
if Heff > 0, and in the short wavelength regime (we ac-
tually numerically explored the case for λ ≤ 1.28, i.e.,
λ < M , and λ � ζk → ∞), the wetting transition is well
described taking Heff ≡ F (T ), where F (T ) is the exact so-
lution worked out by Abraham [30] given by equation (1).
The long wavelength regime is studied by taking a bivalu-
ated surface field (Hmax for x ≤ λ/2; δHmax for x > λ/2,
with λ = M and 0 < δ ≤ 1). In this case, the regions
of the strip located far away from the middle behave al-
most independently exhibiting their own critical wetting
temperatures, which are in full agreement with those tem-
peratures predicted by equation (1) for the respective sur-
face fields (namely Hmax and δHmax). On the other hand,
for a rapidly varying field of small wavelength such that
Heff = 0 (specifically for a sinusoidal field with λ = 4) we
no longer observe wetting transitions but a standard bulk
order-disorder transition at Tcb. This case turns out to be
equivalent to considering a strip in the absence of bound-
ary fields since bulk criticality is approached by the onset
of an alternating structure of magnetic domains of differ-
ent orientations with interfaces running in the direction
perpendicular to the confining walls.

Summing up, we expect that our study will contribute
to understanding interfacial phenomena in systems con-
fined between inhomogeneous walls.

This work was supported by CONICET through PIP 143 and
the Universidad Nacional de La Plata, Argentina.
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