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We revisit, in the framework of Mach–Zehnder interferometry, the connection between the com-
plementarity and uncertainty principles of quantum mechanics. Specifically, we show that, for a pair
of suitably chosen observables, the trade-off relation between the complementary path information
and fringe visibility is equivalent to the uncertainty relation given by Schrödinger and Robertson,
and to the one provided by Landau and Pollak as well. We also employ entropic uncertainty rela-
tions (based on Rényi entropic measures) and study their meaning for different values of the entropic
parameter. We show that these different values define regimes which yield qualitatively different
information concerning the system, in agreement with findings of [A. Luis, Phys. Rev. A 84, 034101
(2011)]. We find that there exists a regime for which the entropic uncertinty relations can be used
as criteria to pinpoint non trivial states of minimum uncertainty.
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I. INTRODUCTION

The Complementarity Principle (CP) [1] lies at the
heart of Quantum Mechanics (QM). Many years have
passed since its original formulation but, still today, there
is an important debate regarding its adequate interpre-
tation and its precise definition in several contexts [2–5].

The Complementarity Principle has been both theo-
reticallyand experimentallystudied in the framework of
Mach–Zehnder (MZ) interferometrics. The MZ frame-
work is particularly suitable for discussions regarding
wave–particle duality, and there is a debate concern-
ing the complementarity of the fringe-visibility observ-
able (wave aspect) and the which-way-has-passed ques-
tion (particle aspect). In this regard, the wave and par-
ticle properties are represented by measurable quantities
P and V , respectively, which satisfy the duality rela-
tion [2, 3]

P 2 + V 2 ≤ 1. (1)

Despite the fact that this quantitative formulation of the
complementarity principle is expressed in a way that re-
sembles inequalities typical of the uncertainty principle,
the derivation of Eq. (1) does not involve any mention
of inherent fluctuations in the measured quantities. In-
spired in this quantitative similarity, we are interested in
looking deeper at the connection between these two im-
portant principles of Quantum Mechanics. Specifically,
we address the question: is Eq. (1) the expression of an
uncertainty relation? This basic issue has been the sub-
ject of intense debate in the literature. Answers in both
the affirmative and the negative have been provided by
various authors (see, for instance, Refs. [4, 6–8]). Our
goal is, with regards to Eq. (1), to shed some new light on
the issue by considering several ways of quantifying un-
certainty, concentrating attention on variance-based and
entropy-based inequalities.

The article’s outline is as follows: in Sect. II we re-
view details of the discussion concerning the duality re-
lation (1), introducing relevant operators that account for
the path information and fringe visibility in double-slit-
like experiments. Sect. III is devoted to summarize var-
ious formulations of the uncertainty principle that were
applied to our problem, i.e. for a pair of two-level discrete
operators, by employing variances as well as entropic and
other measures. In Sect. IV we provide an affirmative
answer to the question posed in the case of the uncer-
tainty inequalities prescribed by Shrödinger–Robertson
and by Landau–Pollak, demonstrating the full equiva-
lence between them. Additionally, our analysis of a class
of entropic uncertainty inequalities shows that they are
not on the same footing as the above ones but that they
yield nonetheless nontrivial information about the sys-
tem. This is achieved by studying states that saturate
the entropic inequality. We find that, according to the
value of the Rényi parameter, different regimes can be
discerned, a fact that can be interpreted as giving sup-
port to previous investigations [9]. Finally, some conclu-
sions are drawn in Sect. V.

II. MACH–ZEHNDER INTERFEROMETER
SCHEME AND COMPLEMENTARITY

RELATION

The Mach–Zehnder interferometer (Fig. 1) is a device
that has been used in several branches of physics, in
particular, for the study of the Complementarity Prin-
ciple. An important quantity is the “which way” infor-
mation, that is quantified by the predictability P defined
as P = 2L − 1, where L = max{w+, w−}, and w+ and
w− are the probabilities of the particle taking path “+”
or path “-”, respectively. On the other hand, the fringe
visibility is quantified via a natural extension of the usual
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measure for intensity of light, that is V = pmax−pmin

pmax+pmin

where p stands for the probability that the particle be
detected in some position in space, with pmax and pmin

denoting, respectively, the maximum and minimum of
this probability.
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FIG. 1: A source S emits a photon which splits, after pass-
ing through the beam splitter BS1, into paths “+” and “-”.
It reflects in mirrors M1 and M2, and is finally observed us-
ing detectors D1 and D2. A phase shifter PS and another
beam splitter BS2 may be inserted into the set-up, in order
to produce interference.

The quantitative formulation of CP in the MZ-
interferometer scheme is the celebrated duality rela-
tion [2, 3] given by Eq. (1), where the equal sign holds
(only) for pure states. This relation was also implicitly
alluded to in the pioneering works of Refs. [10, 11].

The MZ interferometer, having two relevant spatial
modes, can be represented by a two-dimensional Hilbert
space spanned for instance by {|0〉, |1〉}, which is the so-
called computational basis. The states |0〉 and |1〉 are
eigenstates of the Pauli spin operator σz, representing
the two paths. We use the Bloch representation to de-
scribe quantum density operators as

ρ =
I + ~s · ~σ

2
(2)

where ~σ = (σx, σy, σz) denote the Pauli matrices, I is the
2 × 2 identity matrix, and ~s = (sx, sy, sz) is the Bloch
vector (with ‖~s‖ ≤ 1) that characterizes the state. The
action of the 50:50 beam splitter can be described by the
unitary transformation UBS = e−iπσy/4, which implies a
rotation of π/2 of the Bloch vector around the y-axis.

The phase shifter Uφ = e−iφσz/2 introduces a phase dif-
ference equal to φ between the paths.

Following Ref. [6], a sharp observable P̂ can be asso-
ciated to the predictability, while two families of sharp
observables V̂φ and V̂ ⊥φ can be associated to the visibility.
It is possible to express these operators in terms of the
Pauli spin ones as

P̂ = σz (3)

V̂φ = (cosφ) σx + (sinφ) σy (4)

V̂ ⊥φ = −(sinφ) σx + (cosφ) σy (5)

with φ ranging, in principle, between 0 and 2π. Note that
P̂ , V̂φ, and V̂ ⊥φ are a set of mutually complementary ob-
servables, that is, if one is certain about the value of one
observable, then maximum ignorance reigns concerning
the value of any of the other two.

For a system in state ρ (with Bloch vector ~s) the pre-
dictability P is obtained by taking the modulus of the
expectation value of observable P̂ : P = |〈P̂ 〉| = |sz|.
The visibility V can be derived either from the observ-
able V̂φ or from V̂ ⊥φ by properly choosing the parame-

ter φ. Defining ρ as

(
ω+ re−iθ

reiθ ω−

)
, the auxiliary state

variables r ≡ 1
2

√
s2x + s2y and tan θ ≡ sy

sx
allow us to write

〈V̂φ〉 = 2r cos(θ − φ) and 〈V̂ ⊥φ 〉 = 2r sin(θ − φ). Thus
the visibility, which is given by the maximum absolute
expectation value of these observables, is equal to 2r and
can be obtained using V̂φ if one sets φ = θ, or V̂ ⊥φ set-

ting φ = θ − π/2 (arranging the apparatus with a phase
difference of π with respect to these angles gives also the
same value of visibility). Finally, due to the positivity of
the density matrix, the complementarity relation (1) is
directly obtained:

P 2 + V 2 = s2x + s2y + s2z ≤ 1, (6)

and it is seen to be saturated whenever ‖~s‖ = 1, i.e. for
any pure state.

We note that the measurements of the two observ-
ables (3) and (4), or (3) and (5), can only be carried
out in two incompatible experimental set-ups and that
joint measurement is not involved. Therefore the trade
off relation (1) expresses the preparation complementar-
ity [4], that is the impossibility to prepare the system in
a state where the two observables have simultaneously
sharp values.

III. UNCERTAINTY RELATIONS

The Uncertainty Principle (UP) states that the proba-
bility distributions associated to the outcomes of two in-
compatible observables cannot be simultaneously sharp.
Quantitative formulations of the UP are known as un-
certainty relations (UR), and there is now a collection of
inequalities that express this principle (see, for instance,
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the recent review articles [12, 13]). Before summarizing
the UP formulations to be employed, let us introduce the
relevant quantities and fix the notation.

In general, the state of an N -level system is described
by a density operator ρ, with Trρ = 1 and ρ ≥ 0. Physical
observables like A and B are represented by Hermitian
operators which in their spectral decomposition can be

written as A =
∑N
i=1 ai|ai〉〈ai| and B =

∑N
i=1 bi|bi〉〈bi|,

where ai and bi are real numbers, and {|ai〉}Ni=1 and
{|bi〉}Ni=1 are the corresponding eigenbases. The prob-
ability to obtain a certain value ai of observable A is
given by Born rule: p(A = ai) = Tr(ρ|ai〉〈ai|). The so-
called overlap between operators A and B is defined by
c = maxi,j |〈ai|bj〉| and lies between 1√

N
and 1.

In the particular case of two-level or qubit systems
(N = 2), one can use the Bloch representation. Hence,
the density operator is given by Eq. (2). Similarly, we
can write operators A and B as

A = α1I + α2 ~a · ~σ (7)

B = β1I + β2~b · ~σ (8)

where αi and βi are real numbers, and ~a and ~b are unit
vectors on the Bloch sphere. Therefore, in this represen-
tation the probability distributions associated to both
observables take the simple form

{p(A)} =

{
1 + ~a · ~s

2
,

1− ~a · ~s
2

}
(9)

{p(B)} =

{
1 +~b · ~s

2
,

1−~b · ~s
2

}
(10)

for a qubit characterized by the Bloch vector ~s. Mean-
while, the overlap is

c =
1 + |~a ·~b|

2
∈
[

1√
2
, 1

]
(11)

where the case c = 1/
√

2 corresponds to A and B being
complementary observables.

A. Variance-based uncertainty relations

Heisenberg, in his famous 1927 paper [14], was the first
to propose an uncertainty relation for position and mo-
mentum observables in terms of their variances. The gen-
eralization of Heisenberg inequality for any arbitrary pair
of Hermitian operators A and B is due to Robertson [15]
and contains the commutator [A,B]. A further tighter
relation was derived by Schrödinger [16] and includes also
the anticommutator {A,B}, namely

(∆A)2(∆B)2 ≥(
1

2
〈{A,B}〉 − 〈A〉〈B〉

)2

+

(
1

2i
〈[A,B]〉

)2

(12)

with (∆O)2 = 〈O2〉 − 〈O〉2 being the variance of observ-
able O. If one does not consider the first squared term
in the right-hand side (rhs) of (12), one deals with the
usual Heisenberg–Robertson (HR) uncertainty relation.

In the particular case of observables (7) and (8), the
Schrödinger–Robertson (SR) uncertainty relation (12)
reads [

1− (~a · ~s)2
] [

1− (~b · ~s)2
]
≥[

~a ·~b− (~a · ~s)(~b · ~s)
]2

+
[
(~a×~b) · ~s

]2
(13)

where we used that 〈A〉 = α1 + α2 ~a · ~s, (∆A)2 =
α2
2

[
1− (~a · ~s)2

]
, and analogously for B, while {A,B} =

2
[(
α1β1 + α2β2 ~a ·~b

)
I + α2β1 ~a · ~σ + α1β2~b · ~σ

]
and

[A,B] = 2iα2β2(~a×~b) · ~σ.
Variance-based UP formulations have been doubly crit-

icized. On the one hand, the lower bound to the product
of variances depends, in general, on the state of the sys-
tem via the expectation values and thus lacks a universal
character [17, 18]. Moreover, it can be easily seen [19]
that for discrete, bounded operators the lower bound is
trivially zero, yielding no valuable information. On the
other hand, the use of the variance as measure of un-
certainty (spreading) of a given probability distribution
exhibits some limitations [13, 20]. It might also be the
case that the variance is not well-defined.

B. Landau-Pollak uncertainty relation

An alternative UP formulation was introduced by Lan-
dau and Pollak (LP) in the context of time-frequency
analysis [21], and adapted to the quantum framework by
Maassen and Uffink [18]. Using the notation M∞(A; ρ) =
maxi pi(A) for the maximum probability of the outcomes
of observable A, then the LP uncertainty relation reads

arccos
√
M∞(A; |Ψ〉〈Ψ|)

+ arccos
√
M∞(B; |Ψ〉〈Ψ|) ≥ arccos c (14)

The LP relation captures the essence of the uncertainty
principle for quantum pure state, indeed the rhs is state-
independent. A generalization of a weak version of
the LP inequality for positive operator valued measures
was recently given in Ref. [22], and an application of
this inequality to separability problems was developed
in Ref. [23].

For N -dimensional systems, the extension of (14) to
general (mixed) states is not obvious, due to the lack

of definite concavity of arccos
√
M∞(A; ρ). However, for

two-dimensional systems it can been shown that the LP
relation remains valid for mixed states.

For our purposes, we express the LP inequality (14) as√
M∞(A)M∞(B)−

√
[1−M∞(A)][1−M∞(B)] ≤ c

(15)
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where we have used the trigonometric identity arccosx+

arccos y = arccos
(
xy −

√
(1− x2)(1− y2)

)
for x+y ≥ 0

[24], and that arccos(x) is a decreasing function. In our
2D case, using (9)–(10), we have√

(1 + |~a · ~s|)(1 + |~b · ~s|)−
√

(1− |~a · ~s|)(1− |~b · ~s|)

≤ 1 + |~a ·~b|(16)

C. Entropy-based uncertainty relations

Information-theory tools have shown their usefulness
in the study of uncertainty relations [25, 26]. Consider
now, as a measure of uncertainty (ignorance), the one
parameter generalization of Shannon entropy given by
Rényi [27], that in the case of an N -dimensional, discrete
probability distribution reads

Hq({pi}) =
1

1− q
ln

(
N∑
i=1

p q
i

)
(17)

where 0 ≤ pi ≤ 1,
∑N
i=1 pi = 1, and the real parameter

q > 0 with q 6= 1. If we let q → 1, then this definition
includes by continuity the Shannon case: H1({pi}) =

−
∑N
i=1 pi ln pi. Other special q values of interest, for

instance in quantum information process and quantum
cryptography, are q = 2 and q →∞. In the former case,
H2({pi}) = −

∑
p 2
i is known as collision entropy. The

latter is known as min-entropy, due to the property Hq′ <
Hq if q′ > q for fixed {pi}, and its value is H∞({pi}) =
− ln(maxi{pi}).

An entropic uncertainty relation (EUR) has the form

H(A; ρ) +H(B; ρ) ≥ B(A,B) (18)

where H is an entropic measure like the ones in Eq. (17)
with the probability distributions of the observables cal-
culated via Born rule, while B is a function of them.
More precisely, it depends on the overlap between both
eigenbases, being state-independent (i.e. it is not a func-
tion of the state ρ) and a positive quantity. The search
of tight bounds B for different pairs of observables with
discrete or continuous spectra, using diverse entropic
forms, has been subject of intense interest, for instance
in Refs. [12, 13, 28, 29].

In the particular case of spin-1/2 observables, using
Eq. (9), the Rényi entropy reads

Hq(A; ρ) =
1

1− q
ln

[(
1 + ~a · ~s

2

)q
+

(
1− ~a · ~s

2

)q]
(19)

Note that this is a measure of the degree of uncertainty
associated to the observable A, in the following sense:
when one is certain about the observable’s value, i.e.
{p(A)} = {1, 0} or {0, 1}, then the entropy takes its min-
imum value Hq = 0. Contrariwise, for total ignorance

concerning the value of A, i.e. {p(A)} = { 12 ,
1
2}, the en-

tropy is maximal and equal to Hq = ln 2 (irrespective
of q). Rényi entropy is a concave function in ρ for q ly-
ing in the interval (0, 2], that is, if ρ =

∑
n λn|Ψn〉〈Ψn|,

with 0 ≤ λn ≤ 1 and
∑
n λn = 1, then Hq(A; ρ) ≥∑

n λnHq(A; |Ψn〉〈Ψn|) [30, 31]. In the following we re-
strict the value of q to the above interval.

Optimal entropic uncertainty relations for two arbi-
trary quantum observables in the 2-dimensional case were
obtained for the Shannon [19] and collision [32] entropies.
Specifically, when A and B are spin-1/2 complementary

observables (c = 1/
√

2) the optimal lower bounds are ln 2
and 2 ln 4/3, respectively.

IV. CONNECTIONS BETWEEN
COMPLEMENTARITY AND UNCERTAINTY

RELATIONS

A. Equivalence with variance-based uncertainty
relations

The relationship between the predictability–visibility
inequality (1) and the uncertainty relations based on vari-
ances (12) are readily analyzed using the Bloch represen-
tation of the pertinent operators and the density ma-
trix. First of all, the variances of the operators defined
in Eqs. (3)–(5) are given, in terms of the predictability P
and visibility V , by

(∆P̂ )2 = 1− P 2 (20)

(∆V̂φ)2 = 1− V 2 cos2(θ − φ) (21)

(∆V̂ ⊥φ )2 = 1− V 2 sin2(θ − φ) (22)

The connection between the CP relation and variance-
based URs has been analyzed in Refs. [7], [6], and [4].
In [7] the authors highlight the equivalence between both
principles. Indeed, they compute the HR-UR for the pair
of observables P̂ and V̂ ⊥θ , and also for V̂θ and V̂ ⊥θ (setting
the phase shifter to an angle φ = θ). By doing so, they
obtain the following uncertainty inequalities

(∆P̂ )2(∆V̂ ⊥θ )2 = 1− P 2 ≥ V 2 (23)

(∆V̂θ)
2(∆V̂ ⊥θ )2 = 1− V 2 ≥ P 2 (24)

and notice that both are equivalent to (1). The main
drawback that they note in their derivation is the use of
V̂ ⊥θ , which has no direct interpretation in terms of neither
predictability nor visibility in connection with the MZ in-
terferometry experiment, since 〈V̂ ⊥θ 〉 = 0 and ∆V̂ ⊥θ = 1.

Moreover, when dealing with P̂ and V̂θ, the correspond-
ing HR-UR becomes trivial: (∆P̂ )2(∆V̂θ)

2 ≥ 0.
Independently, Björk et al. also dealt with the prob-

lem of connecting CP with UP. Although the authors of
Ref. [6] mention the SR-UR, they do not actually cal-
culate the lower bound of the product of variances as
prescribed by the rhs of (12). Their analysis is, in this
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respect, limited to obtain expressions (20) and (21) fol-

lowed by an appeal to (∆V̂φ)2 ≥ (∆V̂θ)
2 (basic trigonom-

etry) with the purpose of linking the two fundamental
principles of quantum mechanics.

A complete proof of the alluded to equivalence deal-
ing with the appropriate observables P̂ and V̂θ and the
full SR-UR, is given in Ref. [4]. We reproduce it here
–although in a slightly different way– for the sake of
completeness. For arbitrary φ, the UR prescribed by
Schrödinger and Robertson reads

(1− P 2)[1− V 2 cos2(θ − φ)] ≥
P 2V 2 cos2(θ − φ) + V 2 sin2(θ − φ) (25)

where equality holds for any pure state. It is straight-
forward to show that this inequality is equivalent to the
duality relation (1). We stress that (25) is valid for any
phase φ introduced by the phase shifter in the MZ inter-
ferometer. We then conclude that the appropriate choice
φ = θ implies equivalence with the trade-off relation be-
tween predictability and visibility. This circumvents the
drawback pointed out by Dürr and Rempe. With this
simple result, a rather sharp conclusion is drawn from
the discussion about complementarity between P and V ,
including the status of (1) as an uncertainty relation.
Finally, we mention that in Ref. [5] a relation between
wave–particle duality and quantum uncertainty has been
investigated, both theoretically and experimentally, by
recourse to variances of the operators P̂ and V̂θ, although
without appealing to Heisenberg-like inequalities.

B. Equivalence with Landau–Pollak uncertainty
relation

Let us now see just how inequality (1) becomes equiv-
alent to Landau–Pollak uncertainty relation. The max-
imum probabilities associated to observables P̂ and V̂θ,
in terms of the predictability and visibility, are

M∞(P̂ ) =
1 + P

2
(26)

M∞(V̂θ) =
1 + V

2
(27)

Replacing these probabilities in (15), and setting c =

1/
√

2 as corresponds to the case of complementary oper-
ators, we obtain√(

1 + P

2

)(
1 + V

2

)
−

√(
1− P

2

)(
1− V

2

)
≤ 1√

2
(28)

Squaring both sides of this inequality and grouping terms
conveniently, we immediately arrive at the relation

(1− P 2)(1− V 2) ≥ (PV )2 (29)

which coincides with (25) for φ = θ, and, as mentioned
before, can be easily recast in the fashion P 2 + V 2 ≤ 1.
This implies that the duality relation (1) can be deduced
from the LP inequality, and viceversa.

C. Relationship with entropic uncertainty relations

Having clarified the above equivalences, we now con-
sider the problem of elucidating the connection between
EURs and the duality relation (1). Using Eq. (19) and

the Bloch representation of P̂ and V̂θ we obtain

Hq(P ) =
1

1− q
ln

[(
1 + P

2

)q
+

(
1− P

2

)q]
(30)

Hq(V ) =
1

1− q
ln

[(
1 + V

2

)q
+

(
1− V

2

)q]
(31)

where to simplify notation we have renamed Hq(P̂ ; ρ) ≡
Hq(P ) and Hq(V̂θ; ρ) ≡ Hq(V ). Our goal is to find the
minimum of the sum of these Rényi entropies over all
available states, that is, min

ρ
{Hq(P̂ ; ρ) +Hq(V̂θ; ρ)}. Ap-

pealing to the concavity of Rényi entropy for q ∈ (0, 2],
we can restrict our calculations to pure states and then
the conditioned minimization problem can be recast in
the fashion

min
P 2+V 2=1

{Hq(P ) +Hq(V )} (32)

For arbitrary values of q, this problem can be solved nu-
merically. It is seen that three qualitatively different
regimes appear: (i) for 0 < q < q∗ with q∗ ≈ 1.4316,
the minimum is ln 2 and it is attained at V = 0 and
P = 1, or V = 1 and P = 0; (ii) at q = q∗ the minimum
value is also ln 2 but it corresponds to the cases V = 0
and P = 1, V = 1 and P = 0, or also V = P = 1/

√
2;

and (iii) for q∗ < q ≤ 2, the minimum is the q-dependent

function 2
1−q ln

[(
1+1/

√
2

2

)q
+
(

1−1/
√
2

2

)q]
, attained at

V = P = 1/
√

2. The value of q∗ is obtained solving

(numerically) the equation 2Hq∗(1/
√

2) = ln 2.
In Fig. 2 we display, in the V -P plane, the constraint

P 2 + V 2 = 1 together with several contour lines of the
sum of q-Rényi entropies for two representative values
of the entropic parameter in the regimes (i) and (iii)
mentioned above. In both cases the contour lines cor-
respond to decreasing values towards the origin. In
case (i) ln 2 is the minimum-value contour line that
intersects (tangencially) the constraint, at the points
(V, P ) = (0, 1) or (V, P ) = (1, 0). In case (iii) the
curve P 2 + V 2 = 1 is intersected by the minimum-value
contour line Hq(P ) + Hq(V ) = 2Hq(1/

√
2), precisely at

(V, P ) = (1/
√

2, 1/
√

2).
The existence of these three regimes sheds light on the

meaning of the sum of Rényi entropies. The fact that
there appear three qualitatively different regimes agrees
with a result suggested in previous work [9], where dif-
ferent values of the parameter q yield different entropic
measures which, in turn, give rise to qualitatively dif-
ferent information about the system. As stated before,
information-theoretic entropy gives a measure of the un-
certainty related to the outcome of a variable in terms of
the corresponding probability distribution. Thus, solv-
ing the problem raised in (32) we get the minimum of
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FIG. 2: Constraint P 2 +V 2 = 1 (solid line) and contour plots
(dashed lines) of the sum of q-Rényi entropies with entropic
indices: a) q = 1, b) q = 2. The value of the entropy sum
is indicated near each contour line: the values shown are 1,
2H1(1/

√
2) ≈ 0.833, ln 2 ≈ 0.693, and 2H2(1/

√
2) ≈ 0.576.

the sum of uncertainties (notice that in this spirit we are
using the same q parameter for both entropies). We are
also able to pinpoint the optimum (minimizing) states of
this problem.

States which saturate an uncertainty relation are used
in several contexts. An important example has to do with
coherent states, which saturate the position–momentum
Heisenberg UR. Because of having this property, co-
herent states are usually interpreted as the most clas-
sical ones. In the present case, in which we consider
the predictability–visibility relation in the context of the
MZ interferometer, we find that regime (i) is a triv-

ial one, being the eigenstates of V̂θ or P̂ those states
of minimum uncertainty sum. However, an interesting
non-trivial situation appears in regimes (ii) and (iii),
where the extremum is attained at the symmetric case.
Which are the characteristic features of states which
make |〈V̂θ〉| = |〈P̂ 〉| = 1√

2
? They are the pure states

of the form (2) with the four different unit Bloch vec-

tors: ±
(

1√
2

cos θ, 1√
2

sin θ,± 1√
2

)
. These are precisely

the states which saturate the concomitant EURs in the
most unbiased way (in the sense of simultaneously hav-
ing the maximum visibility and maximum predictability
that is possible).

Let us consider in more detail the question of getting
the states with maximum value for both predictability
and visibility, a situation which one expects to corre-
spond to the best description of the system. From simple
geometric arguments in the V -P plane (taking into ac-
count that P 2 +V 2 ≤ 1 has to be fulfilled), it is straight-
forward how to compute those states. However, one may
deal as well with a situation in which one does not have
at hand the whole set of states available, but only a
fraction of it. In such circumstances, it is convenient
to delve further into the usefulness of the minimization
of the measure Hq(P ) + Hq(V ) (when q > q∗). For ex-
ample, this situation may appear if the source in Fig. 1
has limitations for producing certain states, and one is

thus restricted to deal with a given region of the convex
set of quantum states. Another interesting situation has
to do with the case in which the second beam splitter is
a Schrödinger cat (as is the case in Refs. [33] and [34]) or
if there is a noisy environment. In both situations, the
states of the system which pass trough the interferometer
are limited by the state of the environment (and cannot
be controlled, in the second case), being mixed states
the more general case. Thus, not all states are available
and (32) gives a way to solve the problem posed by con-
ditions mentioned above in this non-symmetrical setting.

V. CONCLUSIONS

We studied here connections between the Complemen-
tarity and Uncertainty Principles in the Mach–Zehnder
interferometer scheme. Following Ref. [6] and related

work, we employed quantum-mechanical operators P̂ and
V̂θ to represent the particle and wave aspects of a quan-
tum system, respectively.

We have thoroughly analyzed some drawbacks con-
cerning the approaches of Björk et al., and of Dürr
and Rempe, who considered the link between the in-
equality (1) and variance-based uncertainty relations of
the form (12). We showed the equivalence between the
Schrödinger–Robertson UR and the duality relation in
the relevant case, i.e. for observables which adequately
represent predictability and visibility according to [4].
An alternative quantification of the Uncertainty Princi-
ple is given by the Landau–Pollak inequality (14). We
proved the equivalence between (1) and the LP-UR (as
specified for the observables of interest).

It is worth stressing then that in the present context
the three inequalities (1), (25) and (28), are on an equal
footing (which may well not be the case for other pairs
of observables). We remark that our results give a pre-
cise (and quantitative) meaning to the assertion P and
V are complementary quantities and, at the same time,
settle pending question regarding the status of (1) as an
uncertainty relation.

Moreover, we have studied the connection between (1)
and entropic uncertainty relations (18) based on the q-
Rényi entropy (17). We found that these EURs, for the

pair P̂ -V̂θ, are not equivalent to the duality relation. Nev-
ertheless, we see that, when these uncertainty measures
are applied to the MZ scheme, different regimes emerge,
depending on the value of the entropic parameter q. We
also noticed that this agrees with a previous investiga-
tion by Luis [9], in which the value chosen for q affects
the qualitative behavior of the uncertainty relations. The
fact that these different regimes are also found in the
canonical example of MZ interferometry seems to pro-
vide support to the assertion there is no preferred value
for q. Indeed, different q-values render the concomitant
entropic measures useful for different purposes. In addi-
tion, looking at the states which correspond to an equal-
ity in the entropic uncertainty relation, we find regimes
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with nontrivial saturating states. We have in this vein
established a procedure for solving the problem of find-
ing a state having minimum uncertainty for the observ-
ables P̂ and V̂θ in the most unbiased fashion. Finally,
we also discussed the usefulness of such procedure for
infomation-theoretical purposes, depending on the na-
ture of the source and the beam splitters.

ACKNOWLEDGMENTS

This work has been supported by PICT-2007-806 (AN-
PCyT) and PIP 1177/09 (CONICET), Argentina.

[1] N. Bohr, Causality and complementarity, Philos. Sci. 4,
289 (1937).

[2] G. Jaeger, A. Shimony, and L. Vaidman, Phys. Rev. A
51, 54 (1995).

[3] B.-G. Englert, Phys. Rev. Lett. 77, 2154 (1996).
[4] P. Busch and C. Shilladay, Phys. Rep. 435, 1 (2006).
[5] H. Liu, J. Huang, J. Gao, M. Zubairy, and S. Zhu, Phys.

Rev. A 85, 022106 (2012).
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[7] S. Dürr and G. Rempe, Am. J. Phys. 68, 11 (2000).
[8] A. Luis, Phys. Rev. A 64, 012103 (2001).
[9] A. Luis, Phys. Rev. A 84, 034101 (2011).

[10] W.K. Wootters and W.H. Zurek, Phys. Rev. D 19, 473
(1979).

[11] L. Mandel, Opt. Lett. 16, 1882 (1991).
[12] S. Wehner and A. Winter, New J. Phys. 12, 025009

(2010).
[13] I. Bialynicki-Birula and L. Rudnicki, in Statistical com-

plexity, Ch. 1, ed. by K.D. Sen (Springer, Berlin, 2011).
[14] W. Heisenberg, Z. Phys. 43, 172 (1927).
[15] H.P. Robertson, Phys. Rev. 34, 163 (1929).
[16] E. Schrödinger, Sitzungsberichte der Preussis-

chen Akademie der Wissenschaften, Physikalisch-
mathematische Klasse 14, 296 (1930).

[17] D. Deutsch, Phys. Rev. Lett. 50, 631 (1983).
[18] H. Maassen and J.B.M. Uffink, Phys. Rev. Lett. 60, 1103

(1988).
[19] G.C. Ghirardi, L. Marinatto, and R. Romano, Phys. Lett.

A 317, 32 (2003).
[20] J. Hilgevoord, Am. J. Phys. 70, 983 (2002).

[21] H.J. Landau and H.O. Pollak, Bell Syst. Tech. J. 40, 65
(1961).

[22] T. Miyadera and H. Imai, Phys. Rev. A 76, 062108
(2007).

[23] J.I. de Vicente and J. Sánchez-Ruiz, Phys. Rev. A 71,
052325 (205).

[24] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Se-
ries, and Products, 7th Edition, A. Jeffrey and D. Zwill-
inger Editors (Academic Press, 2007).

[25] B. Mamojka, Int. J. Theor. Phys. 11, 73 (1974).
[26] I. Bialynicki-Birula and J. Mycielski, Commun. Math.

Phys. 44, 129 (1975).
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