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Abstract

We study some consequences of dimensionally reducing systems with massless fermions and
Abelian gauge fields from 3+1 to 2+1 dimensions. We first consider fermions in the presence of an
external Abelian gauge field. In the reduced theory, obtained by compactifying one of the coordinates
“a la Kaluza–Klein”, magnetic flux strings are mapped into domain wall defects. Fermionic zero
modes, localized around the flux strings of the 3+ 1 dimensional theory, become also zero modes in
the reduced theory, via the Callan and Harvey mechanism, and are concentrated around the domain
wall defects. We also study a dynamical model: massless QED4, with fermions confined to a plane,
deriving the effective action that describes the “planar” system.  2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Topological defects in quantum field theory (an excellent reference on the subject is
[1]) play an important role in the description of many interesting phenomena, both in
high energy and condensed matter physics applications. Being part of the non-perturbative
spectrum, the understanding of their properties demands the study of topological classes
of the field configuration space, and the realization of the associated topological invariants
in the model under consideration. For some systems containing fermions, fermionic zero
modes arise whenever the topological charge is different from zero. This effect has many
important consequences for the study of the low momentum effective theory. Moreover,
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since they are gapless excitations, they will strongly affect the response functions of the
model [2].

In this paper we are concerned with the relationship between topological defects and
zero modes in theories related by dimensional reduction. In particular, for the concrete
example of fermions in 3+1 dimensions coupled to an Abelian gauge field, we shall derive
the low-momentum effective action for the dimensionally reduced theory. Being originally
a massless theory, the momentum scale will be fixed by the inverse of the compactification
length. Also, as it will be explained, quantum corrections coming from all the Kaluza–
Klein modes have to be included, to be consistent with large gauge invariance.

We will first consider the case of massless Dirac fermions in the presence of an external
Abelian field. We then go on to consider a dynamical model: massless QED in 3 + 1
dimensions. The reduction is here introduced for the fermions, assumed to be confined to
a planar spatial region. Being the only sources of the gauge field, this induces a reduction
also for the gauge field, regardless of the fact that it is apriori unconfined. For this system
we derive the effective theory, showing that there is room for the existence of “stripe”
defects, i.e., localized zero modes that appear due to changes in the sign of the fermionic
mass. This is just a manifestation of the well known Callan and Harvey mechanism [3].
When there is translation invariance along one of the spatial directions, the dynamics of
the defects is governed by a sine-Gordon-like action. Moreover, the soliton charge is linked
to the number of zero modes.

The organization of this paper is as follows: in Section 2, we consider fermions in the
presence of an external (non-dynamical) gauge field, in 3 + 1 dimensions. To take into
account quantum effects, Section 3 deals with the evaluation of the effective action using a
derivative expansion approximation for the fermionic determinant. In Section 4, we derive
the low-momentum effective theory for the interacting case of massless QED4. Finally,
Section 5 is devoted to the conclusions.

2. “Non-interacting” case

By “non-interacting” we refer to a model containing a fermionic field ψ in the presence
of an external (i.e., non-dynamical) gauge field Aα . The Euclidean action for the present
case is simply defined by

SF =
∫

d4x ψ̄/Dψ (1)

where

/D = γαDα, Dα = ∂α + ieAα. (2)

We shall adopt the convention that indices from the beginning of the Greek alphabet always
run over the values 0,1,2,3 while those from the end belong to the set 0,1,2 and are
reserved for the coordinates of the reduced spacetime. The third spatial coordinate, x3,
is compactified: 0 6 x3 6 L, and shall be sometimes also denoted ‘s’, to emphasize its
special role, as opposed to the uncompactified coordinates, xµ.
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We shall first be concerned with configurations corresponding to magnetic flux strings in
3+ 1 dimensions, with the strings entirely contained in the reduced hyperplane x3 = 0. 3

These configurations are here considered regardless of the mechanism which may create
them. To have these magnetic field structures, special gauge field configurations are
required. Beforehand, we will use part of the gauge freedom to restrict the external gauge
field configurations to the ones satisfying the condition:

∂3A3 = 0, (3)

which can always be fulfilled, by performing a regular gauge transformation connected to
the identity. With this choice, A3(x, s)→ Ã3(x),

Ã3(x)≡ 1
L

L∫
0

ds As(x, s). (4)

Besides considering static magnetic flux strings, we would also like to include a “small”
gauge field configuration in order to find the effective action. The strings, being topological
objects, should be treated non-perturbatively, while the small part is assumed to be
intrinsically perturbative.

In 3+1 dimensions, the magnetic field componentsBi (i = 1,2,3) are, as usual, defined
by Bi = εijk∂jAk . As the flux strings lay on the x3 = 0 plane, the third normal component
of the magnetic field vanishes: B3 = 0. Moreover, we can generate the two non-vanishing
components B1, B2 using a gauge field such that A1 = A2 = 0, and Ã3 6= 0. With this
choice,

Bi(x)= εij ∂j Ã3(x). (5)

It is evident that, from the point of view of the reduced, planar theory, Ã3 is a scalar field
under transformations mapping the plane onto itself. It is convenient to use the definition
Ã3(x)= ϕ(x), with x ≡ (x0, x1, x2), to make explicit the fact that Ã3 behaves like a scalar.

In the case of a flux string along the x1 axis, the magnetic field is:

B1 = ξδ(x3)δ(x2), (6)

where ξ is a constant. 4

We need to write now a gauge field configuration leading to the magnetic field
of (6). There are of course many possibilities but, interestingly enough, if we want to
dimensionally reduce the theory, this freedom is substantially reduced. The reason is that
we do not want a gauge field configuration having a nontrivial x3 dependence far away
from the x3 = 0 hyperplane. The natural choice is then a gauge field strongly concentrated
on x3 = 0, and this determines the gauge field configuration to be of the form:

A3(x)= ξ2 δ(x3) sign(x2), (7)

3 This is rather different to the more standard situation of a flux tube pointing in the x3 direction, and thus
corresponding to a magnetic vortex in 2+ 1 dimensions.

4 This δ-like configuration is, of course, an idealization. Realistic configurations will be, although highly
concentrated, regular functions.
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which implies, for the 2+ 1 dimensional scalar field

ϕ(x)= ξ

2L
sign(x2). (8)

The constant ξ is, of course, related to the (quantized) total flux of the string, thus ξ =
2πk/e, where k is an integer, counting the number of elementary fluxes.

We note the emergence of a step-like configuration for the scalar field. This scalar
field, as we shall see next, plays the role of the mass for 2 + 1 dimensional fermions.
Hence, invoking the Callan and Harvey mechanism [3], we see that there are zero modes
concentrated on the walls, which indeed correspond to the dimensionally reduced version
of the zero modes around the flux strings. It is worth noting that the scalar field profile is
discontinuous because of the assumed δ-like profile for the magnetic field. It is convenient
to use instead a regular profile,

ϕ(x)= ξ

2L
h∆(x2), (9)

where h∆(x2) is a smoothed version of the step function, for example,

h∆(x2)= tanh(x2/∆), (10)

where ∆ is a length which essentially measures the “width” of the stripe.
To discuss issues related to the fermionic zero modes, like the relationship between

the number of modes in 3 + 1 and 2 + 1 dimensions, a more detailed study of the
fermionic action (1) is required. The full gauge field configuration (perturbative plus non-
perturbative) is assumed to be s-independent. This simplifying assumption allows us to
take advantage of the fact that the gauge field Ã3 is independent of s = x3 to Fourier
expand the fermionic fields:

ψ(x, x3)= 1√
L

+∞∑
n=−∞

eiωnx3ψn(x),

ψ̄(x, x3)= 1√
L

+∞∑
n=−∞

e−iωnx3ψ̄n(x), (11)

with ωn = 2πn/L . We then obtain for SF a representation as a series of decoupled 2+ 1
dimensional actions

SF =
+∞∑
n=−∞

SF,n. (12)

The explicit form for the action SF,n corresponding to each Fourier mode is:

SF,n =
∫

d3x ψ̄n(x)
[
γµDµ + iγ3(ωn + eϕ)

]
ψn(x). (13)

We assume the Dirac matrices are in the representation:

γ0 =
(

0 σ3
σ3 0

)
, γ1 =

(
0 σ1
σ1 0

)
,
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γ2 =
(

0 σ2
σ2 0

)
, γ3 =

(
0 iI
−iI 0

)
, (14)

where σj , with j = 1,2,3, denote the usual Pauli matrices, and I is the 2 × 2 identity
matrix. Writing each four-component fermionic field ψn in terms of two 2-component
fermions χ(a)n (a = 1,2), we see that

SF,n =
∫

d3x
[
χ̄ (1)n (/d +ωn + eϕ)χ(1)n + χ̄ (2)n (x)(/d −ωn − eϕ)χ(2)n (x)

]
. (15)

We have introduced the notation /d to refer to the Dirac operator in 2+1 dimensions, acting
on 2-component fermions. More explicitly,

/d = σµDµ (16)

with σ0 ≡ σ3, and σj (j = 1,2) again denoting the usual Pauli matrices. The covariant
derivative depends on a gauge field which, in our approximation, is a function of xµ only.

It is important to realize that all the fermionic modes should be kept if large gauge
invariance is to be preserved, since large gauge invariance amounts to shifts in ϕ, and this
field is directly coupled to the fermionic field.

It is now easy to study the Callan and Harvey fermionic zero modes of the reduced
theory, assuming that in the original model in 3+ 1 dimensions the background produced
a non-vanishing, quantized, magnetic flux. We first realize that the decomposition (12)
shows that there is an infinite number of 2+ 1 dimensional Dirac fermions, each Fourier
mode consisting of two flavours, distinguished by the sign of their mass terms. A Callan
and Harvey zero mode for the Fourier component n shall appear whenever ωn + eϕ(x)
crosses zero more or less sharply. Thus, the configuration (8) (in its smooth version (9))
shows that there is at least a zero mode for the n = 0 component, but, if there is a flux
string with charge k, the scalar field profile will cross as many values of ωn, implying that
there are, indeed, k zero modes in the reduced theory. To see this, we take into account the
expression (9) for the domain wall configuration. The equation determining the locii of the
zero modes may be written as

h∆(x2)= 2
k
× integer, (17)

where k is the (fixed) number of elementary fluxes. In Fig. 1 we show, as an example, the
case of a stripe configuration h∆ with k = 9. The horizontal lines correspond to different
n’s, and a zero mode is produced whenever one of these lines intersects the curve.

It is interesting to realize that a proper understanding of the relation between the height
of the stripe and the number of zero modes requires the use of the “smoothed” version of
the steplike scalar field configuration. This should be evident from Fig. 1, if one imagines
the curve to be deformed to a steplike configuration.

We remark that the zero modes produced in this way are massless Dirac fermions in 1+1
dimensions, because each flavour produces a given chirality, and the signs are opposite.
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Fig. 1. A stripe configuration of charge 9.

3. Derivative expansion for the fermionic determinant

We shall now consider the evaluation of the fermionic determinant, as a functional of aµ
and ϕ, in a derivative expansion approximation. The field aµ denotes the perturbative part
of the gauge field.

To avoid any risk of confusion, we shall, from now on, use two-component fermions
only. The “effective action” ΓF [ϕ,aµ] is defined as the result of functionally integrating
out the fermionic fields. Using the Fourier decomposition for the x3 = s coordinate, we see
that

e−ΓF [ϕ,aµ] =
∫ +∞∏

n=−∞
Dχ̄ (1)n Dχ(1)n Dχ̄ (2)n Dχ(2)n

× exp

{
−
+∞∑
n=−∞

[
χ̄ (1)n (/d +ωn + eϕ)χ(1)n + χ̄ (2)n (/d −ωn − eϕ)χ(2)n

]}
. (18)

Thus ΓF may be written in terms of fermionic determinants in 2+ 1 dimensions:

ΓF [ϕ,aµ] = −
+∞∑
n=−∞

{
ln det(/d +ωn + eϕ)+ ln det(/d −ωn − eϕ)

}
=−

+∞∑
n=−∞

Tr ln
[−/d2 + (ωn + eϕ)2

]
. (19)

Large gauge transformations wind up a number of times around the periodic coordi-
nate, s. Then they correspond to constant shifts in the scalar field ϕ:

ϕ(x)→ ϕ(x)+ 2πn
eL

, (20)

where n is an integer. It is now clear, from the general expression (19), that all the Fourier
modes must be kept, if invariance under (20) is to be maintained.
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In the derivative expansion technique, which we shall use in order to evaluate ΓF , the
leading, zero derivative term, can usually be treated exactly. This term may be thought of
as depending basically on the constant component of the fields. The following terms in the
derivative expansion depend of course also on the fluctuating part, which is assumed to be
small in comparison with the constant part.

The piece of the effective action depending on the constant part is usually regarded as
an “effective potential”. In our case, there is no point in keeping a constant part for aµ
since, if present, it could be gauged away (because the “planar” system is assumed to have
a trivial topology). From (20), it is evident that to keep a constant component for ϕ is, in
turn, crucial. We thus decompose ϕ into two pieces,

ϕ(x)= ϕ0 + ϕ̃(x), (21)

where the constant ϕ0 = 〈ϕ(x)〉 denotes the (xµ) spacetime average of ϕ(x), and ϕ̃(x)=
ϕ(x)− ϕ0. Then we factorize a constant field determinant,

ΓF [ϕ,aµ] = ΓF [ϕ0,0] +1ΓF [ϕ̃, aµ] (22)

where

ΓF [ϕ0,0] ≡
∫

d3x Veff(ϕ)=−
+∞∑
n=−∞

Tr ln
[−/∂2 + (ωn + eϕ0)

2] (23)

and

1Γ [ϕ̃, aµ] =−
+∞∑
n=−∞

Tr ln
[
1+ e(/∂ +ωn + eϕ0)

−1(i/a + ϕ̃)]
−
+∞∑
n=−∞

Tr ln
[
1+ e(/∂ −ωn − eϕ0)

−1(i/a − ϕ̃)]. (24)

We have introduced the notation ‘Veff’ under the integral symbol in (23), to emphasize the
property that it will play the role of an effective potential for ϕ. At the end of the evaluation,
we shall follow the common practice of replacing ϕ0 by ϕ in Veff. This approximation is
justified within the derivative expansion technique, as long as the hypothesis leading to that
expansion are valid [4,5].

Large gauge invariance means that this potential is a periodic function of ϕ. The constant
field determinant is evaluated by taking the functional and Dirac traces in momentum
space:

ΓF [ϕ0,0] = −
+∞∑
n=−∞

Tr ln
[−/∂2 + (ωn + eϕ0)

2]
=−2

∫
d3x

+∞∑
n=−∞

∫
d3p

(2π)3
ln
[
p2 + (ωn + eϕ0)

2]. (25)

To evaluate the sum over n, we follow techniques of standard application in finite
temperature quantum field theory [6]. We first take advantage of the fact that the series
runs from n=−∞ to n=+∞, to write
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ΓF [ϕ0,0] = −
∫

d3x

+∞∑
n=−∞

∫
d3p

(2π)3

× {ln[p2 + (ωn + eϕ0)
2]+ ln

[
p2 + (ωn − eϕ0)

2]}, (26)

which is easily rearranged as

ΓF [ϕ0,0] = −
∫

d3x

+∞∑
n=−∞

∫ d3p

(2π)3

× {ln[ω2
n + (p+ ieϕ0)

2]+ ln
[
ω2
n + (p− ieϕ0)

2]}. (27)

Each one of the terms in (27) may be evaluated by translating known results about the free
energy for a system of free bosons [6], what yields,

ΓF [ϕ0,0] = −
∫

d3x

∫
d3p

(2π)3
{
ln
[
1− e−L(p+ieϕ0)

]+ ln
[
1− e−L(p−ieϕ0

]}
, (28)

where we have ignored the “zero point” contribution, since it is a ϕ-independent constant.
We shall, however, fix the ambiguity in the renormalization of this infinite constant by
demanding that the Veff vanishes at its minima.

The integral over p can be performed, and the result can be presented as a series,

ΓF [ϕ0,0] =
∫

d3x
4

π2L3

∞∑
n=−∞

1
n4
[
cos(neLϕ0)− (−1)n

]
, (29)

or: ∫
d3x Veff =

∫
d3x

[
4

π2L3

∞∑
n=−∞

1
n4 cos(neLϕ0)− 14π2

5L3

]
. (30)

Let us next consider the remaining part of the effective action, denoted 1ΓF [ϕ̃, a].
Besides a dependence on ϕ0, it will also depend on ϕ̃ (the fluctuating part of ϕ) and aµ.

To be consistent with the derivative expansion, and also because both ϕ and aµ are
proportional to the same coupling constant e, the expansion must treat both fields as a
single entity. 5 To this end, we have found illuminating to define a new vector field σµ,
which summarizes the information on the aµ and ϕ̃ configurations, through the relations

εµνλ∂νσλ = eaµ,
∂µσµ = eϕ̃(x). (31)

Of course, this involves the assumption that the Lorentz gauge ∂ · a = 0 has been adopted
for the gauge field. The number of independent components for σµ is three, since this field
is, in principle, not constrained by any gauge invariance requirement, and this matches
the number of components for the transverse aµ (two) plus the scalar fields (one). Using
trivial properties of the γ -matrices in 2+ 1 dimensions, we observe that 1ΓF (ϕ̃, a) may
be written as

5 Indeed, they originate in different components of the same 3+ 1 dimensional gauge field Aα .
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1ΓF [ϕ̃, aµ] =−
∞∑

n=−∞

{
Tr ln

[
1+ (/∂ +ωn + eϕ0)

−1(/∂ /σ)
]+ ϕ↔−ϕ}. (32)

Because of its explicit Lorentz covariance, this expression could be regarded as a
consistency check for the procedure of introducing σµ as a Lorentz vector.

Taking into account the fact that (32) is explicitly even under parity transformations, we
may write

1ΓF [ϕ,aµ] =1Γeven
[
∂µϕ − F̃µ

]
(33)

where the ‘even’ label refers to the behaviour under parity transformations, and F̃µ =
εµνλ∂νaλ. The particular dependence of 1ΓF on its arguments is due to the fact that:

σµ = e 1
∂2
(
∂µϕ − F̃µ

)
. (34)

We calculate the leading term in a derivative expansion for 1ΓF , by noting that,
expanding up to second order in derivatives the 2+ 1 dimensional object

γ [σµ] = Tr ln
[
1+ (/∂ +ωn + eϕ0)

−1(/∂ /σ)
]
, (35)

we obtain

γ [σµ] = e2

24π |ωn + eϕ0|
∫

d3x
[
(∂µϕ − F̃µ)(∂µϕ − F̃µ)

]
. (36)

Then we easily see that

1ΓF [ϕ,aµ] =
{
γ [σµ] + (ϕ↔−ϕ)

}
= e2

12π

∫
d3x

∞∑
n=−∞

1
|ωn + eϕ0|

[
(∂µϕ)

2 + (F̃µ)2
]
. (37)

Namely, it corresponds to a local Maxwell term for aµ and a local kinetic term for ϕ.
In summary, the effective action induced by the integration of the fermionic degrees of

freedom is, to second order in a derivative expansion:

ΓF [ϕ,aµ] =
∫

d3x

[
4

π2L3

∞∑
n=−∞

1
n4 cos(neLϕ)− 14π2

5L3

]

+ e2

12π

∫
d3x

∞∑
n=−∞

1
|ωn + eϕ|

[
(∂µϕ)

2 + (F̃µ)2
]
, (38)

where we have replaced ϕ0 by ϕ in the contributions from the effective potential
(30) and the subleading term in the derivative expansion of the fermionic determinant
(37). As already mentioned, this procedure is justified within the derivative expansion
approximation.

4. Massless QED4

In previous sections, Aα was just a background for the fermion fields. Here, we shall
incorporate a Maxwell action so that Aα becomes dynamical. We then start from QED4
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with the fermionic field constrained to the region 0 6 x3 6 L. The Abelian gauge field
is, in principle, defined on an unconstrained region. However, its dynamics is determined
entirely by the sources, which are, indeed, confined to 0 6 x3 6 L. When the momenta
involved in the processes are small in comparison with the scale L−1, an effective theory
can be obtained for the relevant degrees of freedom, which describe the dynamics on the
plane x3 = 0. This effective model contains Dirac fermions in interaction with a dynamical
Abelian gauge field, and with an (also dynamical) scalar field, in 2 + 1 dimensions. The
spectrum of this theory also contains stripes: (Dirac) fermionic zero modes localized on
linear defects.

Our starting point shall be to consider a model defined in terms of S, the action for
massless QED in four Euclidean dimensions

S = SF + SG, (39)

where SF and SG denote the fermionic and gauge field parts of the action, respectively.
They are given by

SF =
∫

d4x ψ̄(x)/Dψ(x), /D = /∂ + ie/A (40)

and

SG =
∫

d4x
1
4
FαβFαβ, Fαβ = ∂αAβ − ∂βAα. (41)

We assume that the gauge field components,Aα , are defined over the full four-dimensional
Euclidean spacetime, so that the integration region in (41) is unbounded.

The fermionic field is, in turn, defined on a region of small width L in the third
spatial dimension, namely: 0 6 x3 6 L, to simulate the physical situation of fermions
in a quasi planar system. There are, of course, many different choices for the boundary
conditions of the fermionic field at x3 = 0 and x3 = L, all of them compatible with current
conservation. In principle, the most natural one would be to impose the vanishing of the
normal component of the current on the borders, namely, j3 = 0 at x3 = 0, L. Although
this condition is natural, it is not an easy one to deal with from the point of view of
the calculation, because it explicitly breaks translation invariance along x3. To avoid this
technical inconvenience, we prefer to use the simpler assumption that the fermionic field
is L-periodic in x3. This allows us to Fourier expand in that coordinate. From the point
of view of the effective physics in the 0 6 x3 6 L region (the “dimensionally reduced”
theory), both choices should lead to qualitatively similar results. The important point is, as
we shall see, that the existence of a finite dimension allows for a description in terms of an
infinite number of fermionic modes in the dimensionally reduced spacetime. The precise
nature of the boundary conditions will of course affect the details of this phenomenon, like
the spacing between the fermionic modes, but not the gross features and properties of the
system.

The properties and objects we shall be concerned with can all be obtained, in principle,
from the knowledge of Z[j ; η̄, η], the generating functional of Green’s functions
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Z[j ; η̄, η] =
∫
DAµDψ̄Dψ exp

[
−S +

∫
d3x

L∫
0

ds
(
jαAα + η̄ψ + ψ̄η

)]
(42)

with S as defined in (39). As we are interested exclusively in the phenomena localized
on the x3 = 0 plane, both the external source jα , and the fermionic current ieψ̄γαψ are
confined to the 06 s 6 L region.

It is evident that, from the point of view of the description of the physics on the x3 = 0
plane, the action for the gauge field yields more information than what is actually needed in
our situation, since we are not going to consider processes with sources outside the region
06 x3 6 L. It is possible, as we shall see, to obtain a 2+ 1 dimensional action describing
precisely the planar dynamics, and containing fermion and gauge fields with support on the
x3 = 0 plane. In a sense, we are going to “integrate out” gauge field modes, corresponding
to excitations lying outside the plane.

As a first step, let us see how to pass to a description where the relevant gauge field
dynamics is determined by an effective 2 + 1 dimensional gauge field action. We may
write SJG, the part of the action which involves the gauge field and its source, as follows:

SJG[A,J ] = SG[A] + Sgf [A] +
∫

d4x Jα(x)Aα(x), (43)

where we have included a gauge fixing term, Sgf [A], which, for the sake of simplicity, we
take to be of the Feynman type. 6

Sgf =
∫

d4x
1
2
(∂ ·A)2. (44)

Jα stands for the “full” current, namely, the external source for the gauge field jα plus
the fermionic current ieψ̄(x)γαψ(x). We then integrate out the gauge field, obtaining a
non-local current–current interaction:∫

DAα exp
{−SJG[A,J ]}= exp

{−Snl [J ]}, (45)

where

Snl [J ] = −1
2

∫
d4x d4y Jα(x)Kαβ(x − y)Jβ(y) (46)

with Kαβ(x − y) denoting the (Feynman gauge) gauge field propagator:

Kαβ(x − y)=
∫

d4k

(2π)4
eik·(x−y) δαβ

k2 . (47)

Taking now into account the fact that the current Jα vanishes when either x3 < 0 or x3 >L,
we see that (46) may be written more precisely as follows:

Snl [J ] = −1
2

∫
d3x

L∫
0

ds1
∫

d3y

L∫
0

ds2 Jα(x, s1)Kαβ(x − y, s1 − s2)Jβ(y, s2). (48)

6 The following derivation can, of course, also be implemented for different gauge fixings, but the calculations
become more involved.
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In the L→ 0 limit, the current may be taken to be approximately x3 independent, at least
from the effective theory point of view, since a dependence on x3 in this length scale would
correspond to a momentum component comparable to the scale L−1. Thus, we can replace
in (48) Jα(x, s) by its average J̄α(x), defined by

J̄α(x)= 1
L

L∫
0

ds Jα(x, s). (49)

On the other hand, regarding the propagator, as 0 6 s1,2 6 L, we may use the
approximation

Kαβ(x − y, s1 − s2)' K̄αβ(x − y) (50)

where

K̄αβ(x − y)=Kαβ(x − y,0). (51)

Therefore, (46) reduces to a non local current–current interaction S̄nl in 2+1 dimensions

S̄nl [J̄ ] = −L
2

2

∫
d3x

∫
d3y J̄α(x)K̄αβ(x − y)J̄β(y). (52)

To obtain a more explicit form for K̄αβ(x − y), we may write it in terms of its Fourier
representation

K̄αβ(x − y)=
∫

d3k

(2π)3
eik·(x−y)

+∞∫
−∞

dk3

2π
δαβ

k2 . (53)

Integrating over k3, we easily see that the effective three-dimensional kernel for the
currents J̄µ(x) is

K̄µν(x − y)=
∫

d3k

(2π)3
eik·(x−y) δµν√

k2
(54)

while for the x3 component we have the scalar K̄s :

K̄s(x − y)=
∫

d3k

(2π)3
eik·(x−y) 1√

k2
. (55)

Notice that from now on k denotes the three dimensional momentum vector. K̄s is treated
separately, because A3 behaves in fact as a scalar field under spacetime coordinate
transformations in the x3 = 0 hyperplane.

It is important to realize that the 2+ 1 dimensional current J̄µ is conserved:

∂µJ̄µ = 0. (56)

This follows from the fact that the current is approximately x3-independent, in particular:
∂3J3 = 0, plus the usual continuity equation ∂αJα = 0. Then we may actually replace δµν
in (54) by its transverse part:

δ⊥µν = δµν −
kµkν

k2 . (57)
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Summarizing, the result of integrating out the gauge field may, in the small-L limit, be
represented in terms of an effective 2+ 1 dimensional action

S̄nl [J̄ ] = L
2

2

∫
d3x

∫
d3y J̄µ(x)K̄

⊥
µν(x − y)J̄ν(y)

+ L
2

2

∫
d3x

∫
d3y J̄s(x)K̄s(x − y)J̄s(y) (58)

with K̄⊥µν as in (54), but with δ⊥µν instead of δµν .
This effective action S̄nl [J̄ ] for the currents, can be equivalently rewritten as arising

from the integration of a gauge field aµ, and a scalar field ϕ, both defined in the three
dimensional space–time x3 = 0. In other words, we can express the above action as the
result of functionally integrating out (in 2+ 1 dimensions) a gauge field aµ and a scalar
field ϕ, with the following action:

S′nl
[
J̄ ;aµ,ϕ

]= 1
2

∫
d3x

∫
d3y aµ(x)K̄

⊥−1
µν (x − y)aν(y)

+ 1
2

∫
d3x

∫
d3y ϕ(x)K̄−1

s (x − y)ϕ(y)

+
∫

d3x J̄ ′µ(x)aµ(x)+
∫

d3x J̄ ′s (x)ϕ(x), (59)

where J̄ ′α(x) = LJ̄α(x). Note that the inclusion of this factor L in the definition of the
current reduces by one its mass dimensions, as it corresponds to the transition from
fermionic fields in 3+ 1 dimensions to 2+ 1 dimensions. The bosonic fields, aµ and ϕ,
have the same mass dimension than their 3+ 1 dimensional counterparts, because they are
equipped with unusual, non-local kinetic terms.

Because of current conservation, we may also write a gauge invariant form for
S′nl [J̄ ;aµ,ϕ], by introducing the longitudinal part of aµ into the game, obtaining:

S′nl
[
J̄ ;aµ,ϕ

]= 1
4

∫
d3x Fµν

1√−∂2
Fµν +

∫
d3xJ̄ ′µ(x)aµ(x)

+
∫

d3x J̄ ′s (x)ϕ(x)+
1
2

∫
d3x ∂µϕ

1√−∂2
∂µϕ (60)

where Fµν = ∂µaν − ∂νaµ. This gauge invariant form should, of course, be gauge fixed in
order to recover a regular action.

We have thus re-derived a known result: the electromagnetic interaction due to a
Maxwell action, if restricted to charges living on a planar section of space, can be
reproduced by introducing a non-local gauge invariant action in 2 + 1 dimensions, like
in [11,12]. This is of course different to the usual, Kaluza–Klein like “dimensional
reduction” prescription and in fact is closer to an alternative prescription proposed in [14].
To understand the basic differences between the two prescriptions, let us concentrate in the
case of a scalar field in 3+ 1 dimensions with action

S(3+1) = 1
2

∫
d4x ∂µϕ∂

µϕ (61)
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with propagatorK3+1 satisfying in coordinate space the usual Green function equation

−∂2K(3+1)(x)= δ(x) (62)

so that in coordinate and momentum (Minkowski) space one has

K(3+1)(x)=− 4π2i
(x0)2 − (x1)2 − (x2)2 − (x3)2 − i0

, (63)

K̃(3+1)(k)=− 1
(k0)2 − (k1)2 − (k2)2 − (k3)2 + i0

. (64)

The usual Kaluza–Klein dimensional reduction consists in this case in dropping k2
3 in

Eq. (64). Then, the propagatorK(2+1)
KK in the reduced space obeys the analogous to (62),

−∂2K
(2+1)
KK (x)= δ(x) (65)

so that the reduced scalar theory corresponds to an action

S
(2+1)
KK = 1

2

∫
d3x ∂µϕ∂

µϕ. (66)

The alternative prescription which leads to the reduction presented here corresponds to
dropping x3 in (63). To see this, note that if one puts x3 = 0, the propagator K(2+1) does
not satisfy anymore (65) but instead, as can be easily seen,√

−∂2K(2+1)(x)= δ(x), (67)

so that the dynamics of the reduced scalar theory is governed by the action

S(2+1) = 1
2

∫
d3x ∂µϕ

1√−∂2
∂µϕ, (68)

which is precisely the non-local action for the scalar field in (60). An analogous result,
coinciding again with that in (60) can be found for a vector field like aµ.

Let us note that in the case in which the dimensional reductions is justified by the fact
that the physical system is (quasi) planar, the alternative prescription which consists in
dropping x3, effectively compels the system to evolve in a plane keeping the nature of the
interaction unchanged: for example, if in 3 + 1 dimensions electrons interact via a 1/r
potential, they still interact through this potential in 2 + 1 but with the third coordinate
constrained to be zero. In contrast, the usual Kaluza–Klein prescription not only reduces
the space but also changes drastically the nature of the interaction: in the example above,
the electron interaction would change from 1/r to log r . If planar electrons are supposed
to be subjected to 3+ 1 interactions even when they are compelled to move in the plane,
the alternative prescriptions then appears to be more physical than the usual Kaluza–Klein
one.

The prize one pays when using the alternative prescription is the non-locality of the
reduced action. It is interesting to note that, if looked at from the point of view of
Minkowski spacetime, this non-locality is due to a branch cut singularity starting at zero
momentum. Amusingly enough, this kind of singularity is entirely analogous to the one
that appears when one considers the vacuum polarization function for massless fermions
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in 2 + 1 dimensions. In that case, the branch cut singularity is of course due to the
possibility of pair-creating fermions on-shell for any gauge field configuration with a non-
zero momentum. The situation is, however, different to the “dimensional reduction” of our
example, since the singularity here corresponds to modes that have been integrated out,
and are in principle out of the spectrum of physical states. Thus the model is to be regarded
as an open system, since the unitarity relations corresponding to a closed system would in
turn require the introduction of asymptotic massless fermionic excitations into the game,
like in the case of (unitary) massless QED in 2+ 1 dimensions.

The reduction of the fermionic part of the action proceeds as in Section 2, while the
evaluation of the fermionic determinant has already been presented in Section 3.

5. Discussion and conclusions

So far we have obtained the effective action for the gauge fields (60), after reducing the
original gauge action from 3+1 to 2+1 dimensions, and the one for the fermionic degrees
of freedom (Eq. (38)), after integrating out the fermions. The final result is:

Seff[ϕ,aµ] =
∫

d3x

[
4

π2L3

∞∑
n=−∞

1
n4 cos(neLϕ)− 14π2

5L3

]

+ e2

12π

∫
d3x

∞∑
n=−∞

1
|ωn + eϕ|

[
(∂µϕ)

2 + (Fµν)2
]

+ 1
4

∫
d3x Fµν

1√−∂2
Fµν + 1

2

∫
d3x ∂µϕ

1√−∂2
∂µϕ. (69)

We see that the dynamics for the field that provides an “induced” mass for the fermions,
ϕ, is given by a non-local interaction term, and a series of sine-Gordon like term. It is also
through a series that is a functional of ϕ that this last field couples to aµ.

As mentioned above, non-local effective theories for the electrodynamics of particles
moving on a plane were discussed in [11–13]. In particular, a Lagrangian containing a non-
local Maxwell term plus a coupling to matter current confined to a plane and coinciding
with the first line in Lagrangian (60) was obtained in [12] where it was proven that this
effective 2 + 1 non-local Lagrangian was equivalent to one in which the current term is
replaced by a Chern–Simons term. This last Lagrangian describes precisely the bosonized
version of a 2 + 1 massless fermion theory [11] and, as shown in [13], this is not a
coincidence. Indeed, the functional approach to bosonization [15,16] for 2+ 1 free Dirac
fermions with mass m, leads to a bosonization recipe which is exact for the matter current:

J̄ µ(x)→ 1√
4π

εµνα∂νaα. (70)

Concerning the bosonic action, it cannot be written explicitly, except for certain particular
limits. In particular, in the vanishing mass limit one can compute exactly the bosonic action
[13] obtaining a result which coincides with the first line in Eq. (60) (if one uses (70) to
bosonize the matter current). It is worth emphasizing here that we have not started from a
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2+ 1 model but rather from massless QED4, and that the reduction mechanism explained
above brings into play, besides the usual aµ field, also an scalar field ϕ which has a non-
trivial, sine-Gordon like dynamics and it is moreover coupled to aµ. The necessity for
the existence of this field may be traced back of course to the fact that the compactified
dimension allows for a certain non-trivial structure in that direction, reflected in the large
gauge transformations of which the scalar field is the subject.

To finish this discussion we look at the propagation of fermions in a (aµ,ϕ) background.
In a first approximation, the dynamics of these background fields could be regarded
as entirely determined by the effective action (69) only, and as a next step one should
introduce the reaction of the fermionic fields on the bosons. Looking back at the action
(18) for the fermions in 2+ 1, we see that for each species χ(1)n and χ(2)n , there will be a
fermionic zero mode every time ωn + eϕ passes through zero, i.e., when eϕ =±2nπ/L.
These zero modes are produced because of the Callan and Harvey mechanism, since there
is a change of sign for the mass term of a 2+ 1 dimensional fermion. Since we have two
2-component fermions, and their mass terms have opposite signs, there shall be two chiral
fermions, of opposite chiralities, localized around each defect. This is of course equivalent
to saying that we shall have a massless Dirac fermionic zero mode around each defect.
The existence of these gapless zero modes has of course relevance for the calculation of
transport properties.

If we restrict ourselves to configurations having an approximate invariance under
translations along one of the spatial coordinates, the effective action for the ϕ field will of
course be the one of a two dimensional field theory with a potential periodic in the field, and
with an unusual kinetic term. Despite this last property, the periodic nature of the potential
implies that there is room for the existence of a non-trivial topological charge Q, defined
as for the case of the sine-Gordon model. If the system is invariant under translations in x2,
then

Q= eL
2π

+∞∫
−∞

dx1 ∂1ϕ(x)= eL2π
[
ϕ(+∞)− ϕ(−∞)]. (71)

A configuration of definite charge Q= q , corresponds to the field ϕ starting in one of the
minima at x1 = −∞ and covering q periods of the potential before finishing at another
minimum of the potential, at x1 = +∞. We may assume, for the sake of clarity, that
the effective potential is identical to the first component of the series. Then, there will
be exactly q fermionic zero modes, since they appear each time the potential passes
through a maximum. This discussion shows that there is an interesting relation between
the topological solitonic charge and the number of fermionic zero modes.
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