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Abstract

We show how to reconcile Tsallis’ thermostatistics with thermodynamics’ zeroth law, by
recourse to the so-called optimal Lagrange multipliers formalism. The central concept is that
of not identifying in the usual fashion the inverse temperature with the Lagrange multiplier
associated to the internal energy. Our analysis provides one with compatibility conditions between
the additivity of the internal energy and the pseudo-additivity of the generalized entropy. With
regards to the �rst law of thermodynamics, a generalization of Clausius’ equation is advanced.
c 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Tsallis’ thermostatistics allows for a suitable and quite signi�cant generalization
of the conventional (Boltzmann–Gibbs) statistical mechanics that has found multiple
applications [1–14]. However, it cannot yet comfortably deal with thermodynamics’
zeroth law, as pointed out by Tsallis himself in [2]. In Ref. [15] Abe has advanced
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an interesting, tentative solution to the zeroth law conundrum with reference to the
micro-canonical analysis of a system composed of two-subsystems in thermal equilib-
rium. Such an analysis leads to the appearance of temperatures that depend upon the
non-extensive partition function �Zq; where q is the Tsallis’ non-extensivity index.

Let �̂ be the density operator and k the Boltzmann constant, 1 or more generally, the
information unit. As shown by the present authors in a recent study [16], one can recast
Tsallis’ variational problem (using normalized expectation values) in such a manner
that the extremum one thereby �nds is guaranteed to correspond to a maximum (and
not to other types of extrema) of Tsallis information measure

Sq
k

=
1− Tr(�̂q)
q− 1

; (1)

because the associated Hessian is diagonal. This treatment involves a new set of La-
grange multipliers �0j, to be referred to as the “Optimal set” (OLM), di�erent, but
related, to the original Tsallis–Mendes–Plastino (TMP) one (�j’s) [1]

�0j =
�j
�Z
1−q
q

; (2)

where the partition function �Zq is involved.
Another interesting work in this context is that of Ref. [17], where it is shown that

for those particular systems whose partition function is given by ZBG˙ la(�0)−a (a is
a dimensionless parameter, and l is a characteristic length), the inverse (thermodynam-
ical) temperature becomes associated with our �0 and not with the TMP �.
In the present e�ort we tackle the vexing zeroth law problem starting with the

working hypothesis that 1=�0 is indeed the temperature (see Eq. (18) below). We show
that such a hypothesis reconciles Tsallis’ formalism with the zeroth law.
We shall tackle the zeroth law problem starting with the hypothesis of Ref. [15]:

one deals with the Hamiltonian of a system composed of two independent subsystems
(in the sense that their mutual interaction is negligible). The system’s density operator
is product of those pertaining to the subsystems. Before proceeding further, however,
a short recapitulation is necessary.

2. OLM formalism

2.1. Generalities

The most general quantal treatment is made in a basis-independent way, which re-
quires consideration of the statistical operator (or density operator) �̂ that maximizes
Tsallis’ entropy, subject to the foreknowledge of M generalized expectation values
(corresponding to M operators Ôj).

1 Here we take k to be a universal constant. The possibility of allowing k to depend upon the system’s
nature will be explored elsewhere.
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Tsallis’ normalized probability distribution [1] is obtained by following the well
known MaxEnt route [18,19]. Instead of e�ecting the variational treatment of
Ref. [1], involving Lagrange multipliers �j, we pursue the alternative path developed
in Ref. [16], with Lagrange multipliers �0j. One maximizes Tsallis’ generalized entropy
(1) [10,11,20] subject to the constraints (generalized expectation values) [10,16]

Tr(�̂) = 1 ; (3)

Tr[�̂q(Ôj − hÔjiq)] = 0 ; (4)

where Ôj (j=1; : : : ; M) denote the M relevant observables (the observation level [23],
whose generalized expectation values [1]

hÔjiq = Tr(�̂qÔj)
Tr(�̂q)

; (5)

are (assumedly) a priori known. The resulting density operator reads [16]

�̂= �Z
−1
q

"
1− (1− q)

MX
j

�0j(Ôj − hÔjiq)
#1=1−q

; (6)

where �Zq stands for the partition function

�Zq = Tr

"
1− (1− q)

X
j

�0j(Ôj − hÔjiq)
#1=1−q

: (7)

It is shown in Ref. [16] that

Tr(�̂ q) = �Z
1−q
q ; (8)

and that Tsallis’ entropy can be cast as

Sq = k lnq �Zq (9)

with lnq �Zq=(1− �Z
1−q
q )=(q−1). These results coincide with those of TMP [1] in their

normalized treatment. If, following [1], we de�ne now

lnq Zq = lnq �Zq − �Z
1−q
q

X
j

�0jhÔjiq ; (10)

we are straightforwardly led to Ref. [16]

@

@hÔjiq

�
Sq
k

�
= �Z

1−q
q �0j = �j (11)

@
@�0j

(lnq Zq) =− �Z
1−q
q hÔjiq : (12)
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Eqs. (11) and (12) are modi�ed Information Theory relations of the type that one
uses to build up, �a la Jaynes [18,19], Statistical Mechanics. The basic Legendre-structure
relations can be recovered in the limit q→ 1. These relations are exactly the same as
those introduced in Ref. [1] in terms of the TMP’s Lagrange multipliers, but from our
new point of view they lose their basic character, because the set �j depend upon the
partition function.
As a special instance of Eqs. (11) and (12) let us discuss the Canonical Ensemble,

where they adopt the appearance

@
@Uq

�
Sq
k

�
= �Z

1−q
q �0 = � (13)

@
@�0

(lnq Zq) =− �Z
1−q
q Uq ; (14)

with (see Eq. (10))

lnq Zq = lnq �Zq − �0 �Z1−q
q Uq : (15)

2.2. Legendre relations

We present here some new results with reference to the OLM formalism of the pre-
ceding subsection. Obviously, Eqs. (11) and (12) do not have the usual appearance of
Legendre relations cast in terms of the partition function because the natural logarithm
is replaced by the q-logarithm. This di�erence makes the inverse q-temperature �, a �c-
titious pseudo inverse-temperature that only leads to the conventional thermodynamic
one in the limit q→ 1.

Now, the entropy (1) can be re-expressed in terms of the partition function, by
recourse to (8), in the fashion Sq=k = (1− �Z

1−q
q )=(q− 1), so that

@

@hÔjiq

�
Sq
k

�
= �Z

−q
q

@ �Zq
@hÔjiq

: (16)

This, in turn, allows one to write (11) in the form

@ ln �Zq
@hÔjiq

= �0j ; (17)

which does preserve the standard structure of a thermodynamics Legendre relation
(a natural logarithm involved). Specialization to the canonical ensemble gives

@ ln �Zq
@Uq

= �0 ; (18)

which makes the OLM formalism a bridge between Tsallis’ statistics and conventional
Thermodynamics. The OLM Lagrange multipliers acquire thereby the conventional ther-
modynamic interpretation.
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The foregoing remarks are to be kept in mind in re-discussing the zeroth law. Before
addressing our main theme, the connection between the OLM formalism and the �rst
law of thermodynamics is to be also refreshed. See the appendix.

3. Thermodynamical equilibrium

We tackle now the question we wish to address in this e�ort: to discuss anew the
problem of thermodynamical equilibrium on the basis of the results of the preceding
section. Let us consider a composed isolated Hamiltonian system A + B, within the
framework of the Microcanonical Ensemble. These two subsystems interact via heat
exchange.
The zeroth law asserts that if A is in equilibrium with any system C, and B is

in equilibrium with C as well, then A is in equilibrium with B [21,22]. We take
C here to be a thermometer. More generally, one could assume that C is a system
characterized by some intensive quantity �0 [21,22]. Equilibrium between A and B
entails then �0A = �0B [21,22]. In what follows we concentrate our attention in the
Lagrange multiplier associated to the energy. However, the reasoning that follows could
be equally applied to any other observable.
Following Gibbs, we make the usual assumptions [2]

1. The interaction energy is negligible

Ĥ(A+ B) ∼ Ĥ(A) + Ĥ(B) : (19)

2. The subsystems A and B are essentially independent in the sense of the theory of
probabilities, i.e.,

�̂(A+ B) ∼ �̂(A)�̂(B) : (20)

The energy distributions are given here, for each system, by specializing (6) and (7)

to the instance M =1 and Ô
(G)
1 ≡ Ĥ(G); G=A; B. It easily follows from Eq. (5) that

Ref. [2]

Uq(A+ B) = Uq(A) + Uq(B) : (21)

Now, after a bit of algebra Eq. (1) yields (pseudo-additivity [2])

Sq(A+ B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B)
k

; (22)

which we recast here in the fashion

ln[1 + ((1− q)Sq(A+ B)=k)]
1− q

=
ln[1 + ((1− q)Sq(A)=k)]

1− q +
ln[1 + ((1− q)Sq(B)=k)]

1− q : (23)
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We focus our attention now upon Eqs. (21) and (23). For a closed system, both
energy and entropy are conserved. As a consequence:

�Uq(A) =−�Uq(B) ; (24)

1
Tr[�(A)]q

�
�
Sq(A)
k

�
=− 1

Tr[�(B)]q
�
�
Sq(B)
k

�
: (25)

Introduction of (8) into (25) yields now

1
�Zq(A)1−q

�
�
Sq(A)
k

�
=− 1

�Zq(B)1−q
�
�
Sq(B)
k

�
: (26)

The next step is to consider the ration between (26) and (24), keeping in mind (13).
One immediately �nds the equality

�0(A) = �0(B) ≡ �0 ; (27)

i.e., if we set �0˙ 1=T , thermal equilibrium between A and B arises in a natural fashion
and the thermodynamics’ zeroth law is obtained. This constitutes the essential result
of the present e�ort. Notice that one assumes here that �0, not � (as in Ref. [15]), is
proportional to 1=T , a fact �rst observed in Ref. [17] for those special systems whose
partition function is of the form ZBG˙ la(�0)−a, with a a dimensionless parameter,
and l a characteristic length.
In terms of � (the TMP Lagrange multiplier) we have (cf. Eq. (13))

�(A)

�Z
1−q
q (A)

=
�(B)

�Z
1−q
q (B)

: (28)

To take � as proportional to 1=T forces one to work with a temperature that depends
upon the partition function [15].
The present work shows that one can reconcile the zeroth law with Tsallis’ ther-

mostatistics without going to the limit q → 1. In order to assess to what an extent
have we succeeded it remains to ascertain the self-consistency of the Gibbs’ hypothesis
(19; 20) within our nonextensive framework. We reconsider the application of Eq. (6)
to our present situation and de�ne

F̂(A) = [1− (1− q)�0(Ĥ(A)− Uq(A))]1=1−q ; (29)

with a similar expression for F̂(B). We have then

�̂(A)�̂(B) =
F̂(A)
�Zq(A)

F̂(B)
�Zq(B)

; (30)

which, after explicit evaluation, and keeping just �rst order terms gives

�̂(A+ B) = �̂(A)�̂(B)

− (1− q)(�0)2 [Ĥ(A)− Uq(A)]
�Zq(A)

[Ĥ(B)− Uq(B)]
�Zq(B)

; (31)
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which is the promised result. As pointed out in Ref. [24], our subsystems are not exactly
independent. But in the last term on the r.h.s. of the above expression is negligible for
(i) high temperatures, (ii) the thermodynamic limit (see below), or, of course, for (iii)
q-values close to unity.

4. Conclusions

We have carefully reconsidered the validity of the zeroth law of thermodynamics in
a Tsallis’ environment. It has been shown to remain approximately valid.
The question revolves around the independence of two independent subsystems and

A; B that are brought into thermal contact. We have found that they can be indeed be
regarded as independent in quite important instances:

• q→ 1, of course,
• in the high temperature limit, and
• for systems in contact with a heat reservoir, because, if A, say, is the reservoir,
[Ĥ(A) − Uq(A)] is a null operator (the mean energy of a reservoir coincides, by
de�nition, with one of its eigenenergies [21,22]. Now you invoke implicitly the heat
reservoir notion whenever you use a thermometer!
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Appendix. Remarks concerning the �rst law of thermodynamics

The problem discussed in the present e�ort is based on the hypothesis that the �rst
law of thermodynamics holds for Tsallis thermostatistics in general, and for the OLM
formalism in particular. This is a reasonable assumption considering that the �rst law
of thermodynamics is nothing but energy conservation. We revisit here, from a Tsallis
standpoint, the �rst law and regard the relation

dUq = d0Qq + d0Wq ; (A.1)

as valid, where, obviously, Qq stands for heat, Wq for work, and d0 represents a non
exact di�erential. We deal with an isolated system composed by two subsystems A
and B that share energy exclusively via heat exchange (see Section 3). As a result
d0Wq = 0 and Eq. (A.1) acquires the appearance

dUq = d0Qq : (A.2)
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Since (i) energy is additive (Eq. (21)) and (ii) the total energy is conserved
(Eq. (24)), Eq. (A.2) entails

d0Qq(A) =−d0Qq(B) ; (A.3)

as expected. Within Tsallis framework, two systems that interchange energy only via
heat transfer verify a heat conservation law. As a bonus, we are straightforwardly led to
a possible generalization of the Clausius equation, by asking that appropriate relations
for entropy and heat be simultaneously satis�ed. We thus propose a generalization of
the Clausius equation [21,22]

dS =
d0Q
T

(A.4)

of the form

dSq = f( �Zq)
d0Q
T
; (A.5)

where f( �Zq) is an unknown function to be determined so as to satisfy both Eqs. (25)
and (A.3). Introducing Eq. (A.5) into Eq. (25) we obtain

f( �Zq(A))

�Z
1−q
q (A)

d0Q(A)
T

=
f( �Zq(B))

�Z
1−q
q (B)

d0Q(B)
T

(A.6)

that, in view of (A.3), yields

f( �Zq) = �Z
1−q
q ; (A.7)

so that the q-generalized Clausius equation can be recast as

dSq =
d0Q
Tq

; (A.8)

where

Tq = �Z
1−q
q T =

1
k�

(A.9)

(Eq. (2) has been used). Special attention must be paid to the fact that Tq is not
the thermodynamic temperature but a �ctitious one, connected to the TMP �
Lagrange multiplier. It is clear that the traditional equation is recovered in the limit
q→ 1.
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