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1. Introduction

Numerical computation or numerical processing of data with
digital computers is an ever-increasing part of day-to-day scientific
work, from statistical analysis of experimental data to numerical
solution of systems of nonlinear integral or differential equations,
to large scale simulations of many-particle systems (from electron
gases to galaxies to social systems [1]). Many packages and li-
braries, both commercial and open-source, exist that can perform,
or aid in performing, a wide range of more or less specialized
tasks. However, due to the very nature of scientific endeavor, ex-
isting software is not always useful for the task at hand. New
problems are studied which require variations or combinations of
known techniques, or new techniques or solutions are developed
for old problems. Thus the practicing scientist often finds him or
herself writing computer code.

One of the difficulties faced is that a useful working program
requires much more code than the lines needed for the main algo-
rithm, due to the need for user interaction, data input/output, and
possibly data preprocessing or format conversion. For example, the
code for the LBFGS algorithm for minimization of a function of
many variables [2] amounts to about 500 FORTRAN lines, exclud-
ing comments.2 A fully working program to find potential energy
minima of a particle system based on LBFGS put together by the
author included an additional 300 lines for user interaction and
interfacing between the energy routines and LBFGS plus 300 for
input/output of simulation trajectory files, plus the routines for
evaluation of the energy. This additional code is “clerical”: it ex-
presses relatively simple tasks and straightforward algorithms, and
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generally takes a small fraction of execution time. But it must be
written, debugged and maintained alongside the core of the pro-
gram. When flexibility is added to the program, the clerical code
typically grows quickly. Maintenance and debugging effort grows
quickly with size unless the code is well structured [4], but well
structured code requires thought and planning. Either way, clerical
code ends up requiring a fair amount of attention.

This issue can be more or less sidestepped by writing very rigid,
user-unfriendly software (e.g. Monte Carlo programs needing re-
compilation to change the temperature), which are highly unlikely
to be useful to anyone but the original author in the original situa-
tion. Though such disposable software may sometimes make sense,
most of the time a little more foresight is desirable. Especially
because if the program is disposable, so tend to be the data it pro-
duces: ad-hoc file formats difficult or impossible to read without
access to the source code that created them.

Ideally, the scientist needing to program some new algorithm
should be able concentrate in writing and debugging the code for
the main algorithm (on which he/she is an expert), while resorting
to some sort of library for the clerical (but indispensable) tasks
which are not part of the main algorithm, and likely not within
the scientist’s main expertise.

But can such a general library be developed, or even defined?
Not if the “algorithm” and the “clerical” tasks remain so vaguely
described. But we show below that one can define a simulation
program very generally yet precisely, in a way that allows to iden-
tify the basic administrative tasks such a program will need, and
build a library to perform such tasks. We also describe a particular
implementation of such library, called glsim, which is available
for download under an open-source license (see Section 6).

It turns out, not surprisingly, that algorithms can be designed
more generally the more abstractly the problem to be solved is de-
fined. We thus begin (Section 2) giving an abstract definition of a
simulation, and listing a series of features that should be included
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in a good simulation program. This allows us to write an outline
simulation algorithm (Section 2.3). After commenting briefly on
the programming techniques most useful for designing a library of
the kind we are after (Section 3), we describe the glsim library
in Section 4. We conclude in Section 6.

2. Definition of a simulation

2.1. A simulation: an abstract view

Take a molecular dynamics or Monte Carlo simulation, or an
optimization technique (conjugate gradient minimization, anneal-
ing, genetic algorithm), or an iterative solution of a system of
differential equations. All of these have in common that they start
from a set of numbers and “evolve” this set according to some
rules. The full history of the evolution (“trajectory”) may or not be
interesting in itself, but this is not relevant. The point is that al-
though very different in aims, these (and other) simulations can
be described under a common scheme.

We shall define simulation quite generally as the repeated ap-
plication of a transformation to a set of numbers. Let’s define two
spaces X and E , which we can assume to be subsets of <n . X is
the configuration space, and a vector x ∈ X is a configuration. E is
the environment space and e ∈ E is an environment.

To perform a simulation step means to apply the transformations

en+1 = E(en), (1)

xn+1 = X(xn,en+1). (2)

The configurations and environments thus form an ordered se-
quence. We can define a simulation time t(n) through any mono-
tonically increasing function of the number of steps n. The separa-
tion into configuration and environment is somewhat arbitrary, but
note that while xn+1 can depend on en+1, en+1 is always obtained
independently of xn .

The ordered pair (xn,en) is the state of the simulation at step
n (or time t(n)). To start the simulation, we must specify the ini-
tial state (x0,e0). This state can be constructed from another real
vector γ through

e0 = E0(γ ), (3)

x0 = X0(γ ). (4)

The components of γ are called control parameters.
As the simulation progresses, it may be useful or convenient to

compute subsidiary quantities, called observables, along the sim-
ulation. These quantities depend only on the configuration, and
their value is not used at all in computing the successive envi-
ronment or configuration, so that their computation can be omit-
ted without changing the final state. We note them Oi(xn). To
define the observable, a number of parameters will in general
be needed, and these could in principle also evolve, so there
will be an environment associated with each observable. In prac-
tice it is often convenient to merge these environments with
the main simulation environment, and we do so below; the im-
portant point is that the environment variables associated with
the observables do not interact with the rest of the environ-
ment.

2.2. A good simulation program

A computer program that can iteratively apply the transforma-
tions E(e) and X(x) is a simulation program. To be deemed a good
simulation program, it should fulfill a number of requirements
(Fig. 1).
1. Algorithms of the highest quality
2. Bit-level run reproducibility
3. Invisible run splitting or joining
4. Full human-readable record of simulation conditions
5. Easy user control over simulation parameters
6. Safe early interruption before programmed number of steps
7. Easy continuation after early interruption
8. Minimization of losses due to hardware failure (checkpointing)
9. Ability to read files from earlier versions of the program

10. Easy code maintenance

Fig. 1. Requirements for a good simulation program.

Some comments on these requirements:

1. This is an obvious requirement, the fulfillment of which of
course depends on the particular technique being coded. How-
ever, a general advise is to write oneself the algorithms on
which one is an expert (or close to it), and borrow the rest.
This means using good libraries. Many are available freely over
the Internet (e.g. Boost [5], the GNU Scientific Library [6,7], the
Netlib collection [3]).

2. Computers are good at doing exactly the same things when
given the same data, so this is not very difficult to achieve.
The point is to stress that the user must have a way to com-
pletely specify all initial conditions, some of which may not be
apparent at first sight (like the internal state of the random
number generator, for instance), so that a given final state can
be reproduced bit-to-bit. This kind of reproducibility is on the
other hand very difficult to achieve across architectures, but
this is not very often a crucial need.

3. This (together with the previous requirement) is most useful
in debugging or tracking the origin of anomalous behavior that
might manifest itself under particular circumstances. This can
be achieved by saving the final state as binary data using the
machine’s internal representation, avoiding conversions e.g. to
ASCII decimal numbers.

4. The program must produce a human-readable log file with all
relevant information to allow the reproduction of the run. This
is easy but time-consuming to program. A way to automate
the production of the log is desirable.

5. Programs that require recompilation to change control pa-
rameters are all too common. This is unacceptable because
it means that part of the information required to reproduce
a run is buried in the executable. Of course there is some
common-sense imposed limit on what should be parametriz-
able in an algorithm, but quantities that are expected to be
changed (for tuning or to cover a relevant domain of the pa-
rameter space) should be stored in a file. For easy user control,
a text file with an intuitive syntax (.ini-like) is preferable.
Terminal input is generally not a good idea, as programs with
a long runtime are likely to be scheduled for remote or back-
ground execution.

6. If for some reason (like an unexpected need to shutdown the
machine) the simulation must be interrupted before comple-
tion, it should be possible to tell the program to save its inter-
nal state and terminate. This requires some means of commu-
nicating with a process which might not be associated with a
terminal, such as Unix signals.

7. On launching the program again after an early interruption, it
should automatically recognize a partially completed run and
pick up from where it left.

8. The above saving of the internal state could be performed au-
tomatically every few hours, so that the simulation can resume
with minimal loss of CPU time after hardware failure or power
outage.
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9. When the algorithm is improved or new features are added,
it often becomes necessary to incorporate new data into the
state files. These data will not be available when starting a
simulation from a state written by an earlier version of the
program, but the new version should be able to read the older
files and supply appropriate default values for the missing
data. This needs the use of files with self-describing structure.

10. The code should be organized in a way that it is easy to un-
derstand, debug and extend, using a modular design. Good
documentation of source code is essential.

Clearly a good simulation program implementing the above
features will require many lines of code apart from those imple-
menting the specific algorithm of interest. Desirable though these
features are for a program that will typically run for many hours,
implementing them all is probably out of the question for a small
(often one-man) team. Ideally, one would want a library that al-
lows implementation of all these requirements automatically or
with minimal effort, leaving the scientist-programmer to concen-
trate on point 1, specific to his/her problem.

2.3. A basic simulation algorithm

Taking into account our definitions and requirements, we are in
position to write an outline simulation algorithm (Listing 1).

read γ
if partially completed run is found on disk then

read n,en,xn

else
create x0,e0 (perhaps from a saved state)
n = 0

endif

repeat
n = n + 1
compute en = E(en−1)

compute xn = X(xn−1,en)

for all observables compute Oi(xn,en)

write Oi

write log
until n = requested steps or early termination requested

write en and xn

log termination
end

Listing 1. General simulation algorithm.

The fact that we have been able to say so much about a sim-
ulation without giving any details of the functions X(x) and E(e)

might make us wonder how much of what we have said can be
conveyed to a computer at this level of abstraction. So-called lan-
guages (OOLs) normally offer a set of features that allow us to
code a simulation as so far defined in an actual programming lan-
guage, compile the code and build it into a library. Obviously we
will not have functional executable until X(x) and E(e) are com-
pletely specified and coded, but we shall be close to a “fill-in the
blanks” situation where X(x) and E(e) can be just plugged in and
a full-featured simulation program will result.

3. Design principles and programming techniques

A more or less obvious requirement for a useful library of
the kind we are after is that it be built in modules with well-
defined interfaces, and with the minimum possible interaction
among them, so that they can be plugged in as necessary and
combined in different ways. Note however that a powerful mod-
ularization is generally not one based on processes, or tasks to be
performed on some data, but rather one that represents the divi-
sion of the problem in abstract parts [8]. These abstract parts will
necessarily embody procedures and data: for example, in glsim
there is a module for the concept of environment, which holds
data associated with the environment as well as the procedures
to read and write that data to a file, among others. The interface
of a module (how it is seen from the outside) should reflect the
abstraction, while the implementation details (i.e. the design deci-
sions) are kept within the module. Modules so built are likely to be
useful in a wider range of situations, and keeping design decisions
local allows implementation improvements to be easily integrated
into existing code. Thus modules can be characterized as keeping
to themselves one or more design decisions that they hide from
the others. This is known as information hiding [8].

The bundling together of data of different types and proce-
dures operating on these data is called encapsulation [9]. If sev-
eral instances of the data so aggregated can be (easily) created by
the user, these instances are usually called objects (sometimes de-
scribed as “intelligent data”). In OOLs, objects are variables of a
user-defined type, thus the procedure of encapsulation in an OOL
amounts to the creation of a new datatype. Languages that in-
clude syntactical support for encapsulation typically offer facilities
to enforce information hiding to some degree, by allowing to make
some data and procedures inaccessible from outside the module
where they are defined. Information hiding requires encapsulation
at the logical design level (even if not supported syntactically by
the language), and perhaps for this reason the two terms are often
used interchangeably [9].

Another requirement is that it be easily possible to refine, or
specialize the modules provided by the library, adding to them
new capabilities without breaking the interface. Adding data and
procedures to an existing module or object “specializes” the ob-
ject in the sense that to add capabilities one must typically make
more assumptions on how the object will be used and/or impose
restrictions on the operations allowed: the specialized object has
additional, more specific properties [10] and thus represents a less
general concept. In OOLs, it is generally convenient to implement
specialization through the mechanism of inheritance, which is the
possibility to define a datatype based on an existing datatype, only
defining explicitly the properties desired for the former that differ
from those of the latter [10]. Note however that inheritance and
specialization are not isomorphic concepts, and that there are uses
of inheritance other than specialization [10].

A bit more subtly, our insistence on building the library as far
as possible around abstract concepts requires in turn to be able to
write algorithms abstractly, or generically, in the sense that it must
be possible to include in the library modules using undefined pro-
cedures and/or operating on unspecified data types or data types
not completely defined. For this glsim relies heavily on polymor-
phism.

Polymorphism [11] refers to the ability of handling different
data types with a uniform interface, which can also be described
as using a single name to call different functions, based on the
types of the data to be passed to that function. This includes
a wide variety of situations. Ad-hoc polymorphism [12] refers to
the case where different data types are processed by calling dif-
ferent functions, given explicitly for each combination of the al-
lowed types. This includes overloading (writing many functions of
the same name but different argument types) and coercion (au-
tomatic conversion of some types to other types). Ad-hoc poly-
morphism is found to some degree in all common programming
languages (for instance, one uses the symbol + for addition of
two integers or two floating-point variables). For our goal of writ-
ing abstract algorithms, we need a language supporting universal
polymorphism [12], which means that the same code, or code
generated using the same rule, is used for all admissible types.
One way to achieve this is writing functions where types are not
specified but left as a parameter. This is called parametric poly-
morphism [12], or generic programming in OOL jargon. Another,
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perhaps more powerful, possibility is inclusion (or subtype) poly-
morphism [12], afforded by the concept of inheritance: objects of
datatype B derived (i.e. defined by inheritance) from datatype A
can be thought as being of type B or type A. Thus code written to
operate on objects of type A can also operate on objects of type B.

Polymorphism is what allows us to write and compile our al-
gorithm: clearly X(x) is a name that refers to different (unknown
at compile time) functions, which we can distinguish by looking at
the type of the argument. We shall be using mostly inclusion poly-
morphism because, at least in the language of our implementation
(C++), it allows to explicitly express the assumptions one is making
about the type that the function will be handling. Put in another
way, inheritance guarantees a minimum set of operations that can
be performed on the object to be processed.

Substituting different functions for one name is something that
has been possible even in very old languages, by combining dif-
ferent modules at the linking stage. This can perhaps be thought
of as a rather primitive substitute for polymorphism, as one could
compile a module coding the basic algorithm and substitute the
appropriate X(x) at link time. Indeed, the design of glsim profits
from experience gained in developing a modular system written
in C using such a scheme. However, this is not polymorphism,
since the function is not selected based on argument type, but ar-
bitrarily, outside the language itself. It thus cannot benefit from
language features such as type checking. Also, static binding (i.e.
mapping names to functions at compile or link time) has limita-
tions, since it is not always possible to know at compile- or link
time which function it is desired to call (which can be alternatively
expressed by stating that the type of the argument is not always
known at compile time). For instance, when linking a simulation
program one typically wants to include only one of the possible
X(x) functions. However, the situation is different with observ-
ables. Similarly to the simulation algorithm, it is best to write some
generic code for the observation only once (see Section 4.4) and
leave to the user just the task of writing code for the specific quan-
tity required, by supplying some function O(. . .). Since one may
want more than one observable computed during the same simu-
lation, the generic code will need to call different O(. . .) functions
at different times in the same point of the program. This requires
dynamic binding, or the ability to select the appropriate function at
run time. Dynamic binding is necessary to exploit the full power
of inclusion polymorphism.

3.1. Object-oriented programming and C++

So-called languages (OOLs) provide syntax constructs that al-
low to easily express the techniques mentioned above. “Easily”
means that concepts such as inheritance (which could conceivably
be used in a program written in, say, C) can be expressed in the
syntax of the language and thus more conveniently, with less work
on the part of the programmer, and in a way such that the com-
piler “understands” what the programmer is trying to do and can
help with compile time checks and diagnostics (e.g. type checking).

glsim is written in C++ [13], which is a standardized lan-
guage with static typing that supports encapsulation, inheritance
and polymorphism, and for which compilers are available in a wide
variety of platforms. In C++ encapsulation is achieved by defining
classes, which are user-defined datatypes. The procedures bundled
with the data within a class are called methods or member func-
tions, and data and procedures can be classified as public or pri-
vate, in which case are inaccessible from functions defined outside
the scope of the class. Instances of a class are called objects. Poly-
morphism is supported through explicit overloading (ad-hoc), tem-
plates (parametric), and inheritance (inclusion). Binding is static by
default, but dynamic binding can be requested for specific methods
by declaring them virtual.
When a method is virtual, C++ allows the programmer to de-
clare it but leave it undefined (i.e. not coded). These methods are
called pure virtuals. Classes with pure virtual methods cannot be
instantiated, because the compiler would not know what to do
when these methods are called. They can only be specialized by
defining classes derived from them (at some point the pure vir-
tuals will be defined and it will be possible to create instances
of those derived classes). For this reason they are called abstract
base classes, or ABCs. Classes like Simulation and Configuration (see
Fig. 3 below) are ABCs in glsim. ABCs are useful for interface
specification.

glsim can be said to use object-oriented programming (OOP)
to the extent that it uses the techniques we have described [13,14].
However, OOP is sometimes described as a way to match “real-
world” objects to software entities in a way that allows more
convenient manipulation of them for computing purposes. The au-
thor’s experience suggests that this view may be misleading, or too
narrow, as a class hierarchy design tends to be more useful when
built around rather abstract concepts, which may be hard to trace
to “real world” objects. Also, the language may force or induce the
programmer to define classes to benefit from features such as en-
capsulation, resulting in objects that may not be the most intuitive.
For example, glsim defines a class for the simulation. It is hard
to make the case that the simulation itself is a “real world” entity.
However the simulation class turns out to be a good programming
solution that allows to use C++ support for dynamic binding.

In summary, we simply claim that glsim is written making
use of encapsulation and polymorphism as techniques for dealing
with the present problem in an abstract way, and is thus written
in a widely-available language with good support for them.

A final word about language choice. C++ is often criticised as
being slow (although the criticism is contested [13]). It might thus
seem a poor choice for a simulation package. Without entering
the speed discussion, let us simply point out that the clerical code
glsim mainly deals with is not performance-critical. Most of the
CPU time will likely be spent computing the transformation X(x)

(think of the force loop of molecular dynamics, for instance). If
the programmer deems C++ too slow for the core part of the sim-
ulation, he is free to chose any other language; interfacing with
glsim will still be possible in reasonable platforms. While glsim
strives of course to be as efficient and fast as possible, it is clear
that the (likely small) performance penalty introduced will be
more than offset by the savings in expert human time required
to produce a good simulation program.

3.2. Templates vs. virtual functions

As we said, glsim relies heavily on universal polymorphism.
In C++ this means using templates (parametric polymorphism) or
virtual functions (subtype polymorphism). The advantages of tem-
plates are that they produce slightly smaller objects (because ob-
jects with virtual functions need to store a table of virtuals, the so-
called vtable), and that they result in faster code, because virtual
functions, being resolved at run-time, are called via an indirection.
In particular, virtual functions cannot be inlined.

Polymorphism through templates should thus be preferred
where speed is critical. If the function implementing the transfor-
mation X(x) relies on polymorphism, it probably should use tem-
plates. glsim however uses virtual functions because when im-
plementing non-performance-critical tasks polymorphism through
virtual functions has the following advantages over templates:

1. It allows explicit, compiler-checkable interface specification: by
writing ABCs, the pure virtuals make explicitly obvious what
functions the user of the class expect to find implemented.
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2. It allows for dynamic polymorphism: all objects of a derived
type can be accessed through pointers to the base type. One
can thus make containers that hold objects of different type.
This feature is used in glsim for instance to deal with observ-
ables: all observables descend from class Observable and are
accessed from the simulation class through a list of pointers
to the base class (Section 4.4). This does not work with tem-
plates because instantiating a template creates a completely
different type.

3. Virtual functions stay virtual for ever down the class hierarchy:
one can specialize a class by deriving and defining or overrid-
ing the virtuals in the base, then further specialize the second
class by deriving again and overriding only some of the virtu-
als. This is not easily and conveniently done with templates.

3.3. Literate programming

We have said that we would like a program as easy as possible
to maintain and debug, and that this requires among other things a

Fig. 2. The documented source after processing with noweb and LATEX.
good documentation of the source code. In an attempt to achieve
good and up-to-date source-code documentation, glsim is writ-
ten using the literate programming style of programming [15]. The
idea is to write the program and documentation simultaneously,
shifting the focus from instructing a computer what to do to ex-
plaining to a human being what we want the computer to do [15].
The result should be a sort of “essay” that combines code and doc-
umentation.

In practice, the programmer writes a file containing documen-
tation chunks written in a text-formatting language (in our case
LATEX) and code chunks written in some programming language
(C++ in our case). A literate-programming tool is needed that on
one hand extracts the source code and prepares a file suitable
for the compiler, and on the other adds the necessary format-
ting commands to produce a LATEX source file. glsim uses noweb,
a freely-available literate programming tool [16]. After processing
with LATEX, the result is a document (Fig. 2) that reads roughly like
the description given below, except of course that all details and
the full source are included.

4. An overview of the glsim library

Let us give an overview of the library from the point of view of
the user. We shall leave out many details and show some parts as
pseudo-code, so that to actually write code using the library it will
be necessary to read the documentation accompanying the pack-
age. However the present description should give the reader an
idea of the internal organization, and of what the user can expect
from glsim.

glsim uses classes to represent the concepts of configuration,
environment and observable introduced in Section 2. It also turns
out to be useful to introduce a simulation class implementing our
main algorithm (Listing 1) in one of its methods. This method is
virtual so that it can be eventually overridden. With the exception
of class Environment, these classes are abstract, because they in-
clude at least one pure virtual function. A few additional classes
are defined to read the configuration file (class Parameters) and to
automate the production of self-describing files (class Persist_aid).
Fig. 3 gives an overview of the class structure.

If the user wants to write, say, a Monte Carlo simulation of
the Ising model, (s)he would inherit from Configuration to de-
clare an appropriate spin lattice, inherit from Simulation to write
the Metropolis sweep, and from Environment to add the neces-
sary parameters, such as temperature and coupling, and optionally
Fig. 3. Class hierarchy diagram. Full arrows indicate inheritance and dotted arrows composition (the class pointed by the arrow includes a pointer or reference to an instance
of the other class). Dashed borders indicate abstract classes; empty dotted boxes represent classes the user should define, inheriting from the library as shown, in order to
produce a functional simulation program.
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define one or more observables inheriting from class Observable.
To run the simulation, the main program then simply creates
the objects, tells the configuration and environment to initialize
themselves from disk and calls the Simulation run method. On
completion of the run, the configuration and environment save
methods are called. main() would read something like the follow-
ing:

extern Parameters ∗create_parameters();
extern Environment ∗create_environment(int

argc,char ∗argv[],Parameters ∗par);
extern Configuration ∗create_configuration(Environment ∗env);
extern Simulation ∗create_simulation(Environment∗,Configuration∗);

int main(int argc,char ∗argv[])
{

Parameters ∗par=create_parameters();
Environment ∗env=create_environment(argc,argv,par);
Configuration ∗conf=create_configuration(env);
load configuration;
Simulation ∗sim=create_simulation(env,conf);
load environment;
steps=sim->run();
save environment and configuration;
delete sim;
delete conf;
delete env;
delete par;

}
Listing 2. Simulation main().

This main (with the addition of exception catching and tim-
ing functions) is included in glsim, since its structure should not
need alteration, and since the objects should be created in the or-
der shown (in particular, the environment must be loaded after
the simulation has been created, because the environment reads
all variables registered for automatic saving, as discussed below).
Different simulations can simply link this main with the appropri-
ate create_xxx() functions.

4.1. Simulation

The Simulation class implements our abstract simulation algo-
rithm (Listing 1). A Simulation object is created by passing pointers
to suitable Configuration and Environment objects. The required
observables are created (defining objects from a separate hierarchy
described below, Section 4.4) and registered by calling add_obs().
This guarantees that the simulation is aware of them, and that the
methods to compute the observables will be called when appropri-
ate. Finally, the public run method is called to run the simulation
as shown above. To produce a working simulation, the user must
inherit from class Simulation and define the functions init_sim(),
step(), and the logging functions.

class Simulation {
public:

Simulation(Environment &e,Configuration &c);
virtual const char ∗name()=0;
virtual long run();
void add_obs(observer∗ o);

protected:
virtual ˜Simulation();
virtual void step()=0;
logging functions;
(. . .)
virtual void start_observation();
void obs();
(. . . )

} ;

Listing 3. Declaration of class Simulation (excerpt).
The private part holds references to the environment and con-
figuration objects (Sections 4.2 and 4.3) and a list of pointers to
the observables. We have omitted the declarations and functions
to install a signal handler for the Unix termination signals. The
handler simply sets the termination_requested flag and returns, so
that the current step is completed. The main simulation loop, be-
low, checks this flag and stops the simulation if set. In this way
the simulation can be safely interrupted with the kill command,
or with ctrl+C if running interactively.

volatile sig_atomic_t Simulation::termination_requested=0;

long Simulation::run()
{

install signal handler;
check_for_partial_run(); /∗ This functions sets rmode ∗/
init_sim(rmode);
if (env.obs_step>0) start_observation();
log_start_run();

env.completed_run=false;
long steps_completed=env.requested_steps-env.steps_remaining;
long actual_steps=0;

/∗ Simulation loop; if a signal is received the handler will set
termination_requested to 1 ∗/

while (env.steps_remaining>0 && termination_requested==0) {
env.step();
step();
if (env.total_steps%env.log_step==0) log();
if (env.obs_step>0 && env.total_steps%env.obs_step==0) obs();
env.steps_remaining- -;
actual_steps++;

}
steps_completed+=actual_steps;
if (termination_requested>0)

std::cout << "\nWARNING: Terminating on signal " << signal_received <<

"\nCompleted" << steps_completed << " steps.\n\n";
else

env.completed_run=true;
log_stop_run();
return actual_steps;

}
Listing 4. Simulation run method.

Observables are handled by keeping a list (structure from the
library (STL)) of pointers to them, std::Observable∗ observables.
class Observable (Section 4.4) provides methods for initialization
and observation (i.e. computation and saving of the desired quanti-
ties), so that Simulation::obs() simply goes through the list, calling
the appropriate method for each observable.

4.2. Configuration

A configuration is required to have a name, to know how to
load and save itself to disk, and to be able to initialize itself to
some default (say, a random but valid configuration).

class Configuration {
public:

std::string name;
Configuration(const std::string& name_) : name(name_) {}
virtual ˜Configuration() {}
virtual void deflt()=0;
virtual void load(const char∗)=0;
virtual void save(const char∗)=0;

} ;

Listing 5. Declaration of class Configuration.

A working (i.e. instantiable) configuration class must define the
three pure virtuals above plus the appropriate access interface,
through which the Simulation::step() method will update it. It is
important to keep it light, since the configuration will be accessed
and updated many thousands of times during a run. In many cases,
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public data members are probably the best alternative. See Sec-
tion 5 for an example.

If desired, loading and saving in self-describing files can be
done using class Persist_aid below. However, configurations must
be saved in files physically distinct from environment files.

4.3. Environment

The environment holds all the data relevant to the simulation
which is not reasonable to include in the configuration, includ-
ing the number of steps completed and requested for the run, and
filenames to read and save environment and configuration. An en-
vironment object can be created passing it the names of those files,
or alternatively the argc and argv arguments of function main plus
a reference to an object of class Parameters (Section 4.3.1). In this
last way, it will parse the command line and initialize itself from a
control file.

The declaration of class Environment is shown below (many
variables omitted for brevity). Since the data are typically to be
manipulated from outside the class, public data access has been
preferred over get/set methods.

class Environment {
public:

std::string title;
int requested_steps;
int log_step;
std::string configuration_file_ini,configuration_file_fin;
long total_steps;
(. . .)

Environment(int argc,char ∗argv[],Parameters &param);
virtual ˜Environment() {}
virtual void step();
void load();
void load_all();
void save();

protected:

Persist_aid persist;
(. . .)

} ;

Listing 6. Declaration of class Environment (excerpt).

The environment is updated (i.e. the action of the function E(e)

of Eq. (1) is performed) by calling step() (which is done from Simu-
lation::run()). At this level the only action required is to increment
the number of steps (total_steps), but more complicated things can
be done by overriding this virtual.

The i/o methods are load() and save(), for normal reading/
writing to the environment file, and load_all(), which is the load
function to be called when continuing a previously interrupted run
(see discussion in Section 4.3.2). Variables are read and written
through a Persist_aid object (Section 4.3.2). class Persist_aid does
i/o to a self-describing binary file, so that variables are read by
name. In this way it is possible to read old versions of environment
files, because when variables are missing, a warning is printed and
a default value (typically set from the configuration file) is used.

Persist_aid works through a simple registration mechanism as
illustrated in the constructor below, making it easy to incorpo-
rate to the environment file variables defined by the user. This is
done inheriting from Environment. If the new variables are to be
initialized from the control file, a class derived from class Param-
eters (Section 4.3.1) is first defined which declares the necessary
variables to the parameter file parser. This object is passed to En-
vironment’s derived constructor, which reads the parameter file
values calling Parameters::value(), and registers the variables to be
saved with the Persist_aid object.
Environment::Environment(int argc,char ∗argv[],Parameters &param) :

ignore_partial_run(false),
completed_run(false),
obs_step(0),
total_steps(0),
par(&param)
(. . .)

{
// Parse the control file
// N.B. this parses ∗all∗ defined variables; must not be called again
by derived constructors
par->parse(argc,argv);

// Read values from control file
ignore_partial_run=par->value("ignore-partial-run").as<bool>();
title=par->value("title").as<std::string>();
requested_steps=par->value("steps").as<int>();
(. . .)

register_vars();

}
(. . .)
void Environment::register_vars()
{ // Tell persist which variables must be saved in the environment file

// (derived classes should register their own variables)
persist.reg_var("environment.title",title,pa::write_only);
persist.reg_var("environment.requested_steps",&requested_steps,

pa::write_only);

persist.reg_var("environment.total_steps",&total_steps);
(. . .)

}
Listing 7. Environment constructor (excerpt).

4.3.1. Parameters
Simulation parameters are read form a control file with a

straightforward “.ini” syntax (variable=value). Parsing is done
with the program_options library, a part of Boost [5], which
can also do command-line parsing. class Parameters_base provides
a simple interface to Boost::program_options. Basically Parame-
ters_
base defines an object, ctrl_file_options, through which configura-
tion-file parameters can be defined as shown below, and a method
value(const std::string &parameter) which returns the value of the
requested parameter as a Boost::program_options::variable_value
object (see the Environment constructor in Listing 7 for sample
usage and the Boost documentation [5] for details).

To define parameters, the user inherits from class Parameters:

class Parameters : public Parameters_base {
public:

Parameters();

protected:

void parse_command_line(int argc,char ∗argv[]);
(. . .)

} ;

Listing 8. Class Parameters declaration (excerpt).

The parameters to be read must be defined before the file is
parsed. The parser is called from parse_command_line, which in
turn is called by the Environment constructor. The most conve-
nient place to define the variables is in the constructor of the class
derived from parameters, like it is done in class Parameters itself:

Parameters::Parameters() : Parameters_base()
{

ctrl_file_options.add_options()

("title",po::value<std::string>()->default_value("[untitled]"),
"simulation title")
("steps",po::value<int>()->default_value(1),"number of steps to run")
("log_step",po::value<int>()->default_value(0),"write to log every ... steps")

(. . .)
;

}
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Parameters are defined by giving a name, a type, a default value
and a description, using the syntax of the Boost::program_options
library (ctrl_file_options is an object of type Boost::program_
options::options_description).

Command-line parsing is done from parse_command_line,
which is a protected virtual so that it can be overridden if needed.
The version implemented in Parameters recognizes a command-
line of the form

simprog [options] control_file initial_infix final_infix,

where control_file is the file with the control parameters and ini-
tial and final infix are used to build the input and output filenames
according to the based on the patterns given in the control file
(in the variables env_file, conf_file and obs_file). The
special initial infix +++ is interpreted as a request to generate a
default environment and configuration. The options -c and -e are
also recognized, which allow to override the infix-generated con-
figuration and environment files, respectively.

4.3.2. Persistence
Class Persist_aid is designed to easily implement our require-

ments 7, 8 and 9, namely to be able to read old versions of sim-
ulation files and to transparently resume execution after early in-
terruption. The object to be placed under Persist_aid management
is registered by calling reg_var. The user can then essentially for-
get about loading or saving: all registered variables are saved and
loaded through Persist_aid::save() and Persist_aid::load(), which
are typically called at the end or start of the simulation by En-
vironment load or save methods. Say the user wants to save the
temperature in the environment file to have it automatically re-
stored on resuming the simulation, (s)he would simply do

double temperature;
persist.reg_var("my_environment.temperature",&temperature);
or
persist.reg_var("my_environment.temperature",&temperature,

Persist_aid::write_only);

(the meaning of the second form is explained below). The “(scope-
or-namespace).(variable-name)” convention is suggested to help
keep variable names unique. If this is done in the constructor of
a class inherited from Environment, then persist is the Persist_aid
object defined in Environment. Its load and save methods are
called when appropriate and no further action is needed. On the
other hand, if it is desired to keep these data in a file separate from
the global environment file, a different Persist_aid object needs to
be created and its save and load methods called as needed.

The save method writes all the registered variables to a self-
describing binary file (at this time managed through the NetCDF
library [17]). The self-describing nature of the file means that on
reading, variables are looked up by name (the name given on reg-
istering), rather than based on their position in the file. Thus if a
new version of the program attempts to read a file produced by
an earlier version which used to register fewer variables, the vari-
ables common to both versions will be retrieved by load() without
problems. The user controls what happens when attempting to
read a variable missing in the file by calling one of the meth-
ods on_absence_ignore, on_absence_warn or on_absence_throw:
the missing variable is silently ignored, a warning is printed on
standard output (in both cases the variable is not changed, so that
if it was initialized to a reasonable default the simulation can pro-
ceed) or an exception is thrown.

There is an additional subtlety on reading: some variables (for
instance, the number of steps completed so far) must be kept dur-
ing a run, but once the run is finished and a new run is requested
starting from the previously achieved state, they must be reinitial-
ized to new values. In principle, they should not be saved with
the rest of the environment. However, if the run is interrupted
early, those values are needed to correctly resume the simulation
when required. For this reason, a third argument can be given
to reg_var, taking one of the values read_write (the default) or
write_only. In the default reading mode (read_from_file_ad_hoc),
write_only variable are not read. When resuming a run, Sim-
ulation calls Environment::load_all(), which temporarily sets the
read mode to read_from_file_always, ensuring that even variables
flagged as write_only are loaded.

All simple (built-in) types, plus C- and C++-style strings can be
registered. It is also possible to register save and load functions
requiring a pointer to a C or C++ file stream. In this case, the pro-
vided save function is called, the data is placed in a buffer and
it is written as a single variable. This is mainly intended to allow
for the use of third-party libraries that provide read/write meth-
ods of their own. Finally, notification functions can be registered
which are called on i/o on a variable, so that for instance de-
rived quantities can be recomputed when a variable is read from
disk.

4.4. Observables

The final component is class Observable, intended as a base
class for objects representing observables.

class Observable {
public:

Observable(const std::string& name, Environment &e,Configuration &c,int st);
virtual ˜Observable() {}
virtual void start(Simulation::run_mode rmode);
void observe();
virtual void register_for_persistence(Persist_aid&);

protected:
virtual void do_observation();
(. . .)

} ;

Listing 9. Declaration of class Observable (excerpt).

To produce a working observable object, the user must write
(apart from constructor and destructor), the methods start() and
do_observation() and optionally register_for_persistence(). The first
of these is passed a parameter telling it whether it should ini-
tialize for a new or a continuation run. It is expected that this
function will open a file to record the observations, so this infor-
mation is important. Typically, in a normal run the file is opened in
overwrite mode and a header is written, while a continuation run
requires opening in append mode, and the header is omitted. Af-
ter initializing, the parent start() must be called. do_observation()
must do the actual calculation of the observable, accessing the
relevant data through the references to the environment and con-
figuration stored in the object.

If required, variables can be registered with the persist object
by overriding register_for_persistence(), but it must be remem-
bered to call the corresponding method in the parent class.

4.5. Checkpointing and disk files

At present glsim still lacks support for checkpointing. The
reason is that the existence of disk files to which information is
added as the simulation proceeds (those produced by class Ob-
servable’s descendants) make checkpointing a harder problem than
continuation after interruption with a signal. It is fairly easy, us-
ing Unix alarm signals to make the program save the state (con-
figuration and environment) periodically (say every two or three
hours). However, if the system fails, the observable files will be
out of synchronization, because the observable is typically writ-
ten more often than the configuration (writing the configuration
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after each step is not feasible because it is in general too ex-
pensive). Thus restarting after system failure requires a way to
restore the observable files to the state they were in at the time
the last configuration and environment were written. A convenient
mechanism to do this is still missing, so at this point check-
pointing with glsim is not easily achievable. Alternative ways
to provide this mechanism are being considered, and it is ex-
pected that checkpointing support will be added in the near fu-
ture.

5. Example use of glsim

Let us sketch how a user would proceed to write a working
simulation program based on glsim. Assume one wants to imple-
ment a dynamics (MD) simulation of monoatomic particles.

First we need to decide how the state of the system (here
the mechanical state of particles in 3-d space) will be repre-
sented. We then define a suitable class, inheriting from Configu-
ration:

class MD_configuration : public Configuration {
public:

int N;
double time;
double box_length[3];

short ∗id;
double (∗r)[3];
double (∗v)[3];
double (∗a)[3];

olconfig();
˜olconfig();

void load(const char∗ fname);
void save(const char ∗fname);
(. . .)

} ;

The MD algorithm will need additional parameters, such as the
integration time step. These would be added inheriting from Pa-
rameters:

class MD_parameters : public Parameters {
public:

MD_parameters() : Parameters()
{

ctrl_file_options.add_options()
("deltat",po::value<double>,"integration time step") ;

}
} ;

These would be kept in an appropriate Environment descen-
dant, together with additional information that makes sense to
store, e.g. the energy:

class MD_environment : public Environment {
public:

Environment(int argc,char ∗argv[],MD_parameters& par);
double deltat,energy;
(. . .)

} ;

MD_environment::MD_environment(int argc,char ∗argv[],MD_parameters& par) :
Environment(arg,arv,par)

{
deltat=par->value("deltat").as<double>();
persist.reg_var("MD_environment.deltat",&deltat);
persist.reg_var("MD_environment.energy",&energy);
(. . .)

}

We now inherit from Simulation to define the simulation step
and the appropriate initialization:
class MD_simulation : public Simulation {
public:

MD_simulation(MD_environment&,MD_configuration&);
void step();

private:
MD_environment env;
MD_configuration conf;

} ;

MD_simulation::MD_simulation(MD_environment& e,MD_configuration& c) :
Simulation(e,c), env(e), conf(c)

{
compute initial energy;
substract center-of-mass motion;
(. . .)

}
void MD_simulation::step()
{

compute forces for configuration conf;
perform Verlet step of conf;

}
Additional logging (e.g. periodically writing the energy) and ob-

servation (e.g. periodically saving the configuration to obtain a tra-
jectory) can be added to Simulation and deriving from Observable.
Finally, one writes the create_xx functions that create the configu-
ration, environment, and simulation objects and return pointers to
them (see Listing 2), e.g.:

Environment ∗create_environment(int argc,char ∗argv[],Parameters ∗par)
{

return new MD_environment(argc,argv,∗dynamic_cast<MD_parameters∗>(par));
}

This code is then linked with glsim and the glsim-provided
main to produce a working MD simulation. Based on the au-
thor’s experience, it is estimated that this new code amounts to
between 300 and 600 source lines, to be compared with 2200+
lines in glsim (providing command line parsing, configuration file
parsing, self-describing environment files and orderly interruption
through Unix signals). About half of the new code will be con-
cerned with i/o of configurations.

5.1. Writing step() in another language

Although the definition of class MD_simulation must include
the function step() (otherwise the class would remain abstract), it
could be just a wrapper that calls routines in another language, if
that is convenient. The details of building a mixed-language pro-
gram depend on the language and platform (operating system,
linker, compiler) and can be rather tedious [18]. However, C++ can
be easily linked together with C and FORTRAN (in most platforms).
Linking with C is directly supported by the standard through the
extern “C” {. . .} construct. FORTRAN can be linked easily with the
aid of the cfortran.h header [19], which supports a large number
of compilers and linkers. To continue the above example, if one
wishes to use FORTRAN routines to compute the forces and to per-
form the Verlet step, the above step() would look something like
this:

#include "cfortran.h"

PROTOCCALLSFFUN3(FORCE,force,DOUBLEVV,DOUBLEVV,INTV)
PROTOCCALLSFFUN3(VERLET,verlet,DOUBLEVV,DOUBLEVV,DOUBLEVV)

#define force(r,a,t) CCALLSFFUN3(FORCE,force,DOUBLEVV,DOUBLEVV,INTV,r,a,t)
#define verlet(r,v,a)
CCALLSFFUN3(VERLET,verlet,DOUBLEVV,DOUBLEVV,DOUBLEVV,r,v,a)

void MD_simulation::step()
{

force(conf.r,conf.a,conf.type);
verlet(conf.r,conf.v,conf.a);

}
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cfortran.h also supports calling C or C++ from FORTRAN. For
details we refer to the cfortran.h documentation [19].

6. Final remarks and how to obtain glsim

We have described a library designed around an abstract defi-
nition of a simulation, understood in a very general way, and built
using information hiding to provide convenient modules isolating
implementation details from the user. It is expected that it will be
useful to the developer of a program whose task can be described
with the basic simulation algorithm, helping him/her to fulfill most
or all of the requirements of a good simulation program with min-
imum effort.

glsim is being used in actual research projects, and is under
development. Features (in particular checkpointing support) will
be added in the future. Also, since the design is open to addi-
tion of more specialized modules, it is expected that the number
of classes will grow with modules adding support for more spe-
cific simulations and for data analysis. It is hoped that the design
of glsim will encourage its users to write modular, reusable code
that can eventually contribute to the growth of glsim. The au-
thor has written code for manipulating off-lattice configurations
and trajectories (along the lines sketched in Section 5). This code
is useful for a wide variety of situations, including analysis pro-
grams outside the simulation itself, and it is planned to add this to
glsim as soon as the interface is polished. Hopefully others will
start using glsim to later become contributors as well.

The glsim source code is distributed under the GNU General
Public License version 3. It can be downloaded at no cost from
SourceForge (http://sourceforge.net/projects/glsim).
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