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Abstract

The heavy quark potential and particularly the one proposed by Richardson to incorporate both asymptotic freedom and
linear confinement is analyzed in terms of a generalized Borel transform recently proposed. We were able to obtain, in the
range of physical interest, an approximate analytical expression for the potential in coordinate space valid even for intermediate
distances. The deviation between our approximate potential and the numerical evaluation of the Richardson’s one is much
smaller than Λ of QCD. The cc̄ and bb̄ quarkonia energy levels agree reasonably well with experimental data for c and b
masses in good agreement with the values obtained from experiments.  2001 Published by Elsevier Science B.V.

Among the different proposals for describing
quark–antiquark interactions, the Richardson’s poten-
tial [1], due to its is simple structure, has been the sub-
ject of continuous interest [2]. This potential requires,
in the author words, the minimal number of parame-
ters. In fact, the only parameter entering the potential
is the QCD related scale Λ. This potential, designed
in order to present both asymptotic freedom and linear
quark confinement includes the single dressed gluon
exchange amplitude, namely

(1)V (q)= 4
3
αs(q

2)

q2
.

Asymptotic freedom is present as soon as one adopts
for αs(q2) the effective running coupling constant pro-
vided by the renormalization group. Quark confine-
ment is imposed by requiring that for q small V (q)
behaves as the inverse four power of q that guarantees
a linear behavior in r . Then, the Richardson’s potential
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reads

(2)V R(q)= −16π2CF
β0

1
q2 ln(1+ q2/Λ2)

,

where CF is a group coefficient.
It is clear that the explicit calculation of the QCD

coupling constant in position space is crucial when the
Richardson’s potential is to be applied in a concrete
case. This is because the Fourier transform of (2)
provides the configuration space expression

�V R(r)= −CF
r

2π
β0
ᾱ(1/r)

(3)= −CF
r

2π
β0

[
a(1/r)−Λ2r2

]
.

Here

(4)a(1/r)= 1− 4f (r),

(5)f (r)≡
∞∫
1

dq

q

e−qΛr

[ln(q2 − 1)]2 + π2 .

This expression was only computed numerically. The-
re exist some analytical results corresponding to some
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asymptotic conditions. For example, for Λr 
 1, the
Richardson’s potential was shown to behave softer
than the Coulomb interaction [4], namely

(6)�V R(r)→ 1
Λr ln(Λr)

,

and for Λr � 1 provides linear confinement.
Our main point in this Letter is the calculation

of the strong coupling constant in position space
starting from the last integral representation Eq. (5).
In so doing, we provide either an input for the
Richardson’s potential in configuration space or to
any other alternative proposal for the quark potential
including the original QCD running coupling constant
or any alternative expression [5]. To this end, we
fully analyze the analytic structure of the integral
in the Borel plane [6]. Then, we are able to obtain
the potential behaviour as a function of r , including
intermediate distances.
Any perturbative analysis starts from the general

relationship between V (q) and �V (r) that ends with the
corresponding relation between the couplings αs(q)
and ᾱ(1/r). Notice that in the perturbative calculation,
ᾱ(1/r) coincides with a(1/r). Moreover, it has been
shown [7] that one can write, for any static potential,

(7)ᾱ(1/r)=
∑
n

fn

[
−β(αs) ∂

∂αs

]n
αs(q = κ/r),

where fn are known constants, β(αs) ≡ µ2∂αs(q)/
∂µ2 and κ = exp(γE) a constant. In the case of the
Richardson’s potential, this series is asymptotically
(q2 � 1) factorial divergent and its Borel sum does
not exist, namely

ᾱ(1/r)∼ αs(q = κ/r)
∑
n

fn
[
β0αs(q = κ/r)]nn!.

Certainly, this expression provides sensible results
only for very small distances because at increasing
distances the non-perturbative contributions start to be
important.
It is worth mentioning that the analytic behaviour of

ᾱ(1/r) has been studied [8] by summing the divergent
asymptotic series by using the standard Borel formal-
ism. Clearly, being the expression no Borel summable,
the Borel transform B(s) has singularities for different

values sk on the integration path of

ᾱ(1/r)=
∞∫
0

exp
[−s/α(q = κ/r)]B(s) ds.

Consequently, it can be defined only in principal value,
showing ambiguities coming from the exponential
in this integral. This approach implies that the non-
perturbative contribution is considered of the same
order of magnitude as the ambiguity inherent to the
method [9]. An additional problem coming from the
use of a perturbative αs is the presence of the Landau
pole, conditioning the validity of any amplitude rep-
resenting any physical observable to a finite range of
energy. In this respect, there is an alternative proposal
[5] that starts from a modification of the αs definition
that avoids the Landau pole but retains the standard
properties. Nevertheless, this change implies a modifi-
cation in the linear confinement behaviour loosing the
standard connection with the string tension.
All the previousmentioned problems can be avoided

by using the generalized Borel transform (GBT) that
was introduced in Ref. [10]. This version of the Borel
transform was originally defined on a finite lattice but
it can be readily adapted to the continuum, preserving
all of its characteristics.
The main vantage of this proposal comes from the

fact that its analytic properties have no ambiguities.
Moreover, it allows to perform computations in terms
of a real and positive arbitrary parameter λ avoiding
the implementation of perturbative expansions. The
approach generally ends with non-perturbative calcu-
lations of the saddle point type, when λ takes large ar-
bitrary values. This is possible because the generaliza-
tion implies the definition of a valid Borel transforma-
tion for each value of the parameter λ. Then, the better
adapted value for each particular problem can be cho-
sen. In other words, when using the GBT, a function of
Bλ(s), a whole class of transformations is performed.
It is found that, as it should be, the results do not de-
pend on λ. For the particular case of the present Letter,
this can be summarize as

a(1/r)= T −1
λ

[
Tλ

(
a(1/r)

)]
,

where

Tλ
(
a(1/r)

) ≡ Bλ(s), for 0< r <∞.
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We start by presenting our previous generalization
[10] of the Borel transform of a function f (r), namely

(8)

Bλ(s)=
∞∫
0

exp
[
s/η(r)

][ 1
λη(r)

+ 1
]−λs

× f (r) d(1/η(r)), Re(s) < 0.

Among the properties of this definition we want to
notice that it is valid for any analytic function η(r) in
the interval 0< r <∞ that allows to define

(9)uλ(r)≡ 1
η(r)

− λ ln
[

1
λη(r)

+ 1
]
,

being monotonically increasing in the same interval if
η(r) is. Consequently, the integral transform can be
written as

(10)
Bλ(s)=

∞∫
0

exp[su]f [
rλ(u)

]
× {

1+ λη[rλ(u)]}du, Re(s) < 0,

where rλ(u) is the inverse coming from the change of
variables. From the last expression it is clear that

(11)Bλ(s)=
∞∫
0

exp(su)Lλ
[
r(u)

]
du, Re(s) < 0,

is the Laplace transform of the function Lλ[r(u)]
implicitly defined. That definition implies that η(r)
gives rise to an analytic transformation in the negative
Borel half-plane, such that its extension to the other
half-plane is also analytic with a cut on the real
positive axis. From this observation it is clear that
f (r) can be unambiguously expressed in terms of
the inverse Laplace transform integrated on the above
mentioned cut (for details see Ref. [10])

f (r)= 1
λη(r)+ 1

(12)

×
∞∫
0

exp
[−s/η(r)][ 1

λη(r)
+ 1

]λs
$Bλ(s) ds.

As it was said before, the parameter λ can take any
real positive non-zero value generating a continuous
family of transformations. A large value of λ could be
useful because in this case asymptotic techniques can
be used in the calculations.

From this point on, a series of almost trivial calcu-
lations follows. Let us only indicate the most impor-
tant steps. Using 1/η(r)= λ[exp(Λr/λ)− 1] which is
well-defined for 0< r <∞, the function uλ(r) results

uλ(r)= λ
[
exp(Λr/λ)− 1

] −Λr.
Consequently, one can write

(13)

Bλ(s)=
∞∫
1

dq H(q)×
∞∫
0

exp(sλv)(v + 1)−λ(s+q) dv,

with

(14)H(q)= 1
[ln(q2 − 1)]2 + π2

1
q
,

where the change of variable 1/[λη(r)] = v was in-
troduced. Notice that the last integral, for Re(s) < 0,
represents the confluent hypergeometric function [11]
G(1,−λs − λq + 2,−sλ). Consequently, in this re-
gion Bλ(s) is an analytic function and when an ana-
lytic continuation to the positive half-plane of s is per-
formed, a cut appears. Introducing the discontinuity of
the G function, one gets

(15)

$Bλ(s)= 2πλ exp(−λs)×
∞∫
1

dq H(q)
(λs)λ(s+q)−1

([λ(s + q)] .

We can now transform back to obtain f (r) from
Eq. (12)

f (r)= 1
π
λ2Aλ(r)

(16)×
∞∫

−∞

∞∫
−∞

exp
[
G(w, t, r, λ)

]
dw dt,

where

Aλ(r)= 1− exp[−Λr/λ],
and

G(w, t, r, λ)

= −λv(t)uλ(r)+ t − πw
− ln

[
w2 + 1

] − 2 ln
(
q(w)

)
− ln

{
(

[
λ
(
λv(t)+ q(w))]}

+ λq(w) ln[λ2v(t)]
(17)− λ2v(t)+ (

λ2v(t)− 1
)
ln

[
λ2v(t)

]
,
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with

q(w)= [
1+ e−πw]1/2

, v(t)= et .
The next step is to look for the asymptotic con-

tribution in λ of the double integral in Eq. (16). To
this end one can use the steepest descent technique in
the combined variables (t,w). Consequently one first
computes the saddle points t0(r) and w0(r) and then
one checks the positivity condition [12], in particular
when the discriminant D(t0,w0) of the second deriv-
atives of G at this point is positive. In so doing one
obtains

f (r)� 2λ2Aλ(r) exp
[
G

(
w0(r), t0(r), r, λ

)]
(18)×

[
∂2G

∂w2
∂2G

∂t2
−

(
∂2G

∂w∂t

)2
]−1/2

,

the saddle point being

t0 = ln
[
q0(r)

F (q0(r))

]
= t0(r),

(19)w0 = − 1
π
ln

[
q20 (r)− 1

] =w0(r),

where q0(r) is the solution of the implicit equation
coming from the extremes of the functionG, namely

(20)r2 = F(q0)

Λ2

[
F(q0)+ 1

q0

]
,

with

(21)F(q0)= 2
q0[q20 − 1]

[
1− 2q20 ln(q

2
0 − 1)

[ln(q20 − 1)]2 + π2
]
.

Notice that F(q0) should be positive and conse-
quently q0 < 2.130156. On the other hand, from
Eq. (19), q0 > 1. In fact, moving q0 between these val-
ues, the variable r covers all the positive real axis in
a biunivocal way. Moreover, the condition F(q0) �= 0
implies that r = 0 is excluded from the analysis. This
is clearly not a drawback of the method.
Going now to the expression (18) of f (r), one fi-

nally finds, in the saddle point approximation (λ→ ∞)

fAp(r)= f
(
q0(r)

)
∼= e−1/2

√
2
√
(F (q0)+ 1/q0)

2
√
πD(q0)

1
[q0]3/2

[
q20 − 1

]
(22)× exp[−q0F(q0)]([ 1

π
ln(q20 − 1)

]2 + 1
) ,

Table 1
Comparison between potentials for Λ= 0.398 GeV

r (GeV−1) VRich (GeV) VAp (GeV) |δV |
7.0 0.899941 0.899923 0.000018

5.0 0.554276 0.554244 0.000032

3.0 0.149355 0.149637 0.000281

1.0 −0.571347 −0.554343 0.017004

0.5 −1.114402 −1.062477 0.051926

0.2 −2.208255 −2.284687 0.086730

where

D(q0)= π2(q20 − 1)
2q40

[
1+ q30F(q0)

2

]

+ 1− [ 1
π
ln(q20 − 1)

]2
[[ 1
π
ln(q20 − 1)

]2 + 1
]2

(23)−
[
π(q20 − 1)F (q0)

2q0

]2
.

Finally, the approximated expression for the poten-
tial is

(24)VAp(r)= −2πCF
β0

[
1− 4fAp(r)

r
−Λ2r

]
.

In order to test the precision provided by the GBT,
we have compared the behavior in the coordinate
space of our approximated analytical formula (24)
with the numerical integration of the exact expression
(3). This comparison, within the range of physical
interest 0.1 < r < 1 fm (see, for example, [5,13]),
has been performed for the Richardson’s potential free
parameter Λ = 0.398 GeV which he found to be the
best to fit the charmonium and bottomonium lowest
bound states. The corresponding results are exhibited
in Table 1, being the relative error 5% at most.
We have also evaluated, the charmonium and bot-

tomonium spectra following the Richardson’s algo-
rithm. For this purpose, with the help of (24), we have
adjusted mc and Λ to reproduce the best measured
charmonium energy levels ψ(1S) and ψ(2S) [14].
The resulting charm quark mass is mc = 1.363 GeV
and the scale size Λ = 0.434 GeV (to be compared
with mc = 1.491 GeV and Λ = 0.398 GeV obtained
by Richardson). In the bottomonium case we kept
Λ = 0.434 GeV assuming, like Richardson, that the
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Table 2
System cc̄

l EExp (GeV) ERich (GeV) EAp (GeV)

0 3.096 3.096 3.096

0 3.684 3.684 3.684

0 4.040 (4.160)* 4.096 4.127

0 4.415 4.440 4.506

1 3.522 3.514 3.494

2 3.770 3.799 3.786

* See [17] for an alternative level assignment.
Our parameters are (Λ = 0.434 GeV, mc = 1.363 GeV) and
the corresponding Richardson’s ones (Λ = 0.398 GeV, mc =
1.491 GeV).

Table 3
System bb̄

l EExp (GeV) ERich (GeV) EAp (GeV)

0 9.460 9.460 9.522

0 10.023 10.016 10.023

0 10.355 10.343 10.351

0 10.580 10.607 10.620

1 9.900 9.896 9.910

1 10.260 10.249 10.252

Our parameters used are (Λ = 0.434 GeV, mb = 4.780 GeV)
and the corresponding Richardson’s ones (Λ = 0.398 GeV, mb =
4.888 GeV).

scale size should be a fundamental scale of the theory
independent from the quarkonium system. The bottom
mass reproducing the best measured bottomonium en-
ergy state Υ (2S) [14] results in mb = 4.780 GeV. No-
tice that Richardson has fitted the bottomonium funda-
mental level Υ (1S) obtaining mb = 4.888 GeV. The
results for both spectra and the corresponding experi-
mental values are presented in Tables 2 and 3, respec-
tively.
In summary, we have obtained an analytic expres-

sion for the quark potential valid for any value of r .
Our results, in the leading order of the saddle point
approximation, give rise to absolute values of the
uncertainties always much smaller than Λ of QCD
(∼ 0.4 GeV). It is worth mentioning that any perturba-
tion based calculation obtained by means of the stan-
dard Borel transform, ends with uncertainties at least
of the order of Λ [7]. This result shows the ability and

potentiality of the previously introduced generalized
Borel transform.
As regards the quarkonia energy levels, our spec-

tra prediction results reasonably well when compared
with the spectra obtained by Richardson. The devi-
ations of our results with respect to the correspond-
ing experimental values, are certainly smaller than the
scale size Λ (see Tables 2 and 3). Let us remark that
our adjustment leads to quark masses, when compared
with those of Richardson, in best agreement with the
values reported in the particle data table [14]. The re-
sulting Λ parameter falls in the range of values ex-
pected from perturbative QCD.
There exist in the literature other simple potentials

in the coordinate space [3,15] that can compete with
our approximation and that give similar results for
the spectra. However these potentials are strictly
phenomenological, not having a direct connection
with perturbative QCD and in general, they have more
free parameters to be adjusted.
Finally, our Q�Q approximate potential, due to

computing simplicities, is clearly useful in any further
calculations of interesting physical quantities [16].
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