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1. Introduction

Four dimensional supersymmetric Yang-Mills theory arises in M-theory on a manifold X

with G2 holonomy. If the manifold is large enough and smooth, the low energy description

is given in terms of a purely gravitational configuration of eleven dimensional supergravity.

The gravity/gauge theory correspondence then allows for a geometrical approach to the

study of important aspects of the strong coupling regime of supersymmetric Yang-Mills

theory such as the existence of a mass gap [1, 2], chiral symmetry breaking [2], confine-

ment [3], gluino condensation [2, 4], domain walls [5] and chiral fermions [6]. These facts

led, in the last two years, to a concrete and important physical motivation to study compact

and non-compact seven-manifolds of G2 holonomy.

Up to last year, there were only three known examples of complete metrics with G2

holonomy on riemannian manifolds [7, 8]. They correspond to R3 bundles over S4 or

CP2, and to an R4 bundle over S3. These manifolds develop isolated conical singularities

corresponding, respectively, to cones on CP3, SU(3)/U(1) × U(1), or S3 × S3, and the
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dynamics of M-theory on them has been recently studied in great detail [9]. See also [10]. In

the last case, in particular, it was shown that there is a moduli space with three branches,

and the quotient by a finite subgroup of SU(2) leads either to the uplift of D6-branes

wrapping a special lagrangian S3 in a Calabi-Yau three-fold, or to a smooth manifold

admitting no normalizable supergravity zero modes. M-theory on the latter has no massless

fields localized in the transverse four-dimensional spacetime. By a smooth interpolation

between these manifolds, M-theory realizes the mass gap of N = 1 supersymmetric four-

dimensional gauge theory [1, 2]; this geometric dual description corresponding, however,

to type-IIA strings at infinite coupling.

We will concentrate on this paper in the case of an R4 bundle over S3. Supersymmetry

and holonomy matching indicate that a large class of G2 holonomy manifolds, describing

the M-theory lift of D6-branes wrapping a special lagrangian three-cycle on a Calabi-Yau

three-fold, must exist [11]. Constructing their complete metrics is an important issue in

improving our understanding of the strongly coupled infrared dynamics of N = 1 supersym-

metric gauge theories. For example, a new G2 holonomy manifold with an asymptotically

stabilized S1 — thus describing the M-theory lift of wrapped D6-branes, mentioned in

the previous paragraph, in the case of finite string coupling — was recently found [12].

This solution is asymptotically locally conical (ALC) — near infinity it approaches a circle

bundle with fibres of constant length over a six-dimensional cone, — as opposed to the

asymptotically conical (AC) solutions found in [7, 8].

There have been some attempts of a generic approach to build this kind of complete

and non-singular metrics of G2 holonomy. A rather general system of first-order equations

for the metric was obtained in [13, 14] from the BPS domain wall equations corresponding

to an auxiliary superpotential. Three types of regular metrics were shown to arise from this

system, in which the orbits degenerate respectively to S3 [12], T 1,1 [14] and S2 [15]. With

the notable exception of the first one, the solutions are only known numerically. A different

fairly general technique was used in [16] by directly exploiting the fact that G2 holonomy

metrics are determined by a three-form that is closed and co-closed. Following a different

approach, Hitchin gave a prescription dealing with a hamiltonian system, which is obtained

by extremising diffeomorphism invariant functionals on certain differential forms, that leads

to metrics of G2 holonomy [17]. This procedure was then exploited [18] to obtain a general

system of first-order equations for metrics of G2 holonomy with S3 × S3 principal orbits

that was shown to encompass the previous ones. It was also shown in [18] that, through

different contraction limits, G2 metrics with S3 × T 3 principal orbits can be attained [19].

On the other hand, a more systematical approach, started in [20], explicitly exploits

the fact that these metrics come from the uplift of D6-branes wrapping special lagrangian

three-cycles on a Calabi-Yau three-fold. The key issue is given by the non-trivial geome-

try of the world-volume that forces supersymmetry to be appropriately twisted such that

covariantly constant Killing spinors are supported [21]. A natural framework to perform

the above mentioned twisting is given by lower dimensional gauged supergravities, whose

domain wall solutions usually correspond to the near horizon limit of D-brane configura-

tions [22] thus giving directly the gravity dual description of the gauge theories living on

their world-volumes. This approach has been largely followed throughout the literature on
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the subject [23]–[33]. In particular, a generic approach to obtain G2 holonomy manifolds

from eight-dimensional gauged supergravity was undertaken in [28], where it was shown

that the conventional twisting prescription should be generalized in a way that involves

non-trivially the scalar fields that arise in lower dimensional gauged supergravity.

There is a wide spread believe that the gauged supergravity approach is quite limited

to a subset of solutions whose asymptotics is related to near horizon geometries of D-

branes. In the particular case of our interest, it is well-known that the D6-brane solution

is viewed in eleven dimensions as a Taub-NUT space whereas its near horizon limit is

described by an Eguchi-Hanson metric. The former goes asymptotically to R3 × S1 as

opposed to the latter that goes as R4. It is then somehow unexpected to find solutions

corresponding to ALC G2 manifolds in lower dimensional gauged supergravities. Another

argument in this line is the following. There is a flop transformation in manifolds of G2

holonomy with S3 × S3 principal orbits that interchanges the fibre S3 with the base one.

This operation, from the point of view of eight-dimensional gauged supergravity, would

amount to an exchange between the external sphere and the one where the D6-brane is

wrapped. Then, there seems to be no room for the flop within the gauged supergravity

approach. So, in particular, flop invariant solutions as the one obtained by Brandhuber,

Gomis, Gubser and Gukov [12] would not be obtainable from gauged supergravity. In this

paper, we are going to show that this is not the case. It is possible to further extend

the twisting conditions in that framework in such a way that general cohomogeneity one

metrics of G2 holonomy with principal orbits S3 ×S3 turn out to be obtainable within the

framework of eight dimensional gauged supergravity.

The generalized twisting procedure that we propose corresponds to a non-trivial em-

bedding of the special lagrangian three-cycle wrapped by the D6-branes in the lower di-

mensional supergravity. It is important to remark that we are using the name “D6-brane”

in quite a loose sense. Meaningly, many G2 manifolds do not correspond to D6-branes

wrapping special lagrangian three-cycles but to the uplift of resolved conifolds with RR

fluxes piercing the blown-up S2. Starting from the general ansatz, we found a set of con-

straints that neatly reduce it to a six functions one. This makes connection with previous

works in the literature where six functions ansatzë were taken as a starting point. The

Hitchin system [17] turns out to be an elegant general solution of the constraints. Finally,

the flop transformation becomes nicely realized in eight dimensional gauged supergravity.

Then, not surprisingly, flop invariant solutions (as that in [12]) emerge in this formalism.

The plan for the rest of the paper is as follows. In section 2 we perform a detailed study

of the case of D6-branes on a special lagrangian round three sphere in a manifold with the

topology of the complex deformed conifold. We start by analyzing the possible realizations

of supersymmetry for the round ansatz and the corresponding generalized twist. Then we

formulate our results in terms of the calibrating closed and co-closed three-form associated

to manifolds of G2 holonomy. The analysis carried out for the round case reveals the key

points which must be taken into account in the more general case studied in section 3.

In this section, a general ansatz with triaxial squashing is considered. The subsequent

analysis shows that one must impose certain algebraic constraints on the functions of the

ansatz if we require our solution to be supersymmetric.
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In section 4 we demonstrate that our formalism provides a realization of the Hitchin

system. Some particular cases are studied in section 5, including the flop invariant and the

conifold-unification metrics, which were never obtained by using eight dimensional gauged

supergravity so far. In section 6 we summarize our results and draw some conclusions.

In appendix A we collect the relevant formulae of eight dimensional gauged supergrav-

ity. Finally, for completeness in appendix B a lagrangian approach to the round case is

presented.

2. D6-branes on the round 8d metric

The first case we will analyze corresponds to a D6-brane wrapping a three-cycle in such

a way that the corresponding eight dimensional metric ds2
8 contains a round three-sphere.

Accordingly, we will adopt the following ansatz for the metric:

ds2
8 = e2fdx2

1,3 + e2hdΩ2
3 + dr2 , (2.1)

where dx2
1,3 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2, f and h are functions of the radial

coordinate r and dΩ2
3 is the metric of the unit S3. It is convenient to parametrize this

three-sphere by means of a set of left invariant one-forms wi, i = 1, 2, 3, of the SU(2) group

manifold satisfying:

dwi =
1

2
εijkw

j ∧ wk . (2.2)

In terms of three Euler angles θ, ϕ and ψ, the wi’s are:

w1 = cos ϕdθ + sin θ sin ϕdψ ,

w2 = sin ϕdθ − sin θ cos ϕdψ ,

w3 = dϕ + cos θdψ , (2.3)

and dΩ2
3 is:

dΩ2
3 =

1

4

3
∑

i=1

(wi)2 . (2.4)

In this section we will study some supersymmetric configurations of eight dimensional

gauged supergravity [34] whose spacetime metric is of the form displayed in eq. (2.1). The

aspects of this theory which are relevant for our analysis have been collected in appendix A.

In the configurations studied in the present section, apart from the metric, we will only

need to excite the dilatonic scalar φ and the SU(2) gauge potential Ai
µ. Actually, we will

require that, when uplifted to eleven dimensions, the unwrapped part of the metric be that

corresponding to flat four dimensional Minkowski spacetime. This condition determines

the following relation between the function f and the field φ:

f =
φ

3
. (2.5)

(See the uplifting formulae in appendix A).
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We will assume that the non-abelian gauge potential Ai

µ has only non-vanishing com-

ponents along the directions of the S3. Actually, we will adopt an ansatz in which this

field, written as a one-form, is given by:

Ai =

(

g − 1

2

)

wi , (2.6)

with g being a function of the radial coordinate r. Notice that in ref. [25] the value g = 0

has been taken. The field strength corresponding to the potential (2.6) is:

F i = g′dr ∧ wi +
1

8
(4g2 − 1)εijkwj ∧ wk . (2.7)

By plugging our ansatz of eqs. (2.1), (2.5) and (2.6) in the lagrangian of eight dimensional

gauged supergravity, one arrives at an effective problem in which one can find a superpo-

tential and the corresponding first-order domain wall equations. This approach has been

followed in appendix B. In this section we will find this same first-order equations by an-

alyzing the supersymmetry transformations of the fermionic fields. As we will verify soon,

this last approach will give us the hints we need to extend our analysis to metrics more

general than the one written in eq. (2.1).

2.1 Susy analysis

A bosonic configuration of fields is supersymmetric iff the supersymmetry variation of the

fermionic fields, evaluated on the configuration, vanishes. In our case the fermionic fields

are two pseudo Majorana spinors ψλ and χi and their supersymmetry transformations are

given in appendix A (see eq. (A.6)). In the configurations considered in this section we are

not exciting any coset scalar and, therefore, we must take Pµij = 0 and Tij = δij . Moreover,

through this paper we shall use the following representation of the Dirac matrices:

Γµ = γµ ⊗ I , Γ̂i = γ9 ⊗ σi , (2.8)

where γµ are eight dimensional Dirac matrices, σi are Pauli matrices and γ9 = iγ0γ1 · · · γ7

(γ2
9 = 1). Actually, in what follows we shall denote by {Γ1,Γ2,Γ3} the Dirac matrices along

the sphere S3, by {Γ̂1, Γ̂2, Γ̂3} the corresponding matrices along the SU(2) group manifold,

whereas Γ7 ≡ Γr will correspond to the Γ-matrix along the radial direction.

The first-order BPS equations we are trying to find are obtained by requiring that

δχi = δψλ = 0 for some Killing spinor ε, which must satisfy some projection conditions.

First of all, we shall impose that:

Γ12ε = −Γ̂12ε , Γ23ε = −Γ̂23ε , Γ13ε = −Γ̂13ε . (2.9)

Notice that in eq. (2.9) the projections along the sphere S3 and the SU(2) group manifold

are related. Actually, only two of these equations are independent and, for example, the

last one can be obtained from the first two. Moreover, it follows from (2.9) that:

Γ1Γ̂1ε = Γ2Γ̂2ε = Γ3Γ̂3ε. (2.10)
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These projections are imposed by the ambient Calabi-Yau three-fold in which the three-

cycle lives, from the conditions Jab ε = Γab ε, where J is the Kähler form. By using

eqs. (2.9) and (2.10) to evaluate the right-hand side of (A.6), together with the ansatz for

the metric, dilaton and gauge field, one gets some equations which give the radial derivative

of φ, h and ε. Actually, one arrives at the following equation for the radial derivative of

the dilaton:

φ′ε =
3

8

[

4(1 − 4g2)eφ−2h − e−φ
]

ΓrΓ̂123ε + 3eφ−hg′Γ1Γ̂1ε , (2.11)

while the derivative of the function h is:

h′ε = 2ge−hΓ1Γ̂1ΓrΓ̂123ε −
1

8

[

12(1 − 4g2)eφ−2h + e−φ
]

ΓrΓ̂123ε − eφ−hg′Γ1Γ̂1ε . (2.12)

Moreover, the radial dependence of the spinor ε is determined by:

∂rε −
1

16

[

4(1 − 4g2)eφ−2h − e−φ
]

ΓrΓ̂123ε +
5

2
eφ−hg′Γ1Γ̂1ε = 0 . (2.13)

In order to proceed further, we need to impose some additional condition to the spinor ε. It

is clear from the right-hand side of eqs. (2.11)-(2.13) that we must specify the action on ε of

the radial projector ΓrΓ̂123. The choice made in ref. [25] was to take g = 0 and impose the

condition ΓrΓ̂123ε = −ε. It is immediate to verify that in this case our eqs. (2.11)–(2.13)

reduce to those obtained in ref. [25]. Here we will not take any a priori particular value of

ΓrΓ̂123ε. Instead we will try to determine it in general from eqs. (2.11)–(2.13). Notice that

in our approach g will not be constant and, therefore, we will have to find a differential

equation which determines it. It is clear from eq. (2.11) that our spinor ε must satisfy a

relation of the sort:

ΓrΓ̂123ε = −(β + β̃Γ1Γ̂1)ε , (2.14)

where β and β̃ are functions of the radial coordinate r, that can be easily extracted from

eq. (2.11), namely:

β = −8

3

φ′

4(1 − 4g2)eφ−2h − e−φ
,

β̃ = 8
eφ−hg′

4(1 − 4g2)eφ−2h − e−φ
. (2.15)

Equation (2.14) is the kind of radial projection we are looking for. We can get a consis-

tency condition for this projection by noticing that (ΓrΓ̂123)
2ε = ε. Using the fact that

{ΓrΓ̂123,Γ1Γ̂1} = 0, this condition is simply:

β2 + β̃2 = 1 . (2.16)

By using in eq. (2.16) the explicit values of β and β̃ given in eq. (2.15), one gets:

(φ′)2

9
+ e2φ−2h(g′)2 =

1

64

[

4(1 − 4g2)eφ−2h − e−φ
]2

, (2.17)
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which relates the radial derivatives of φ and g. Let us now consider the equation for h ′

written in eq. (2.12). By using the value of ΓrΓ̂123ε given in eq. (2.14), and separating the

terms with and without Γ1Γ̂1ε, we get two equations:

h′ = 2ge−hβ̃ +
1

8

[

12(1 − 4g2)eφ−2h + e−φ
]

β ,

2ge−hβ − 1

8

[

12(1 − 4g2)eφ−2h + e−φ
]

β̃ + eφ−hg′ = 0 . (2.18)

Moreover, by using in the latter the values of β and β̃ given in eq. (2.15), we get the

following relation between g′ and φ′:

g′ = −8g

3

e2hφ′

4(1 − 4g2)e2φ + e2h
. (2.19)

Plugging back this equation in the consistency condition (2.17), we can determine φ ′, g′, β

and β̃ in terms of φ, g and h. Moreover, by substituting these results on the first equation

in (2.18), we get a first-order equation for h. In order to write these equations, let us define

the function:

K ≡
√

(4(1 − 2g)2e2φ + e2h) (4(1 + 2g)2e2φ + e2h) . (2.20)

Then, the BPS equations are:

φ′ =
3

8

e−2h−φ

K

[

e4h − 16(1 − 4g2)2e4φ
]

,

h′ =
e−2h−φ

8K

[

e4h + 16(1 + 4g2)e2h+2φ + 48(1 − 4g2)2e4φ
]

,

g′ =
ge−φ

K

[

4(1 − 4g2)e2φ − e2h
]

. (2.21)

Notice that g′ = g = 0 certainly solves the last of these equations and, in this case, the first

two equations in (2.21) reduce to the ones written in ref. [25]. Moreover, the system (2.21) is

identical to that found in ref. [13] by means of the superpotential method (see appendix B).

The solutions of (2.21) have been obtained in ref. [13], and they depend on two parameters

(see below).

In order to have a clear interpretation of the radial projection we are using, let us

notice that, due to the constraint (2.16), we can represent β and β̃ as:

β = cos α , β̃ = sin α . (2.22)

Moreover, by substituting the value of φ′ and g′ given by the first-order equations (2.21)

into the definition of β and β̃ (eq. (2.15)), one arrives at:

tan α = 8g
eφ+h

4(1 − 4g2)e2φ + e2h
. (2.23)

Then, by using the representation (2.22), it is immediate to rewrite eq. (2.14) as:

ΓrΓ̂123ε = −eαΓ1Γ̂1ε . (2.24)
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Since {ΓrΓ̂123,Γ1Γ̂1} = 0, eq. (2.24) can be solved as:

ε = e−
1
2
αΓ1Γ̂1ε0 , (2.25)

where ε0 is a spinor satisfying the standard radial projection condition with α = 0, i.e.:

ΓrΓ̂123ε0 = −ε0 . (2.26)

To determine completely ε0 we must use eq. (2.13), which dictates the radial dependence

of the Killing spinor. Actually, by using the first-order equations (2.21) one can compute

∂rα from eq. (2.23). The result is remarkably simple, namely:

∂rα = 6eφ−hg′ . (2.27)

By using eqs. (2.24) and (2.27) in eq. (2.13), one can verify that ε0 satisfies the equation:

∂rε0 =
φ′

6
ε0 , (2.28)

which can be immediately integrated as:

ε0 = e
φ
6 η , (2.29)

with η being a constant spinor. Thus, after collecting all results, it follows that ε can be

written as:

ε = e
φ
6 e−

1
2
αΓ1Γ̂1η . (2.30)

The projections conditions satisfied by η are simply:

Γ12Γ̂12η = η , Γ23Γ̂23η = η , ΓrΓ̂123η = −η . (2.31)

In order to find out the meaning of the phase α, let us notice that, by using the

representation (2.8) for the Γ-matrices, one easily proves that:

Γx0···x3Γ123ΓrΓ̂123 = −1 . (2.32)

From eqs. (2.9) and (2.32), it is straightforward to verify that the radial projection (2.24)

can be written as:

Γx0···x3

(

cos αΓ123 − sin αΓ̂123

)

ε = ε , (2.33)

which is the projection corresponding to a D6-brane wrapped on a three-cycle, which is

non-trivially embedded in the two three-spheres, with α measuring the contribution of each

sphere. This equation must be understood as seen from the uplifted perspective. The case

α = 0 corresponds to the D6-brane wrapping a three-sphere that is fully contained in the

eight-dimensional spacetime where supergravity lives, and has been studied earlier [25].

Notice that α = π/2 is not a solution of the system. This is an important consistency

check as this would mean that the D6-brane is not wrapping a three-cycle contained in

the eight-dimensional spacetime and the twisting would make no sense. However, solutions

that asymptotically approach α = π/2 are possible in principle. In the next subsection we

will describe a quantity for which the rotation by the angle α plays an important role.
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2.2 The calibrating three-form

Given a solution of the BPS equations (2.21), one can get an eleven dimensional metric ds2
11

by means of the uplifting formula (A.4). The condition (2.5) ensures that the corresponding

eleven dimensional manifold is a direct product of four dimensional Minkowski space and

a seven dimensional manifold, i.e.:

ds2
11 = dx2

1,3 + ds2
7 = dx2

1,3 +

7
∑

A=1

(eA)2 , (2.34)

where we have written ds2
7 in terms of a basis of one-forms eA (A = 1, . . . , 7). It follows

from (A.4) that this basis can be taken as:

ei =
1

2
eh−φ

3 wi , (i = 1, 2, 3) ,

e3+i = 2e
2φ
3

(

w̃i +

(

g − 1

2

)

wi

)

, (i = 1, 2, 3) ,

e7 = e−
φ
3 dr . (2.35)

It is a well-known fact that a manifold of G2 holonomy is endowed with a calibrating three-

form Φ, which must be closed and co-closed with respect to the seven dimensional metric

ds2
7. We shall denote by φABC the components of Φ in the basis (2.35), namely:

Φ =
1

3!
φABCeA ∧ eB ∧ eC . (2.36)

The relation between Φ and the Killing spinors of the metric is also well-known. Indeed,

let ε̃ be the Killing spinor uplifted to eleven dimensions, which in terms of ε is simply

ε̃ = e−
φ
6 ε. Then, one has:

φABC = iε̃†ΓABC ε̃ . (2.37)

By using the relation between ε and the constant spinor η, one can rewrite eq. (2.37) as:

φABC = iη†e
1
2
αΓ1Γ̂1ΓABCe−

1
2
αΓ1Γ̂1η . (2.38)

Let us now denote by φ
(0)
ABC the above matrix element when α = 0, i.e.:

φ
(0)
ABC = iη†ΓABCη . (2.39)

It is not difficult to obtain the non-zero matrix elements (2.39). Recall that η is character-

ized as an eigenvector of the set of projection operators written in eq. (2.31). Thus, if O is

an operator which anticommutes with these projectors, Oη and η are eigenvectors of the

projectors with different eigenvalues and, therefore, they are orthogonal (i.e. η†Oη = 0).

Moreover, by using the projection conditions (2.31), one can relate the non-vanishing ma-

trix elements to η†Γ123η. If we normalize η such that iη†Γ123η = 1 and if î = i + 3 for

i = 1, 2, 3, one can easily prove that the non-zero φ
(0)
ijk’s are:

φ
(0)
ijk = εijk , φ

(0)

iĵk̂
= −εijk , φ

(0)

7iĵ
= δij , (2.40)
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as in [35]. By expanding the exponential in (2.38) and using (2.40), it is straightforward to

find the different components of Φ for arbitrary α. Actually, one can write the result as:

Φ = e7 ∧
(

e1 ∧ e4 + e2 ∧ e5 + e3 ∧ e6
)

+

+
(

e1 cos α + e4 sinα
)

∧
(

e2 ∧ e3 − e5 ∧ e6
)

+

+
(

− e1 sin α + e4 cosα
)

∧
(

e3 ∧ e5 − e2 ∧ e6
)

, (2.41)

which shows that the effect on Φ of introducing the phase α is just a (radial dependent)

rotation in the (e1, e4) plane (alternatively, the same expression can be written as a rotation

in the (e2, e5) or (e3, e6) plane). As mentioned above, Φ should be closed and co-closed:

dΦ = 0 , d ∗7 Φ = 0 , (2.42)

where ∗7 denotes the Hodge dual in the seven dimensional metric. There is an immedi-

ate consequence of this fact which we shall now exploit. Let us denote by p and q the

components of Φ along the volume forms of the two three spheres, i.e.:

Φ = pw1 ∧ w2 ∧ w3 + qw̃1 ∧ w̃2 ∧ w̃3 + · · · . (2.43)

From the condition dΦ = 0, it follows immediately that p and q must be constants of

motion. By plugging the explicit expression of the forms eA, given in eq. (2.35), on the

right-hand side of eq. (2.41), one easily gets p and q in terms of φ, h and g. The result is:

p =
1

8

[

e3h−φ − 12eh+φ(1 − 2g)2
]

cos α − 1

4
(1 − 2g)

[

3e2h − 4e2φ(1 − 2g)2
]

sin α ,

q = −8e2φ sin α . (2.44)

Notice that α = 0 implies q = 0 which is precisely the case studied in [25]. By explicit

calculation one can check that p and q are constants as a consequence of the BPS equations.

Actually, by using (2.21) one can show that, indeed, Φ is closed and co-closed as it should.

To finish this section, let us write down the general solution of the first-order sys-

tem (2.21), which was obtained in ref. [13]. This solution is expressed in terms of a new

radial variable ρ and of the two following functions Y (ρ) and F (ρ):

Y (ρ) ≡ ρ2 − 2(2p + q)ρ + 4p(p + q) ,

F (ρ) ≡ 3ρ4 − 8(2p + q)ρ3 + 24p(p + q)ρ2 − 16p2(p + q)2 . (2.45)

Notice that Y (ρ) and F (ρ) also depend on the two constants p and q. The seven dimensional

metric takes the form:

ds2
7 = F− 1

3 dρ2 +
1

4
F

2
3 Y −1(wi)2 + F− 1

3 Y

(

w̃i −
(

1

2
+

qρ

Y

)

wi

)2

. (2.46)

The analysis of the metrics (2.46) has been carried out in ref. [13]. It turns out that only

in three cases (p = 0, q = 0 and p = −q) the metric (2.46) is non-singular. The first two

cases are related by the so-called flop transformation, which is a Z2 action that exchanges

wi and w̃i, while the p = −q case is flop invariant. It is interesting to point out that, as

g → 0 when ρ → ∞, the gauge field (2.6) asymptotically approaches that used in [25] to

perform the twisting. This is in line with the fact that the twisting just fixes the value of

the gauge field at infinity.
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3. D6-branes on a squashed 8d metric

In this section we are going to generalize the analysis performed in section 2 to a much

more general situation, in which the eight dimensional metric takes the form:

ds2
8 = e

2φ
3 dx2

1,3 +
1

4
e2hi(wi)2 + dr2 . (3.1)

Notice that in the ansatz (3.1) we have already implemented the condition (2.5), which

ensures that we are going to have a direct product of four dimensional Minkowski space

and a seven dimensional manifold in the uplift to eleven dimensions. As in the previous

case, we are going to switch on a SU(2) gauge field potential with components along the

squashed S3. The ansatz we shall adopt for this potential is:

Ai = Giw
i , (3.2)

which depends on three functions G1, G2 and G3. It should be understood that there is

no sum on the right-hand side of eq. (3.2). Moreover, we shall excite coset scalars in the

diagonal and, therefore, the corresponding Li
α matrix will be taken as:

Li
α = diag(eλ1 , eλ2 , eλ3) , λ1 + λ2 + λ3 = 0 . (3.3)

The matrices Pµij and Qµij defined in appendix A (eq. (A.1) ) are easily evaluated from

eqs. (3.2) and (3.3). Written as differential forms, they are:

Pij + Qij =





dλ1 −A3eλ21 A2eλ31

A3eλ12 dλ2 −A1eλ32

−A2eλ13 A1eλ23 dλ3



 , (3.4)

where λij ≡ λi − λj and Pij (Qij) is the symmetric (antisymmetric) part of the matrix

appearing on the right-hand side of (3.4). Notice that our present ansatz depends on nine

functions, since there are only two independent λi’s (see eq. (3.3)). On the other hand, it

would be convenient in what follows to define the following combinations of these functions:

M1 ≡ eφ+λ1−h2−h3(G1 + G2G3) ,

M2 ≡ eφ+λ2−h1−h3(G2 + G1G3) ,

M3 ≡ eφ+λ3−h1−h2(G3 + G1G2) . (3.5)

3.1 Susy analysis

With the setup just described, and the experience acquired in the previous section, we

will now attack the problem of finding supersymmetric configurations for this more general

ansatz. As before, we must guarantee that δχi = δψλ = 0 for some spinor ε. We begin by

imposing again the angular projection condition (2.9). Then, the equation δχ1 = 0 yields:

(

1

2
λ′

1 +
1

3
φ′

)

ε = eφ+λ1−h1G′
1Γ1Γ̂1ε − 2

[

M1 −
1

16
e−φ(e2λ1 − e2λ2 − e2λ3)

]

ΓrΓ̂123ε −

−
[

e−h2G2 sinh λ13 + e−h3G3 sinhλ12

]

Γ1Γ̂1ΓrΓ̂123ε , (3.6)
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and, obviously, δχ2 = δχ3 = 0 give rise to other two similar equations which are obtained

by permutation of the indices (1, 2, 3) in eq. (3.6). Adding these three equations and using

eq. (2.10) and the fact that λ1 + λ2 + λ3 = 0, we get the following equation for φ′:

φ′ε = eφ
[

eλ1−h1G′
1 + eλ2−h2G′

2 + eλ3−h3G′
3

]

Γ1Γ̂1ε −

− 2

[

M1 + M2 + M3 +
1

16
e−φ

(

e2λ1 + e2λ2 + e2λ3

)

]

ΓrΓ̂123ε . (3.7)

It can be checked that this same equation is obtained from the variation of the gravitino

components along the unwrapped directions. Moreover, it follows from eq. (3.7) that

ΓrΓ̂123ε has the same structure as in eq. (2.14), where now β and β̃ are given by:

β =
8φ′

16(M1 + M2 + M3) + e−φ(e2λ1 + e2λ2 + e2λ3)
,

β̃ = − 8eφ(eλ1−h1G′
1 + eλ2−h2G′

2 + eλ3−h3G′
3)

16(M1 + M2 + M3) + e−φ(e2λ1 + e2λ2 + e2λ3)
. (3.8)

It is also immediate to see that in the present case β and β̃ must also satisfy the con-

straint (2.16). Thus, in this case we are going to have the same type of radial projection

as in the round metric of section 2. Actually, we shall obtain a set of first-order differential

equations in terms of β and β̃ and then we shall find some consistency conditions which,

in particular, allow to determine the values of β and β̃. From this point of view it is

straightforward to write the equation for φ′. Indeed, from the definition of β (eq. (3.8)),

one has:

φ′ =

[

2(M1 + M2 + M3) +
1

8
e−φ(e2λ1 + e2λ2 + e2λ3)

]

β . (3.9)

In order to obtain the equation for λ′
i and G′

i, let us consider again the equation derived

from the condition δχi = 0 (eq. (3.6)). Plugging the projection condition on the right-

hand side of eq. (3.6), using the value of φ′ displayed in eq. (3.9), and considering the

terms without Γ1Γ̂1, one gets the equation for λ′
1, namely:

λ′
1 =

4

3

[

2M1 − M2 −M3 −
1

8
e−φ

(

2e2λ1 − e2λ2 − e2λ3

)

]

β −

− 2
[

e−h2G2 sinh λ13 + e−h3G3 sinhλ12

]

β̃ . (3.10)

while the terms with Γ1Γ̂1 of eq. (3.6) yield the equation for G′
1:

eφ+λ1−h1G′
1 =

[

−2M1 +
1

8
e−φ(e2λ1 − e2λ2 − e2λ3)

]

β̃ −

−
[

e−h2G2 sinhλ13 + e−h3G3 sinhλ12

]

β . (3.11)

By cyclic permutation of eqs. (3.10) and (3.11) one obtains the first-order differential

equations of λ′
i and G′

i for i = 2, 3.
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It remains to obtain the equation for h′

i. With this purpose let us consider the super-

symmetric variation of the gravitino components along the sphere. One gets:

h′
1ε = −1

3
eφ

[

5eλ1−h1G′
1 − eλ2−h2G′

2 − eλ3−h3G′
3

]

Γ1Γ̂1ε −

− 1

3

[

2(M1 − 5M2 − 5M3) +
1

8
e−φ(e2λ1 + e2λ2 + e2λ3)

]

ΓrΓ̂123ε −

−
[

e2h1 − e2h2 − e2h3

eh1+h2+h3
− 2e−h1G1 cosh λ23

]

Γ1Γ̂1ΓrΓ̂123ε , (3.12)

and two other equations obtained by cyclic permutation. By considering the terms without

Γ1Γ̂1 in eq. (3.12) we get the desired first-order equation for h′
1, namely:

h′
1 =

1

3

[

2(M1 − 5M2 − 5M3) +
1

8
e−φ(e2λ1 + e2λ2 + e2λ3)

]

β −

−
[

e2h1 − e2h2 − e2h3

eh1+h2+h3
− 2e−h1G1 cosh λ23

]

β̃ . (3.13)

On the other hand, the terms with Γ1Γ̂1 of eq. (3.12) give rise to new equations for the

G′
i’s:

eφ
[

5eλ1−h1G′
1 − eλ2−h2G′

2 − eλ3−h3G′
3

]

=

=

[

2(M1 − 5M2 − 5M3) +
1

8
e−φ(e2λ1 + e2λ2 + e2λ3)

]

β̃ +

+ 3

[

e2h1 − e2h2 − e2h3

eh1+h2+h3
− 2e−h1G1 cosh λ23

]

β . (3.14)

This equation (and the other two obtained by cyclic permutation) must be compatible with

the equation for G′
i written in eq. (3.11). Actually, by substituting in eq. (3.14) the value

of G′
i given by eq. (3.11), and by combining appropriately the equations so obtained, we

arrive at three algebraic relations of the type:

Aiβ − Biβ̃ = 0 , (3.15)

where A1 and B1 are given by:

A1 = eh1−h2−h3 + eλ1−λ3−h2G2 + eλ1−λ2−h3G3 ,

B1 = −4M1 +
1

4
e−φ+2λ1 , (3.16)

while the values of Ai and Bi for i = 2, 3 are obtained from (3.16) by cyclic permutation.

Notice that the above relations do not involve derivatives of the fields and, in particular,

they allow to obtain the values of β and β̃. Indeed, by using the constraint β2 + β̃2 = 1,

and eq. (3.15) for i = 1, we get:

β =
B1

√

A2
1 + B2

1

, β̃ =
A1

√

A2
1 + B2

1

. (3.17)

– 13 –



JHEP01(2003)011
Moreover, it is clear from (3.15) that the Ai’s and Bi’s must satisfy the following consistency

conditions:

AiBj = AjBi , (i 6= j) . (3.18)

Equation (3.18) gives two independent algebraic constraints that the functions of our

generic ansatz must satisfy if we demand it to be a supersymmetric solution. Notice

that these constraints are trivially satisfied in the round case of section 2. On the other

hand, if we adopt the radial projection of refs. [25, 28], i.e. when β = 1 and β̃ = 0, they

imply that Ai = 0 (see eq. (3.15)), this leading precisely to the values of the SU(2) gauge

potential used in those references. Moreover, by using eq. (3.15), the differential equation

satisfied by the Gi’s can be simplified. One gets:

eφ+λ1−h1G1 =
1

2

[

eh1−h2−h3 + eλ3−λ1−h2G2 + eλ2−λ1−h3G3

]

β −

− e−φ

8

(

e2λ2 + e2λ3

)

β̃ , (3.19)

and similar expressions for G2 and G3.

Let us now parametrize β and β̃ as in eq. (2.22), i.e. β = cos α, β̃ = sin α. Then, it

follows from eq. (3.17) that one has:

tan α =
A1

B1
=

A2

B2
=

A3

B3
. (3.20)

Notice that by taking α = 0, eq. (3.19) precisely leads to the expression for the gauge

field in terms of scalar fields used in [28] to perform the twisting. Moreover, the radial

projection condition can be written as in eq. (2.24) and, thus, the natural solution to the

Killing spinor equations is just the one written in eq. (2.30), where η is a constant spinor

satisfying the conditions (2.31). To check that this is the case, one can plug the expression

of ε given in eq. (2.30) in the equation arising from the supersymmetric variation of the

radial component of the gravitino. It turns out that this equation is satisfied provided α

satisfies the equation:

∂rα = −
[

4
(

M1 + M2 + M3

)

+
1

4
e−φ

(

e2λ1 + e2λ2 + e2λ3

)

]

sin α . (3.21)

In general, this equation for α does not follow from the first-order equations and the

algebraic constraints we have found. Actually, by using the value of α given in eq. (3.20)

and the first-order equations to evaluate the left-hand side of eq. (3.21), we could derive

a third algebraic constraint. However, this new constraint is rather complicated. Happily,

we will not need to do this explicitly since eq. (3.21) will serve to our purposes.

3.2 The calibrating three-form

In order to find the calibrating three-form Φ in this case, let us take the following vierbein

basis:

ei =
1

2
ehi−

φ
3 wi , (i = 1, 2, 3) ,

e3+i = 2e
2φ
3

+λi

(

w̃i + Giw
i
)

, (i = 1, 2, 3) ,

e7 = e−
φ
3 dr , (3.22)
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which is the natural one for the uplifted metric. The different components of Φ can be

computed by using eq. (2.36) and it is obvious from the form of the projection that the

result is just the one given in eq. (2.41), where now α is given by eq. (3.20) and the one-forms

eA are the ones written in eq. (3.22). If, as in eq. (2.43), p and q denote the components

of Φ along the two three spheres, it follows from the closure of Φ that p and q should be

constants of motion. By plugging the expressions of the eA’s, taken from eq. (3.22), on the

right-hand side of eq. (2.41), one can find the explicit expressions of p and q. The result is:

p =
1

8

[

eh1+h2+h3−φ − 16eφ
(

eh1−λ1G2G3 + eh2−λ2G1G3 + eh3−λ3G1G2

)]

cos α +

+
1

2

[

eh2+h3+λ1G1 + eh1+h3+λ2G2 + eh1+h2+λ3G3 − 16e2φG1G2G3

]

sin α ,

q = −8e2φ sin α . (3.23)

It is a simple exercise to verify that, when restricted to the round case studied above, the

expressions of p and q given in eq. (3.23) coincide with those written in eq. (2.44). Moreover,

the proof of the constancy of p and q can be performed by combining appropriately the

first-order equations and the constraints. Actually, by using eq. (3.9) to compute the radial

derivative of q in eq. (3.23), it follows that the condition ∂rq = 0 is equivalent to eq. (3.21).

Although the proof of ∂rp = 0 is much more involved, one can demonstrate that p is indeed

constant by using the BPS equations and the constraints (3.18) and (3.21).

4. The Hitchin system

A simple counting argument can be used to determine the number of independent functions

left out by the constraints. Indeed, we have already mentioned that our ansatz depends

on nine functions. However, we have found two constraints in eq. (3.18) and one extra

condition which fixes ∂rα in eq. (3.21). It is thus natural to think that the number of

independent functions is six and, thus, in principle, one should be able to express the

metric and the BPS equations in terms of them. By looking at the complicated form of the

first-order equations and constraints one could be tempted to think that this is a hopeless

task. However, we will show that this is not the case and that there exists a set of variables,

which are precisely those introduced by Hitchin in ref. [17], in which the BPS equations

drastically simplify. These equations involve the constants p and q just discussed, together

with the components of the calibrating three-form Φ. Actually, following refs. [17, 16, 18],

we shall parametrize Φ as:

Φ = e7 ∧ ω + ρ , (4.1)

where the two-form ω is given in terms of three functions yi as:

ω =

√

y2y3

y1
w1 ∧ w̃1 +

√

y3y1

y2
w2 ∧ w̃2 +

√

y1y2

y3
w3 ∧ w̃3 , (4.2)

and ρ is a three-form which depends on another set of three functions xi, namely:

ρ = pw1 ∧ w2 ∧ w3 + qw̃1 ∧ w̃2 ∧ w̃3 +

+ x1

(

w1 ∧ w̃2 ∧ w̃3 − w2 ∧ w3 ∧ w̃1
)

+ cyclic . (4.3)
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Notice that the terms appearing in ω are precisely those which follow from our expres-

sion (2.41) for Φ. Moreover, by plugging on the right-hand side of eq. (2.41) the rela-

tion (3.22) between the one-forms eA and the SU(2) left invariant forms, one can find the

explicit relation between the new and old variables, namely:

y1 = e
2φ
3

+h2+h3−λ1 ,

x1 = −2
[

eφ+h1−λ1 cosα + 4e2φG1 sin α
]

, (4.4)

and cyclically in (1, 2, 3). Notice that the coefficients of w1 ∧ w̃2 ∧ w̃3 and of −w2 ∧w3 ∧ w̃1

in the expression (4.3) of ρ must be necessarily equal if Φ is closed. Actually, by computing

the latter in our formalism, we get an alternative expression for the xi’s. This other

expression is:

x1 = 2
[

eh3−λ3G2 + eh2−λ2G3

]

eφ cos α +

+

[

8e2φG2G3 −
1

2
eλ1+h2+h3

]

sin α , (4.5)

and cyclically in (1, 2, 3). As a matter of fact, these two alternative expressions for the

xi’s are equal as a consequence of the constraints (3.15). In fact, we can regard eqs. (3.15)

and (3.21) as conditions needed to ensure the closure of Φ. On the other hand, by using,

at our convenience, eqs. (4.4) and (4.5), one can prove the following useful relations:

x2x3 − px1

y1
=

1

4
e2h1−

2φ
3 + 4e

4φ
3

+2λ1G2
1 ,

x2
1 − x2

2 − x2
3 − pq

y1
= 8e

4φ
3

+2λ1G1 ,

x2x3 + qx1

y1
= 4e

4φ
3

+2λ1 , (4.6)

and cyclically in (1, 2, 3). As a first application of eq. (4.6), let us point out that, making

use of this equation, one can easily invert the relation (4.4). The result is:

e2φ =
1

8

(qx1 + x2x3)
1/2(qx2 + x1x3)

1/2(qx3 + x1x2)
1/2

√
y1y2y3

,

e2λ1 =
(y2y3)

1/3

(y1)2/3

(qx1 + x2x3)
2/3

(qx2 + x1x3)1/3(qx3 + x1x2)1/3
,

e2h1 = 2
(y2y3)

5/6

(y1)1/6

(qx2 + x1x3)
1/6(qx3 + x1x2)

1/6

(qx1 + x2x3)5/6
,

G1 =
1

2

x2
1 − x2

2 − x2
3 − pq

qx1 + x2x3
, (4.7)

and cyclically in (1, 2, 3). Moreover, in order to make contact with the formalism of refs. [17,

18], let us define now the following “potential”:

U ≡ p2q2 + 2pq(x2
1 + x2

2 + x2
3) + 4(p − q)x1x2x3 +

+ x4
1 + x4

2 + x4
3 − 2x2

1x
2
2 − 2x2

2x
2
3 − 2x2

3x
2
1 . (4.8)

– 16 –



JHEP01(2003)011
A straightforward calculation shows that U can be rewritten as:

U =
1

3
(x2

1 − x2
2 − x2

3 − pq)2 − 4

3
(x2x3 + qx1)(x2x3 − px1) +

+ cyclic permutations . (4.9)

By using (4.6) to evaluate the right-hand side of eq. (4.9), together with the definition of

the yi’s written in eq. (4.4), one easily verifies that U is given by:

U = −4y1y2y3 . (4.10)

It is important to stress the fact that in the general Hitchin formalism the relation (4.10) is

a constraint, whereas here this equation is just an identity which follows from the definitions

of p, q, xi and yi. Another important consequence of the identities (4.6) is the form of the

metric in the new variables. Indeed, it is immediate from eqs. (3.22) and (4.6) to see that

the seven dimensional metric ds2
7 takes the form:

ds2
7 = dt2 +

+
1

y1

[(

x2x3 − px1

)

(w1)2 +
(

x2
1 − x2

2 − x2
3 − pq

)

w1w̃1 +
(

x2x3 + qx1

)

(w̃1)2
]

+

+
1

y2

[(

x3x1 − px2

)

(w2)2 +
(

x2
2 − x2

3 − x2
1 − pq

)

w2w̃2 +
(

x3x1 + qx2

)

(w̃2)2
]

+

+
1

y3

[(

x1x2 − px3

)

(w3)2 +
(

x2
3 − x2

1 − x2
2 − pq

)

w3w̃3 +
(

x1x2 + qx3

)

(w̃3)2
]

,

(4.11)

where dt2 = e−2φ/3dr2.

It remains to determine the first-order system of differential equations satisfied by the

new variables. First of all, recall that, in the old variables, the BPS equations depend on

the phase α. Actually, from the expression of q (eq. (3.23)), and the first equation in (4.7),

one can easily determine sin α, whereas cos α can be obtained from the second equation

in (4.4). The result is:

sin α = −q

√
y1y2y2

(qx1 + x2x3)1/2(qx2 + x1x3)1/2(qx3 + x1x2)1/2
,

cos α = − 2x1x2x3 + q(x2
1 + x2

2 + x2
3) + pq2

2(qx1 + x2x3)1/2(qx2 + x1x3)1/2(qx3 + x1x2)1/2
. (4.12)

As a check of eq. (4.12) one can easily verify that sin2 α+cos2 α = 1 as a consequence of the

relation (4.10). It is now straightforward to compute the derivatives of xi and yi. Indeed,

one can differentiate eq. (4.4) and use eqs. (3.9), (3.10), (3.13), (3.19) and (3.21) to evaluate

the result in the old variables. This result can be converted back to the new variables by

means of eqs. (4.7) and (4.12). The final result of these calculations is remarkably simple,

namely:

ẋ1 = −
√

y2y3

y1
,

ẏ1 =
pqx1 + (p − q)x2x3 + x1(x

2
1 − x2

2 − x2
3)√

y1y2y3
, (4.13)
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and cyclically in (1, 2, 3). In eq. (4.13) the dot denotes derivative with respect to the

variable t defined after eq. (4.11). The first-order system (4.13) is, with our notations, the

one derived in refs. [17, 18]. Indeed, one can show that the equations satisfied by the xi’s

are a consequence of the condition dΦ = 0, whereas, if the seven dimensional Hodge dual

is computed with the metric (4.11), then d ∗7 Φ = 0 implies the first-order equations for

the yi’s. Therefore, we have shown that eight dimensional gauged supergravity provides

an explicit realization of the Hitchin formalism for general values of the constants p and

q. Notice that a non-zero phase α is needed in order to get a system with q 6= 0. Recall

(see eq. (2.33)) that the phase α parametrizes the tilting of the three cycle on which the

D6-brane is wrapped with respect to the three sphere of the eight dimensional metric.

Notice that the analysis of [28] corresponds to the case q = α = 0.

Let us finally point out that the first-order equations (4.13) are invariant if we change

the constants (p, q) by (−q,−p). In the metric (4.11) this change is equivalent to the

exchange of wi and w̃i, i.e. of the two S3 of the principal orbits of the cohomogeneity one

metric (4.11). As mentioned above, this is the so-called flop transformation. Thus, we have

proved that:

wi ↔ w̃i ⇐⇒ (p, q) ↔ (−q,−p) . (4.14)

Notice that the three-form Φ given in eqs. (4.1)-(4.3) changes its sign when both (w i, w̃i)

and (p, q) are transformed as in eq. (4.14).

5. Some particular cases

With the kind of ansatz we are adopting for the eight-dimensional solutions, the corre-

sponding eleven dimensional metrics are of the type:

ds2
11 = dx2

1,3 + B2
i (wi)2 + D2

i (w̃
i + Giw

i)2 + dt2 , (5.1)

where the coefficients Bi, Di and the variable t are related to eight dimensional quantities

as follows:

B2
i =

1

4
e2hi−

2φ
3 , D2

i = 4e
4φ
3

+2λi , dt2 = e−
2φ
3 dr2 . (5.2)

Moreover, we have found that, for a supersymmetric solution, the nine functions appearing

in the metric are not independent but rather they are related by some algebraic constraints

which are, in general, quite complicated. Notice that, in this case, the gauged supergravity

approach forces the six function ansatz, this possibly clarifying the reasons behind this a

priori requirement in previous cases in the literature. To illustrate this point, let us write

eq. (3.18) in terms of Bi, Di and Gi. One gets:
[

B1D
2
2D1G2 − (1 ↔ 2)

]

D2
3(1 − G2

3) =

= B3D2

[

B1B3D1D2G2 + D2
1D2D3G

2
1 + B2

1D2D3

]

− (1 ↔ 2) , (5.3)

and cyclically in (1, 2, 3). In addition, we must ensure that eq. (3.21) is also satisfied.

Despite the terrifying aspect of eq. (5.3), it is not hard to find expression for, say, G2

and G3 in terms of the remaining functions. Moreover, we will be able to find some

particular solutions, which correspond to the different cohomogeneity one metrics with S 3×
S3 principal orbits and SU(2)× SU(2) isometry which have been studied in the literature.
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5.1 The q = 0 solution

The simplest way of solving the constraints imposed by supersymmetry is by taking q = 0.

A glance at the second equation in (3.23) reveals that in this case sin α = 0 and, thus,

β = 1, β̃ = 0. Notice, first of all, that this is a consistent solution of eq. (3.21). Moreover,

it follows from eq. (3.15) that one must have:

Ai = 0 . (5.4)

By combining the three conditions (5.4) it is easy to find the values of the gauge field

components Gi in terms of the other functions Bi and Di [28]. One gets:

G1 =
1

2

D2D3

B2B3

[

(

B1

D1

)2

−
(

B2

D2

)2

−
(

B3

D3

)2
]

, (5.5)

and cyclically in (1, 2, 3), which is precisely the result of [28]. This is the solution of the

constraints we were looking for. One can check that, assuming that the Gi’s are given

by eq. (5.5), then eq. (3.19) for G′
i is satisfied if eqs. (3.9), (3.10) and (3.13) hold. Thus,

eq. (5.5) certainly gives a consistent truncation of the first-order differential equations. On

the other hand, by using the value of the Gi’s given in eq. (5.5), one can eliminate them

and obtain a system of first-order equations for the remaining functions Bi and Di. These

equations are:

Ḃ1 = − D2

2B3
(G2 + G1G3) −

D3

2B2
(G3 + G1G2) ,

Ḋ1 =
D2

1

2B2B3
(G1 + G2G3) +

1

2D2D3
(D2

2 + D2
3 −D2

1) , (5.6)

together with the other permutations of the indices (1, 2, 3). In (5.6) the Gi’s are are the

functions of Bi and Di displayed in eq. (5.5). The constant p can be immediately obtained

from (3.23), namely:

p = B1B2B3 − B1D2D3G2G3 − B2D1D3G1G3 − B3D1D2G1G2 . (5.7)

Let us now give the Hitchin variables in this case. By taking α = 0 on the right-hand

side of (4.4) and using the relation (5.2), one readily arrives at:

x1 = −B1D2D3 , y1 = B2B3D2D3 . (5.8)

The values of the other xi and yi are obtained by cyclic permutation. As a verification of

these expressions, it is not difficult to demonstrate, by using eq. (5.6), that the functions

xi and yi of eq. (5.8) satisfy the first-order equations (4.13) for q = 0. Finally, let us point

out that, by means of a flop transformation, one can pass from the q = 0 metric described

above to a metric with p = 0.
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5.2 The flop invariant solution

It is also possible to solve our constraints by requiring that the metric be invariant under

the Z2 flop transformation wi ↔ w̃i. It follows from eq. (4.14) that, in this case, we must

necessarily have p = −q. Moreover, it is also clear that the forms wi and w̃i must enter

the metric in the combinations (wi + w̃i)2 and (wi − w̃i)2, which are the only quadratic

combinations which are invariant under the flop transformation. Thus the metric we are

seeking must be of the type:

ds2
11 = dx2

1,3 + a2
i (w

i − w̃i)2 + b2
i (w

i + w̃i)2 + dt2 , (5.9)

where ai and bi are functions which obey some system of first-order differential equations

to be determined. In general [13], a metric of the type written in eq. (5.1) can be put in

the form (5.9) only if Gi, Bi and Di satisfy the following relation:

G2
i = 1 − B2

i

D2
i

. (5.10)

It is easy to show that our constraints are solved for Gi given as in eq. (5.10). Indeed, after

some calculations, one can rewrite the constraint (3.18) for i = 1 and j = 2 as:

(

1 − 1

16
e−2φ+2h1−2λ1 − G2

1

)

e−2λ3 −
(

1 − 1

16
e−2φ+2h2−2λ2 − G2

2

)

e−2λ3 +

+

(

1 − 1

16
e−2φ+2h3−2λ3 − G2

3

)

[

G2e
h1−h3+λ2 − G1e

h2−h3+λ1

]

= 0 , (5.11)

which is clearly solved for:

G2
i = 1 − 1

16
e−2φ+2hi−2λi . (5.12)

Similarly, one can verify that eq. (5.12) also solves eq. (3.18) for the remaining values of

i and j. After taking into account the identifications (5.2), we easily conclude that the

solution (5.12) coincides with the condition (5.10) and, thus, it corresponds to Z2 invariant

metric of the type (5.9). Moreover, it can be checked that the relation (5.12) gives a

consistent truncation of the first-order differential equations found in section 3 and that

eq. (3.21) is also satisfied. On the other hand, the identification of the ai and bi functions

with the ones corresponding to 8d gauged supergravity is easily established by comparing

the uplifted metric with (5.9), namely:

dr = e
φ
3 dt ,

e2hi−
2φ
3 = 16

a2
i b

2
i

a2
i + b2

i

,

e
4φ
3

+2λi =
1

4
(a2

i + b2
i ) . (5.13)

This relation allows to obtain φ, λi and hi in terms of ai and bi:

e2φ =
1

8

∏

i

(a2
i + b2

i )
1
2 ,
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e2λi =

a2
i + b2

i
∏

j(a
2
j + b2

j)
1
3

,

e2hi = 8
a2

i b
2
i

a2
i + b2

i

∏

j

(a2
j + b2

j )
1
6 , (5.14)

while Gi in terms of the ai and bi is given by:

Gi =
b2
i − a2

i

b2
i + a2

i

. (5.15)

The inverse relation is also useful:

a2
i = 2e

4φ
3

+2λi(1 − Gi) , b2
i = 2e

4φ
3

+2λi(1 + Gi) , (5.16)

where Gi is the function of φ, hi and λi written in eq. (5.12). By using eqs. (5.14) and (5.15)

one can obtain the values of cos α and sin α for this case. One gets:

cos α =
b1a2a3 + a1b2a3 + a1a2b3 − b1b2b3

√

(a2
1 + b2

1)(a
2
2 + b2

2)(a
2
3 + b2

3)
,

sin α =
a1b2b3 + b1a2b3 + b1b2a3 − a1a2a3

√

(a2
1 + b2

1)(a
2
2 + b2

2)(a
2
3 + b2

3)
. (5.17)

Moreover, by differentiating eq. (5.16) and using the first-order equations of section 3,

together with eqs. (5.14) and (5.17), one can find the BPS equations in the ai and bi

variables. They are:

ȧ1 = − a2
1

4a2b3
− a2

1

4a3b2
+

a2

4b3
+

b2

4a3
+

a3

4b2
+

b3

4a2
,

ḃ1 = − b2
1

4a2a3
+

b2
1

4b2b3
− b2

4b3
+

a2

4a3
− b3

4b2
+

a3

4a2
, (5.18)

and cyclically for the other ai’s and bi’s. These are precisely the equations found in ref. [12]

for this type of metrics. Moreover, it is now straightforward to compute the constants p

and q in this case. Indeed, by substituting eqs. (5.14), (5.15) and (5.17) on the right-hand

side of eq. (3.23), one easily proves that:

p = −q = a1b2b3 + b1a2b3 + b1b2a3 − a1a2a3 . (5.19)

Similarly, from eq. (4.4) one can find the Hitchin variables in terms of the ai’s and bi’s.

The result for x1 and y1 is:

x1 = a1b2b3 − b1a2b3 − b1b2a3 − a1a2a3 ,

y1 = 4a2a3b2b3 , (5.20)

while the expressions of x2, x3, y2 and y3 are obtained from (5.20) by cyclic permutations.
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5.3 The conifold-unification metrics

There exist a class of G2 metrics with S3 × S3 principal orbits which have an extra U(1)

isometry and generic values of p and q. They are the so-called conifold-unification metrics

and they were introduced in ref. [14] as a unification, via M-theory, of the deformed and

resolved conifolds. Following ref. [14], let us parametrize them as:

ds2
7 = a2

[(

w̃1 + Gw1
)2

+
(

w̃2 + Gw2
)2]

+ b2
[(

w̃1 − Gw1
)2

+
(

w̃2 − Gw2
)2]

+

+ c2
(

w̃3 − w3
)2

+ f2
(

w̃3 + G3w
3
)2

+ dt2 . (5.21)

It is clear that, in order to obtain in our eight-dimensional supergravity approach a metric

such as the one written in eq. (5.21), one must take h1 = h2, λ1 = λ2 = −λ3/2 = λ

and G1 = G2 in our general formalism. Then, it is an easy exercise to find the gauged

supergravity variables in terms of the functions appearing in the ansatz (5.21). One has:

eφ =
1

2
√

2

(

a2 + b2
)

1
2
(

f2 + c2
)

1
4
,

eλ =
(

a2 + b2
)

1
6
(

f2 + c2
)− 1

6
,

eh1 = 2
√

2abG
(

a2 + b2
)− 1

3
(

f2 + c2
)

1
12

,

eh3 =
√

2fc(1 + G3)
(

a2 + b2
)

1
6
(

f2 + c2
)− 5

12
,

G1 = G a2 − b2

a2 + b2
,

G3 =
G3f

2 − c2

f2 + c2
. (5.22)

With the parametrization given above, it is not difficult to solve the constraints (3.18).

Actually, one of these constraints is trivial, while the other allows to obtain G3 in terms of

the other variables, namely:

G3 = G2 +
c(a2 − b2)(1 − G2)

2abf
. (5.23)

The relation (5.23), with a → −a, is precisely the one obtained in ref. [14]. One can also

prove that eq. (5.23) solves eq. (3.21). Actually, the phase α in this case is:

cos α =
2abc + (b2 − a2)f

(a2 + b2)
√

c2 + f2
, sin α =

2abf + (a2 − b2)c

(a2 + b2)
√

c2 + f2
. (5.24)

With all these ingredients it is now straightforward, although tedious, to find the first-

order equations for the five independent functions of the ansatz (5.21). The result coincides

again with the one written in ref. [14], after changing a → −a, and is given by:

ȧ =
c2(b2 − a2) + [4a2(b2 − a2) + c2(5a2 − b2) − 4abcf ]G2

16a2bcG2
,
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ḃ =

c2(a2 − b2) + [4b2(a2 − b2) + c2(5b2 − a2) + 4abcf ]G2

16ab2cG2
,

ċ = −c2 + (c2 − 2a2 − 2b2)G2

4abG2
,

ḟ = −
(a2 − b2)

[

4abf 2G2 + c(a2f − b2f − 4abc)(1 − G2)
]

16a3b3G2
,

Ġ =
c(1 − G2)

4abG . (5.25)

Furthermore, the constants p and q are also easily obtained, with the result:

p = (a2 − b2)cG2 + 2abfG3G2 ,

q = (b2 − a2)c − 2abf , (5.26)

while the Hitchin variables are:

x1 = x2 = −(a2 + b2)cG , x3 = (a2 − b2)c − 2abfG3 ,

y1 = y2 = 2abcfG(1 + G3) , y3 = 4a2b2G2 . (5.27)

Equations (5.26) and (5.27) are again in agreement with those given in ref. [14], after

changing a by −a as before.

6. Summary and conclusions

In this paper we have studied the supersymmetric configurations of eleven dimensional

supergravity which are the direct product of Minkowski four dimensional spacetime and

a cohomogeneity one seven dimensional manifold of G2 holonomy with S3 × S3 principal

orbits. These configurations are obtained by uplifting to eleven dimensions some solutions

of eight dimensional gauged supergravity which preserve four supersymmetries and satisfy

a system of first-order BPS equations. They can be interpreted as being originated by

D6-branes wrapping a supersymmetric three cycle which corresponds to a domain wall in

eight dimensional gauged supergravity.

The supersymmetry of the solutions is guaranteed by the BPS equations which, once a

careful adjustment of the spin connection and the SU(2) gauge field of the eight-dimensional

theory has been made, are the conditions required to have Killing spinors. This adjust-

ment is what is known as the topological twist and is directly related to the projection

conditions imposed to the Killing spinors. In this paper we have shown how to generalize

this projection with respect to the one used up to now. This generalization amounts to the

introduction of a phase α in the radial projection of the Killing spinor and, correspondingly,

the twist is implemented by a non-abelian gauge field which is not fixed a priori (as in the

previous approaches in the literature) but determined by a first-order differential equation.

This gauge field encodes the non trivial fibering of the two three spheres in the special

holonomy manifold, while the corresponding radial projection determines the wrapping of
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the D6-brane in the supersymmetric three cycle. Actually we have seen that, for non-zero

α, the three cycle on which the D6-brane is wrapped has components along the two S 3’s

(see eq. (2.33)).

A careful analysis of the conditions imposed by supersymmetry has revealed us that,

for a general ansatz as in eqs. (3.1)–(3.3), some algebraic constraints have to be imposed

to the functions of the ansatz. We have verified that all metrics studied in the literature

are particular solutions of our constraints and, in fact, we have found a map between

our system and the one introduced by Hitchin. In particular we have demonstrated that,

contrary to the generalized believe, the metrics with q 6= 0 can be obtained within the

8d gauged supergravity approach. Our formalism is general and systematic and does not

assume any particular form of the seven-dimensional metric.

There are other instances on which the kind of generalized twist introduced here can

also be studied, the most obvious of them being the cases of D6-branes wrapping two and

four cycles. In the former situation we would have to deal with Calabi-Yau manifolds,

whereas when the D6-branes wrap a four cycle the special holonomy manifold would be

eight dimensional and would have Spin(7) or SU(4) holonomy depending on whether the

cycle is coassociative or Kähler. This would be a powerful technique to seek for complete

metrics for these special holonomy manifolds. It would be also interesting to analyze the

ten dimensional supergravity solutions which correspond to fivebranes wrapping two and

three cycles. The relevant gauged supergravity for these cases lives in seven dimensions.

Actually, an implementation of the twisting similar to the one introduced here was used

in [27] to obtain the Maldacena-Núñez solution [23] for the supergravity dual of N = 1

super Yang-Mills theory.

It would be interesting to study the effect of turning on fluxes in this framework, ex-

tending previous results in refs. [30, 32]. The generalization of the twisting seems general

enough so as to deserve a more careful study in many lower dimensional gauged supergravi-

ties. In particular, it would be interesting to seek for more solutions that do not correspond

to the near horizon limit of wrapped D-branes. It is intriguing, for example, to see whether

or not the full flat D-brane solution (i.e. without the near horizon limit being taken on

it, such as, for example, the Taub-NUT metric for the D6-brane) can be obtained within

lower dimensional gauged supergravity.

We are currently working on these issues and we hope to report on them in a near

future.
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A. D=8 gauged supergravity

The maximal gauged supergravity in eight dimensions was obtained in [34] by means of a

Scherk-Schwarz [36] reduction of eleven dimensional supergravity on a SU(2) group man-

ifold. In the bosonic sector the field content of this theory includes the metric gµν , a

dilatonic scalar φ, five scalars parametrized by a 3 × 3 unimodular matrix Lα
i which takes

values in the coset SL(3, R)/SO(3) and a SU(2) gauge potential Ai
µ. In the fermionic sec-

tor there are two pseudo Majorana spinors ψµ (the gravitino) and χi (the dilatino). The

kinetic energy of the coset scalars Lα
i is given in terms of the symmetric traceless matrix

Pµij , defined through the expression:

Pµij + Qµij = Lα
i (∂µδβ

α − εαβγAγ
µ)Lβj , (A.1)

where Qµij is defined as the antisymmetric part of the right-hand side of eq. (A.1). For

convenience we are setting in (A.1), and in what follows, the SU(2) coupling constant

to one. Moreover, the potential energy of the coset scalars is governed by the so-called

T -tensor, T ij , and by its trace T , which are defined as:

T ij = Li
αLj

βδαβ , T = δijT
ij . (A.2)

Let F i
µν denote the field strength of the SU(2) gauge potential Ai

µ. Then, the lagrangian

for the bosonic fields listed above is:

L =
√−g(8)

[

1

4
R − 1

4
e2φF i

µνFµνi − 1

4
PµijP

µij − 1

2
∂µφ∂µφ −

− 1

16
e−2φ

(

TijT
ij − 1

2
T 2

)]

. (A.3)

For any solution of the equations of motion derived from (A.3), one can write an eleven

dimensional metric which solves the equations of D = 11 supergravity. The corresponding

uplifting formula is:

ds2
11 = e−

2
3
φds2

8 + 4e
4
3
φ

(

Ai +
1

2
Li

)2

, (A.4)

where Li is defined as:

Li = 2w̃αLi
α , (A.5)

with wi being left invariant forms of the SU(2) group manifold.

We are interested in bosonic solutions of the equations of motion which are supersym-

metric. For this kind of solutions, the supersymmetric variations of the fermionic fields

vanish for some Killing spinor ε. In general, the fermionic fields transform under super-

symmetry as:

δψλ = Dλε +
1

24
eφF i

µν Γ̂i(Γ
µν
λ − 10δµ

λΓν)ε − 1

288
e−φεijkΓ̂

ijkΓλTε ,

δχi =
1

2

(

Pµij +
2

3
δij∂µφ

)

Γ̂jΓµε − 1

4
eφFµνiΓ

µνε − 1

8
e−φ

(

Tij −
1

2
δijT

)

εjklΓ̂klε , (A.6)
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where the Γ̂i’s are the Dirac matrices along the SU(2) group manifold and Dµε is the

covariant derivative of the spinor ε, given by:

Dµε =
(

∂µ +
1

4
ωab

µ Γab +
1

4
QµijΓ̂

ij
)

ε , (A.7)

with ωab
µ being the components of the spin connection.

B. Lagrangian approach to the round metric

In this appendix we are going to derive the first-order equations (2.21) by finding a super-

potential for the effective lagrangian Leff in eight dimensional supergravity. The first step

in this approach is to obtain the form of Leff for the ansatz given in eqs. (2.1) and (2.6).

Actually, the expression of Leff can be obtained by substituting (2.1) and (2.6) into the

lagrangian given by eq. (A.3). Indeed, one can check that the equations of motion of eight

dimensional supergravity can be derived from the following effective lagrangian:

Leff = e4f+3h

[

2(f ′)2 + (h′)2 − 1

3
(φ′)2 − 4e2φ−2h(g′)2 + 4f ′h′ +

+ e−2h +
1

16
e−2φ − (4g2 − 1)2e2φ−4h

]

, (B.1)

together with the zero-energy condition. In the equations obtained from Leff it is consistent

to take f = φ/3, which we will do from now on. Next, let us introduce a new set of functions:

a = 2e
2φ
3 , b =

1

2
eh−φ

3 , (B.2)

and a new variable η, defined as:
dr

dη
= e

4φ
3

+3h . (B.3)

The effective lagrangian in these new variables has the kinetic term:

T =

(

ȧ

a

)2

+

(

ḃ

b

)2

+ 3
ȧḃ

ab
− 1

4

a2

b2

(

ġ
)2

, (B.4)

where the dot denotes derivative with respect to η. The potential in Leff is:

V =
a6b6

2

[

(1 − 4g2)2
a2

32b4
− 1

2a2
− 1

2b2

]

. (B.5)

The superpotential for T −V in the variables just introduced has been obtained in ref. [13],

starting from eleven dimensional supergravity. So, we shall follow here the same steps as

in ref. [13] and define α1 = log a, α2 = log b and α3 = log g. Then, the kinetic energy T

can be rewritten as:

T =
1

2
gij

dαi

dη

dαj

dη
, (B.6)
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where gij is the matrix:

gij =





2 3 0

3 2 0

0 0 − a2

2b2



 . (B.7)

The superpotential W for this system must satisfy:

V = −1

2
gij ∂W

∂αi

∂W

∂αj
, (B.8)

where gij is the inverse of gij and V has been written in eq. (B.5). By using the values of

gij in (B.7), one can write explicitly the relation between V and W as:

V =
1

5
a2

(

∂W

∂a

)2

+
1

5
b2

(

∂W

∂b

)2

− 3

5
ab

∂W

∂a

∂W

∂b
+

b2

a2

(

∂W

∂g

)2

. (B.9)

Moreover, it is not difficult to verify, following again ref. [13], that W can be taken as:

W =
1

8
a2b

√

(a2(1 − 2g)2 + 4b2) (a2(1 + 2g)2 + 4b2) . (B.10)

The first-order equations associated to the superpotential W are:

dαi

dη
= gij ∂W

∂αj
. (B.11)

By substituting the expressions of W and gij on the right-hand side of eq. (B.11), and

by writing the result in terms of the variables used in section 2, one can check that the

system (B.11) is the same as that written in eq. (2.21).
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[14] M. Cvetič, G.W. Gibbons, H. Lu and C.N. Pope, A G2 unification of the deformed and

resolved conifolds, Phys. Lett. B 534 (2002) 172 [hep-th/0112138].
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