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Abstract

We derive the noncommutative Chern–Simons action induced by Dirac fermions coupled to a background gauge field, for
the fundamental, antifundamental, and the adjoint representation. We discuss properties of the noncommutative Chern–Simons
action showing in particular that the Seiberg–Witten formula maps it into the standard commutative Chern–Simons action.
 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Recent results in noncommutative geometry and
string theory [1–3], revealed the interest on its own
right for studying different field theories like Yang–
Mills, λφ4, QED, Chern–Simons, Wess–Zumino theo-
ries and two-dimensional models, in noncommutative
space [4–23]. In this respect, it is the purpose of this
Letter to analyse different aspects of the noncommuta-
tive Chern–Simons (CS) action. First, we discuss how
the parity anomaly in a 2 + 1 massive fermion model
induces a Chern–Simons term (as originally observed
in [11] for the massless case). Then, we discuss rele-
vant properties of the non-commutative CS action, its
relation with the chiral Wess–Zumino–Witten model
and its dependence on the noncommutative parame-
ter θµν .

Let us start by establishing our conventions. The
∗-product for fields is defined by

(1)
(
f̂ ∗ ĝ)(x)= e

i
2 θµν∂ξµ ∂ζν f̂ (x + ξ)ĝ(x + ζ )

∣∣
ξ=ζ=0
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and the Moyal brackets as

(2)
{
f̂ (x), ĝ(x)

}= f̂ (x) ∗ ĝ(x)− ĝ(x) ∗ f̂ (x).
We indicate with a hat functions which have to be
multiplied using the ∗-product. The U(N) gauge-
group elements are defined by

(3)ĝ(x)= eiα̂(x)∗ = 1 + iα̂(x)− 1
2
α̂(x) ∗ α̂(x)+ · · · ,

where α̂(x) is a Lie-algebra valued function of space–
time. Gauge fields in the Lie algebras of U(N)

transform according to

Âµ(x)→ ĝ(x) ∗ Âµ(x) ∗ ĝ−1(x)

(4)− i

e
ĝ(x) ∗ ∂µĝ−1(x)

with the field strength defined as

(5)F̂µν = ∂µÂν − ∂νÂµ + ie
{
Âµ, Âν

}
.

When acting over fermion fields ψ̂ , even in the U(1)
case, there are three possible representations of the
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gauge group action

(6)

ψ̂(x)→



ĝ(x) ∗ ψ̂(x),
fundamental representation “f ”,

ψ̂(x) ∗ ĝ−1(x),
anti-fundamental representation “f̄ ”,

ĝ(x) ∗ ψ̂(x) ∗ ĝ−1(x),
adjoint representation “ad”.

Accordingly, the covariant derivative acting on ψ is
defined as

(7)D̂µψ̂(τ, x)=


∂µψ̂ + ieÂµ ∗ ψ̂, “f ”,

∂µψ̂ − ieψ̂ ∗ Âµ, “f̄ ”,

∂µψ̂ + ie
{
Âµ, ψ̂

}
, “ad”.

We write the action for massive fermions, coupled to
a gauge field, in 2 + 1 non-commutative space as

(8)S
(
Â;m)=

∫
d3x ¯̂

ψ(x) ∗ (i/̂D−m
)
ψ̂(x),

and define the effective action Γ (Â;m) trough

(9)eiΓ (Â;m) =Z
(
Â;m)=

∫
Dψ̂D ¯̂

ψ eiS(Â;m).

2. Induced Chern–Simons term

Before studying some specific properties of non-
commutative Chern–Simons action, let us describe
how a parity violating Chern–Simons term is induced
by fluctuations of massive non-commutative fermions
fields, exactly as it happens in the commutative case
[20]. We shall just concentrate in the parity odd part
of the effective action Γodd, thus disregarding parity
conserving contributions.

2.1. Fundamental and anti-fundamental
representations

The calculation of the effective action for fermions
in the fundamental and the anti-fundamental represen-
tations gives the same answer. We shall describe first
the case of the fundamental representation. As in the
original calculation in [20], one obtains the contribu-
tion to Γodd(Â;m) from the vacuum polarization and

the triangle graphs

iΓodd
[
Â;m]

(10)

=
(

1
2

Tr
∫

d3p

(2π)3
Âµ(p)Π

µν(p;m)Âν(−p)

+ 1
3

Tr
∫

d3p

(2π)3
d3q

(2π)3
Γ µνρ(p, q;m)

× Âµ(p)Âν(q)Âρ(−p− q)

)∣∣∣∣
odd
.

Here Tr represents the trace over the U(N) algebra
generators, with

Πµν(p;m)

(11)

= −e2
∫

d3k

(2π)3
tr
[
γ µ

/k −m

k2 −m2 γ
ν /k + /p−m

(k + p)2 −m2

]
,

Γ µνρ(p, q;m)
= e3 exp

(
− i

2
pλθ

λδqδ

)

(12)

×
∫

d3k

(2π)3
tr
[
γ µ

(/k −m)

k2 −m2 γ
ν (/k − /q −m)

(k − q)2 −m2

× γ ρ
(/k + /p−m)

(k + p)2 −m2

]
.

As first observed in [11] for massless fermions, there
are no nonplanar contributions to the parity odd
sector of the effective action, the only modification
arising from noncommutativity is the θ -dependent
phase factor in Γ µνρ , associated to external legs in
the cubic term, which is nothing but the star product
in configuration space. The result for Γodd(Â;m)
is analogous to the commutative one except that the
star ∗-product replaces the ordinary product.

Regularization of the divergent integrals (11) and
(12) can be achieved by introducing in the original
action (8), bosonic-spinor Pauli–Villars fields with
mass M . These fields give rise to additional diagrams,
identical to those of Eq. (10), except that the regulating
massM appears in place of the physical massm. Since
we are interested in the parity violating part of the
effective action, we keep only the parity-odd terms in
(11) and (12) (and in the corresponding regulator field
graphs). To leading order in ∂/m, the gauge-invariant
parity violating part of the effective action is, for the
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fundamental representation, given by

Γ
f

odd
(
Â,m

)= 1
2

(
m

|m| + M

|M|
)
ŜCS

(
Â
)+O

(
∂2/m2)

(13)= ±ŜCS
(
Â
)+O

(
∂2/m2)

with

ŜCS
(
Â
)

(14)

= e2

4π

∫
d3x εµνρ

× tr
(
Âµ ∗ ∂νÂρ + 2ie

3
Âµ ∗ Âν ∗ Âρ

)
.

As it is well known, the relative sign of the fermion
and regulator contributions depends on the choice of
the Pauli–Villars regulating Lagrangian (of course the
divergent parts should cancel out independently of this
choice). In the first line of (13) we have made a choice
such that the two contributions add to give the known
Chern–Simons result of the second line. Note that even
in the Abelian case, the Chern–Simons action contains
a cubic term (analogous to that arising in the ordinary
non-Abelian case).

As expected, the effective action is gauge invariant
even under large gauge transformations. This is due
to the fact that we have taken into account both
parity-violating sources: that originated in the (parity
non-invariant) fermion mass term and that related
to the regularization prescription (which requires the
introduction of the mass M).

As advanced, the parity odd part of the effective ac-
tion for fermions in the anti-fundamental representa-
tion gives the same answer. There is a change of sign
e → −e on each vertex, compensated by a change in
the momenta dependence of propagators due to the
different ordering of fields in the f and f̄ covariant
derivatives (see (7)).

2.2. Adjoint representation

The diagrams contributing to Πµν in the adjoint
representation are shown in Fig. 1.

Planar diagrams 1a and 1b coincide with those
arising in the fundamental and the anti-fundamental
representation, thus giving, each one, the previously
computed answer (13). Concerning the non-planar

Fig. 1. Diagrams contributing to Πµν for fermions in the adjoint
representation. The dotted vertex coincides with the coupling of Aµ
with fermions in the fundamental representation, the cross with that
for fermions in the anti-fundamental.

diagram 1c, the resulting contribution is given by

Π
µν
1c (p;m)= e2

∫
d3k

(2π)3
exp

(−ipλθλδkδ)

(15)

× tr
[
γ µ

/k − /p−m

(k − p)2 −m2 γ
ν /k −m

k2 −m2

]
.

The parity odd part of the above expression is

Π
µν
1c (p;m)∣∣odd

= −2e2mεµνρipρ

×
∫

d3k

(2π)3
exp(−ipλθλδkδ)

(k2 −m2)((k −p)2 −m2)

= −2
m

|m|e
2εµνρipρ

(16)×
∫

d3q

(2π)3
exp(−i|m|pλθλδqδ)

(q2 − 1)((q − p
|m| )2 − 1)

,

where we have written kµ = |m|qµ. As in the previous
section, one should add the regulator contribution.

We are interested in the leading term in a deriva-
tive expansion of the effective action. In the ordinary
(commutative) case, this amounts to make an expan-
sion in powers of the unique available dimensionless
variable,p/m. In the noncommutative case, where one
has, apart from the fermion mass, the dimensionfull
parameter θ , one can construct a second independent
dimensionless variable,m|pθ |. Let us first expand (16)
to first order in p/m,

Π
µν
1c (p;m)∣∣odd

= − m

|m|2ie2εµνρ pρ

∫
d3q

(2π)3
exp(−i|m|pλθλδqδ)

(q2 − 1)2

− M

|M|2ie2εµνρpρ

(17)×
∫

d3q

(2π)3
exp(−i|M|pλθλδqδ)

(q2 − 1)2
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here, the regulator contribution has been explicitly
written. Concerning the expansion in powers of the
second dimensionless parameter m|pθ |, let us note
that, since m is finite, first order in m|pθ | should be
kept in the first term of (17). This gives the same
contribution to the effective action as the 1a and 1b
graphs. For the second term in (17), the M → ∞ limit
must be taken, then, the oscillating factor makes the
integral vanish [11]. Finally, one gets

(18)Π
µν
1c (p;m)∣∣odd = −i m|m|

e2

4π
εµνρipρ,

so that the complete quadratic Πµν for the adjoint
representation is then given by

Π
µν
adj (p;m)=Π

µν
1a (p;m)+Π

µν
1b (p;m)

+ 2Πµν
1c (p;m)

(19)= e2

2π
εµνρpρ

M

|M| .
Note that the whole contribution to Πµν in the ad-

joint comes from the regulating fields. This accounts
for the quadratic part of the CS induced action. Con-
cerning the cubic term, it can be either explicitly com-
puted or adjusted so as to achieve gauge-invariance. In
any case, the result for the parity violating effective ac-
tion for fermions in the adjoint is, to leading order in
∂ ,

(20)Γ adodd
(
Â,m

)= ±ŜCS
(
Â
)+O

(
∂2).

As before, the result is gauge invariant even under
large gauge transformations.

It should be stressed that (20) gives a non-trivial
effective action even in the θ → 0 limit, in which
fermions in the adjoint decouple from the gauge field.
As observed in other cases [5,6,13,18], this is due to
the fact that this limit does not commute with that of
the regulatorM → ∞.

3. The connection between noncommutative CS
and chiral WZW theories

As it is well-known, the (ordinary) CS theory can
be related with the chiral WZW model following
different approaches [24–26]. Here, we shall discuss
how such a connection can be established in the
noncommutative case.

Consider the action

(21)

ŜCS
[
Â0, Âi

]= e2

4π
Tr
∫
M

d3x εij
(
Â0 ∗ F̂ij + ˙̂

Ai ∗ Âj
)
,

which differs from the CS action (14) by a surface
term. Of course, when M has no boundary, such
surface term is irrelevant. However, in what follows
we choose as manifold M = Σ × R with Σ a two-
dimensional manifold. We shall take Eq. (21) as the
starting point for quantization of the 2 + 1 theory and
follow the steps described in [25,26] in their original
derivation of the connection.

Expression (21) can be rewritten as

ŜCS
[
Â0, Âi

]= e2

4π
Tr
∫
M

d3x εij
(
Â0F̂ij + ˙̂

Ai ∗ Âj
)
(22)+ e2

4π
Tr
∫
∂M

dSµΛ
µ

with

Λµ = εij

∞∑
n=1

1
n!
(
i

2

)n
θµν1θµ2ν2 · · ·θµnνn∂µ2 · · ·∂µn

(23)× Â0 ∂ν1∂ν2 · · ·∂νn F̂ij .
Using action (22), the partition function for the non-
commutative CS theory takes the form

Z=
∫

DÂiDÂ0

(24)

× exp

(
iκe2

4π
Tr
∫
M

d3x εij
(
Â0F̂ij + ˙̂

Ai ∗ Âj
)

+ iκe2

4π
Tr
∫
∂M

dSµΛ
µ

)
,

where κ is an integer. For interior points of M, A0
acts as a Lagrange multiplier enforcing flatness of the
spatial components of the connection

(25)F̂ij (x)= 0, ∀x ∈ M− ∂M.

By continuity, F̂ij must also vanishes on the boundary.
The partition function takes then form

Z=
∫

DÂi δ
(
εij F̂ij

)
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(26)× exp

(
iκe2

4π
Tr
∫
M

d3x εij
˙̂
Ai ∗ Âj

)
.

Let us discuss the case where Σ is the disk. Then
the solution of the flatness condition (25) is Âi =
− i
e
ĝ−1 ∗ ∂i ĝ, and one has reinserting it in (26)

(27)Z =
∫

Dĝ exp
(
iκŜCWZW[ĝ]),

where ŜCWZW[ĝ] is the noncommutative, chiral WZW
action

ŜCWZW[ĝ]
= − 1

4π
Tr
∫
∂M

d2x
(
ĝ−1 ∗ ∂t ĝ

) ∗ (ĝ−1 ∗ ∂ϕĝ
)

(28)

− 1
4π

Tr
∫
M

d3x εij
(
ĝ−1 ∗ ∂ig

) ∗ (ĝ−1 ∗ ∂tg
)

∗ (ĝ−1 ∗ ∂jg
)
,

here ϕ is a tangential coordinate which parametrize the
boundary of M2.

With this result in mind and taking into account
the connection between commutative and noncom-
mutative WZW models established in [18] through a
Seiberg–Witten map, one can advance an analogous
connection for the CS theories. The situation can be
visualized in the following scheme

(29)

CWZW[ĝ]
∫
d3x

(
ÂdÂ+ 2i

3
Â3
)

?

CWZW[g]
∫
d3x

(
AdA+ 2i

3
A3
)
.

The next section is devoted to the study of this issue.

4. The Seiberg–Witten map

A correspondence between commutative and non-
commutative gauge field theories can be defined by the
map [3]

δÂµ = δθρσ
∂

∂θρσ
Âµ(θ)

= −1
4
δθρσ

{
Âρ, ∂σ Âµ + F̂σµ

}
+,

(30)

δF̂µν(θ)= δθρσ
∂

∂θρσ
F̂µν(θ)

= 1
4
δθρσ

(
2
{
F̂µρ, F̂νσ

}
+

− {
Âρ, D̂σ F̂µν + ∂σ F̂µν

}
+
)
.

For the case of noncommutative Yang–Mills action,
this map leads to a complicated non-polynomial com-
mutative action. Remarkably, in the Chern–Simons
case, the action remains (up to surface terms) invariant
under the map (30). Let us write the noncommutative
Chern–Simons action in the form (14)

ŜCS
(
Â
)= e2

4π

∫
M

d3x εµνρ

(31)

×
(
Âµ ∗ ∂νÂρ + 2ie

3
Âµ ∗ Âν ∗ Âρ

)
,

where we choose for M either R3 or Σ × R with
Σ a manifold without boundary. Action (31) can be
rewritten in the form

(32)ŜCS
(
Â
)= e2

4π

∫
M

d3x εij
(
Â0F̂ij + ˙̂

AiÂj
)
.

In order to investigate the variation of this action
under Seiberg–Witten map, let us differentiate it with
respect to θµν

∂ŜCS(Â)

∂θµν
= e2

4π

∫
M

d3x εij
∂

∂θµν

(
Â0F̂ij + ȦiAj

)
= e2

4π

∫
M

d3x εij

(33)

×
(
∂Â0

∂θµν
F̂ij + Â0

∂F̂ij

∂θµν
+ 2

∂Aj

∂θµν
Ȧi

)
.

Now, we can use (30) in order to rewrite the θ -deriva-
tives. Keeping only the terms which are antisymmetric
with respect to the indices µ,ν and i, j , we get

(34)
∂ŜCS(Â)

∂θµν
= 0 �⇒ ŜCS

(
Â
)= SCS(A).

Here SCS(A) is the ordinary (commutative) CS action.
It is interesting to note that in the U(1) case the SW
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map cancels out the cubic term which is present in
ŜCS(Â).

In summary, we see that the SW transformation (30)
maps the noncommutative Chern–Simons action into
the commutative one.

5. Conclusions

We have computed the effective action for fermi-
ons in noncommutative space, for different represen-
tations, showing that a gauge invariant answer (even
for large gauge transformations) is obtained when reg-
ulator contributions are taken in account. In particular,
for the adjoint representation, the non-trivial gauge in-
variant result (20) is completely due to the regulator
fields, showing that the commutative θ → 0 limit does
not commute with the M → ∞ limit.

We have shown that the noncommutative Chern–
Simons action can be related to the chiral noncom-
mutative WZW model in the usual way. It is impor-
tant to note that for deriving this relation we needed
to define the Chern–Simons theory from action (21),
which shows A0 as a Lagrange multiplier enforcing
the flatness constraint (24). Finally, we showed that
the Chern–Simons action is mapped into the stan-
dard (commutative) action under the Seiberg–Witten
map (30).
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