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Dynamic elasticity of cubic diamond
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Previously, the structure of the carbon allotrope glitter has been disclosed, and a the-
ory accompanying the structural report as to its bulk modulus at pressure predicted it
would be among the hardest materials possible. The dynamic elasticity theory devel-
oped in that paper, involving the forces generated in elastic chemical bond deforma-
tions resulting from applied mechanical forces, is here applied to the cubic diamond
lattice. Stresses, both lateral and axial, contribute to the bulk modulus of cubic dia-
mond at pressure. The ultimate strength of the cubic diamond lattice, in the approxi-
mations of the dynamic elasticity theory presented in this paper, is estimated to be in
excess of 1 TPa, at modest bond length deformations of about 0.1 Å, and when includ-
ing the zero pressure bulk modulus B0 in the computation. In particular, the dynamic
elasticity model predicts the hardest direction of cubic diamond will be for an isotropic
mechanical force applied along 〈111〉 directions of the structural unit cell.
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1. Introduction

Cubic diamond is the ultimate hard material, with a zero-pressure bulk
modulus estimated to be in excess of 442 GPa [1]. Borazon, the synthetic abra-
sive with the stoichiometric composition BN developed by Wentorf et al. at
General Electric, is the only other material patterned on the cubic diamond
structure-type, that achieves a zero-pressure bulk modulus approaching that of
cubic diamond, at 367 GPa [1]. The other materials patterned on the cubic dia-
mond structure-type possess zero-pressure bulk moduli significantly lower than
that of C-based cubic diamond or the analogous BN material called Borazon [2].

On the basis of the design of the original WC Bridgman anvils in the
early 20th century, the diamond anvil cell (DAC) was introduced, in 1959, as a
device for achieving the highest possible pressures in the laboratory [3]. The novel
design exploited the transparency of C-based diamond across the electromagnetic
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spectrum, in studies of IR spectra of materials at pressure, X-ray diffraction struc-
ture determinations at pressure, and other high pressure studies [1].

It is the purpose of the present report, to estimate the ultimate strength
of the cubic diamond lattice, by developing and applying a dynamic elasticity
theory to the structure to extend current estimations of its strength in a sta-
tic approximation. This dynamic elasticity theory has been introduced previ-
ously with application to the glitter lattice, another superhard material under
development now [4]. The theory enables one to calculate corrections to the
zero-pressure bulk modulus, B0, from stresses introduced to the unit of structure
of the material from elastic chemical bond deformation forces attendant on the
principal crystallographic planes of the lattice, given in an orthogonal crystallo-
graphic setting as the planes (100), (010) and (001). Such elastic chemical bond
deformation forces are generated in response to applied mechanical forces on the
structure.

After introducing the dynamic elasticity theory in section 2, the actual stress
equations for the cubic diamond structure-type will be developed in section 3,
and the results of the calculations for the dynamic elastic moduli corrections to
the zero-pressure static elasticity, given by the zero-pressure bulk modulus B0, for
cubic diamond, will be tabulated. The paper concludes with a discussion of the
bearing the current results have on the use of cubic diamond in high-pressure
equipment, including predictions of the theory that may be useful to investigators
in the field. Besides predicting the ultimate strength–elasticity expressions for the
C-based cubic diamond structure-type, the present theory describes how specific
axes of the cubic diamond lattice, i.e. the 〈111〉 axes, are the stiffest directions in
which to apply mechanical forces, in order to translate the greatest amount of
applied force into an applied stress.

2. Dynamic elasticity theory

Feynman has analyzed the problem of elasticity, in a static model, for the
cubic rocksalt structure-type [5]. From this analysis, in a harmonic potential
approximation, he obtained elasticity moduli of the form shown in equation (1)
below:

elastic modulus α
k

a
. (1)

The elasticity moduli were derived and characterized in terms of fundamental
parameters of the crystal, including the force constant, k, of the constituent
bonds in the rocksalt structure-type, and the given lattice parameter of the cubic
rocksalt lattice, a. Note that the ratio Feynman derived for the elastic moduli,
given by k/a, in which k, the force constant of the chemical bond in the lat-
tice, has the units of N/m, and the lattice parameter of the rocksalt unit cell,
a, has the units of m, properly has the dimensions of a stress or alternatively
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an elastic modulus, therefore the analysis is internally consistent from a physical
perspective [5].

It has been conjectured previously by the authors [4], that a ratio that is
also dimensionally a stress or an elastic modulus for a crystalline material, can
be gotten in terms of the fundamental parameters of the crystalline substance
as given by the force constant of the constituent bonds in the unit cell, k in
N/m, the corresponding lattice parameter given by a in m, and finally, the elastic
chemical bond deformation parameter, r ′ = (r − re), in m. This type of expres-
sion, shown in equation (2), is representative of a dynamic stress or a dynamic
elastic modulus. Physically, this prototypical dynamic elastic modulus expression,
shown in (2), represents a force generated in elastic chemical bond deforma-
tion, divided by the area of a crystallographic plane, (hkl), normal to that elastic
chemical bond deformation force:

elastic modulus = kr ′

a2
. (2)

Such expressions as those shown in (2) are the basis for the dynamic elasticity
model presented in this paper. These ratios, in terms of a force over an area, F/A,
are, from a dimensional analysis perspective, entirely consistent with the elastic
constant ratios, given by k/a, as derived for the rocksalt lattice by Feynman ear-
lier [5] and shown in equation (1). Such dynamic elastic constant ratios as shown
in equation (2), are also entirely consistent, from the perspective of dimensional
analysis, with the more familiar ratios of U/V employed in the 1st principles calcu-
lations of bulk modulus of crystalline materials, where U is the internal energy of
the unit cell, and V is the corresponding unit cell volume. Such elasticity analyses
have been used extensively in the estimation of the zero-pressure bulk moduli, B0,
of various crystalline lattices by Cohen and others [6].

Furthermore, it has been discovered previously by the authors [4], that
defining these dynamic elastic moduli, as shown prototypically in (2), of a unit
cell of a crystalline material, whose chemical bonds are undergoing elastic defor-
mations due to an applied stress, through the use of a force density integral, as
shown generically in equation (3), results in the generation of dynamic elastic-
ity correction terms to the zero-pressure, static bulk modulus, like the prototype
term shown in equation (2):

elastic modulus =
∫

F(r ′)
V (r ′)

dr ′ . (3)

In the force density integral shown in equation (3), F represents the sum
of the elastic chemical bond deformation forces inside the unit cell, in response
to an applied mechanical force of deformation (i.e. a mechanical stress). Com-
ponents of these forces are seen to be normal to given crystallographic planes,
(hkl)’s, and can therefore be equated to specific corrections of the zero-pressure
elastic constants of a crystalline material. The specific bond forces are modeled
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here, in this paper on C-based cubic diamond, as Hooke’s law forces, as shown
below in equation (4):

∂U

∂r ′ = kr ′. (4)

The volume denominator in equation (3), V (r ′), is written as a function of the
elastic chemical bond deformation parameter, r ′, as well. This function describes
the simultaneous change in the unit cell volume, with the generation of the elas-
tic chemical bond deformation forces, F(r ′), inside the unit cell.

Upon integrating equation (3) with respect to the chemical bond deforma-
tion parameter r ′, which has the dimensions of a length, a term with the dimen-
sions of a stress (or elastic modulus), is formally produced, in the physical sense
of dimensional analysis. This elastic modulus correction term is expressed in the
form of equation (2), as an elastic chemical bond deformation force divided by
the area of the principal crystallographic plane, (hkl), to which the deformation
force is normal. The result, then, of this integration is the generation of dynamic
corrections terms to the zero-pressure elasticity of a given crystalline material
in a theoretical framework that is internally consistent both dimensionally and
physically [4].

By writing down the components of the elastic chemical bond deformation,
the components of r ′ directed along the Cartesian axes (i.e. orthogonal axes x , y
and z), inside the unit of pattern of a material, one obtains a sum of force den-
sity integral expressions which describe the dynamic elasticity of the crystalline
material considered. The integration of such expressions generates the terms for
calculating the dynamic correction elastic moduli over the unit of pattern of the
material [4].

3. Dynamic elasticity of diamond

Cubic diamond, the unit of pattern of which is pictured in figure 1, is
a highly symmetrical material, belonging to the cubic symmetry space group
Fd3m, (i.e. space group #227). It has a lattice parameter, a, of 3.56 Å. Elemen-
tary vector analysis, shows the carbon–carbon single bonds are oriented parallel
to the 〈111〉 axes of the cubic unit cell.

One can write down an expression for the sum of the components of the
elastic chemical bond deformation forces attendant on all the C–C single bonds
within the unit of pattern shown in figure 1. Such an expression is shown as
equation (5), assuming an isotropic application of a mechanical stress:

16∑
i = 1

Fi = 16
{
kr ′ cos α + kr ′ cos β + kr ′ cos χ

}
. (5)
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Figure 1. Cubic diamond unit cell.

In this expression, the factor of 16 represents the number of bonds within the
C-based, cubic diamond unit of pattern shown in figure 1. The constant k is
just the force constant of the C–C single bonds, it has the value of 450 N/m
[7], and r ′ is the deformation parameter for the chemical bonds, in units of m
(i.e. meter). Here we are assuming the potential energy function between the
C–C single bonds is harmonic [4].

The factors cos α, cos β and cos χ represent the projections of the elastic
chemical bond deformation forces, kr ′, onto the crystallographic planes (100),
(010) and (001), respectively, which are normal to these forces. We can therefore
simply rewrite equation (5) in terms of the orthogonalized deformation parame-
ters x ′, y′ and z′, as follows:

16∑
i = 1

Fi = 16
{
kx ′ + ky′ + kz′}. (6)

In equation (6), the components of the deformation forces along the principal
crystallographic directions; [100], [010] and [001]; are represented by x ′, y′ and
z′, respectively.1

According to the prescription introduced in equation (3), of the previous
section, we next write down the corresponding force density integral for cubic
diamond, in which the forces generated in elastic chemical bond deformations,
are divided by the corresponding change in unit cell volume:

1A note about cos α, cos β and cos χ . One can easily obtain these values from elementary vector

analysis by forming the ratios of the type shown in equation (i): cos θ = (hk�) (x y z)T

||hk�|| · ||x y z|| where, in the
case shown in equation (i), we are calculating the projection factor for the chemical bond vector
with components (x , y, z) onto the hklth crystallographic plane.
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elastic mod. =
∫

16kx ′

bc(a + 4 x ′)
dx ′ +

∫
16ky′

ac(b + 4y′)
dy′ +

∫
16kz′

ab(c + 4z′)
dz′. (7)

Indicated in the denominator are the volume functions, V (r ′), in which the
lattice parameters are given, for clarity, as a, b and c. The occurrence of the
number 4 in these functions, reflects the fact that a net factor of 4 bond defor-
mations, in total, contribute to the actual compressions along the a, b and c axes
of cubic diamond, from the respective chemical bond deformations taking place
inside the unit cell, in response to the isotropic mechanical stress applied.

One can simplify the expressions in equation (7), as a result, the integrals
are seen to take the following generic form:

elastic modulus = Nk

ab

∫
z′

(c + dz′)
dz′. (8)

Such integrals have been evaluated previously by the authors [4], and it has
been shown that they reduce the terms shown in equation (7) to the following
forms (where B0 is the constant of the integration):2

elastic modulus = B0 + 8kx ′

bc
+ 8ky′

ac
+ 8kz′

ab
(9)

equation (9) reflects the mechanism of dynamic elasticity that corrects the
zero-pressure bulk modulus of cubic diamond (given by B0), for an applied iso-
tropic mechanical force, F , as a stress on the crystalline unit cell.

Finally, we insert a projection factor, cos θ , for the component of the
applied force, F , directed along crystallographic axes 〈hkl〉, onto the chemical
bond vectors (x , y, z). It can be seen from this perspective, and from examina-
tion of figure 1, that the factor cos θ , shown below in equation (10), will have its
maximum for isotropic forces directed along 〈111〉 axes of cubic diamond.

elastic modulus = B0 + 8kx ′

bc
cos θ + 8ky′

ac
cos θ + 8kz′

ab
cos θ. (10)

Table 1 indicates the respective axial and lateral correction moduli to the
zero-pressure bulk modulus, B0, of the cubic diamond unit cell, for isotropic

2Solution of the generic integral shown in equation (8): (i), elastic modulus = ∫ F(z′)
V (z′) dz′, (ii), elastic

modulus = ∫ Nkz′
ab(c + dz′) dz′, (iii), elastic modulus = Nk

ab
∫ z′

(c + dz′) dz′, (iv), elastic modulus = Nk
ab{

z′
d + c

d2 ln |c + dz′|
}

, (v), elastic modulus = N
d

kz′
ab +

{
Nk
ab

{
c

d2 ln| c+dz′|
} }

. Upon expanding the

logarithm, we obtain: (vi), elastic modulus= N
d

kz′
ab +

{
Nk
ab

c
d2

((
dz′
c

)1+ 1
2

(
dz′
c

)2+ 1
3

(
dz′
c

)3+· · ·
)}

which reduces to the correction term: (vii), elastic modulus = 2N
d

kz′
ab

(
dz′
c

)0 + N
d

kz′
ab

(
dz′
c

)1 + · · ·
where, because z′/c is negligible, the 0th order term, only, survives: (viii), elastic modulus= 2N

d
kz′
ab

(
dz′
c

)0
(ix), elastic modulus = 2N

d
kz′
ab .
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Table 1
Dynamic elastic moduli corrections to zero-pressure bulk modulus, B0, of cubic diamond.

Bond length deformation, Axial e.m. correction Lateral e.m. corrections
x ′, in Å along [001] along [100] & [010]

–0.010 28.565 GPa 28.565 GPa
–0.020 57.131 GPa 57.131 GPa
–0.040 114.26 GPa 114.26 GPa
–0.060 171.40 GPa 171.40 GPa
–0.080 228.52 GPa 228.52 GPa
–0.100 285.65 GPa 285.65 GPa

forces directed along the 〈111〉 axes of the unit of structure. The unit of pattern
is assumed to be oriented in a right-handed system of Cartesian axes.

It is apparent from the data in Table 1 that elastic chemical bond deforma-
tions in excess of x ′ = 0.0600Å (when considering the tetrahedral angle in the
cubic diamond lattice of 109.47◦, r ′ = 0.0600Å/cos 54.73◦ = 0.104Å), on the C–C
single bonds, will lead to axial stresses in excess of 171 GPa along each orthog-
onal, crystallographic axis. Previous calculations on the glitter unit of pattern
indicate a unit cell in glitter with dynamic bulk moduli comparable to diamond
at comparable bond length deformations [4].

When factoring in lateral and axial stresses, and the zero-pressure bulk mod-
ulus of cubic diamond (i.e. B0 = 442 GPa) together, cubic diamond has a dynamic
bulk modulus of nearly 1 TPa, beyond a 0.104 Å elastic chemical bond deforma-
tion limit on the C–C single bonds in the C-based unit of pattern.
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