
Z. Phys. B 103, 319–321 (1997) ZEITSCHRIFT
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Abstract. We describe a fully microscopic treatment of fluc-
tuations in correlated finite systems at finite temperature,
based on the static path approximation (SPA) to the partition
function, which incorporates the large amplitude statistical
fluctuations around mean field, and the ensuing SPA+RPA
approach, which includes in addition the small amplitude
quantal fluctuations. An application to the description of
pairing, shape and orientation fluctuations in hot nuclei is
then given. The treatment of constraints is also discussed.

Small correlated quantum systems exhibit important fluc-
tuation phenomena. At finite temperature, statistical fluctu-
ations in the relevant order parameters smooth the sharp
phase transitions arising in the mean field approximation,
which represent normally the behavior of the system in the
limit of infinite particle number or volume. In superconduct-
ing particles, these fluctuations lead to a broadening of the
superfluid to normal transition when the size of the sys-
tem is sufficiently small, the relevant size parameter being
the ratio δ of the average single electron level spacing to
Tc, which is proportional to the inverse of the volume [1].
Fluctuation effects become important for δ > 0.01, in which
case deviations from the sharp BCS behavior are significant.
Similarly, in hot finite nuclei fluctuations in the shape de-
formation and gap parameters smooth out the corresponding
transitions arising in the mean field [2]. The concomitant ef-
fects become manifest in several aspects of hot nuclei formed
in heavy ion collisions [3], like the description of the giant
dipole resonance [4] and, as recently shown, the collective
decay spectra [5].
Statistical fluctuations are mostly introduced in nuclear

physics by means of semi-macroscopic prescriptions [2, 3, 4,
5], in part due to the phenomenological character of the mod-
els employed. Nevertheless, a fully microscopic treatment
of large amplitude statistical fluctuations can be obtained by
means of the SPA, first derived in solid state physics for de-
scribing fluctuations in small superconducting particles [1],
and later introduced in nuclear physics [6, 7], which is ex-
act at high temperatures. The SPA can be improved at low
temperatures by the SPA+RPA [8, 9], which incorporates the
small amplitude quantal fluctuations, and by projection onto

conserved symmetries [10, 11]. Very few realistic applica-
tions of these latter methods have so far been performed in
nuclear physics. In this contribution we give a brief review
of these methods, including an exact evaluation of the RPA
correction factor within the SPA, together with novel results
obtained for heavy nuclei.
We consider a general fermion Hamiltonian containing

at most two-body terms, which can be always written as

H = H0 − 1
2

∑

ν

vνQ
2
ν , (1)

where H0 and Qν are hermitian one-body (one particle
or one quasiparticle) fermion operators. By means of the
Hubbard-Stratonovich transformation, the grand canonical
(GC) partition function can be written as the path integral
[12]

Z =
∫

D[x] Tr T̂ exp{−
∫ β

0
dtH ′[x(t)]}, (2)

H ′(x) ≡ H0 +
∑

ν

(
x2ν
2|vν | − sνxνQν)− μN, (3)

where T̂ denotes time ordering and sν = 1(i) if vν > 0 (< 0).
With the expansion xν(t) =

∑
m xm

ν eiωmt, ωm = 2πm/β,
Eq. (2) becomes an integral over the coefficients xm

ν . In the
SPA+RPA [8, 9] the integrals over the static coefficients x0ν ,
which represent the time average of xν(t), are fully retained,
to account for the large amplitude statistical fluctuations,
whereas those over xm/=0

ν , representing the time dependent
or quantal fluctuations, are evaluated in the saddle point ap-
proximation. The result is

Zspa+rpa =
∫ ∞

−∞
d(x) exp[−βF (x)]Crpa(x), (4)

F (x) = −β−1 ln Tr exp[−βH ′(x)], (5)

Crpa(x) =
∞∏

m=1

Det[A(x, ωm)]−1, (6)

A(x, ω) = δνν′ − vν
∑

k/=k′

〈k|Qν |k′〉〈k′|Qν′ |k〉(fk − fk′ )
iω + λk′ − λk

,

where d(x) =
∏

ν(β/2π|vν |)1/2dxν , F (x) is an uncorre-
lated grand potential, |k〉 are the single particle (sp) eigen-
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states H ′(x)|k〉 = λk|k〉, and fk the Fermi occupation prob-
abilities. The sum over k /= k′ includes all types of fermion
pairs (particle hole (ph), pp and hh). If [H ′(x), N ] /= 0 the
sum over the enlarged quasiparticle space of doubled dimen-
sion is understood [11]. Only the static variables associated
with attractive terms vν > 0 need to be actually considered
in the integration (4). Repulsive terms do not lead to large
amplitude thermal fluctuations, and the corresponding static
variables can be also integrated in the saddle point method,
leading to an additional determinant in (4) [13].
The product (6) can be evaluated exactly as [13]

Crpa(x) =
∏

α

ωα(x) sinh[ 12βλα(x)]
λα(x) sinh[ 12βωα(x)]

, (7)

where λα(x) ≡ λk′ − λk (k < k′), and ωα(x) are the gener-
alized RPA frequencies defined by

Det[A(x, iωα)] = 0,

which become the ordinary thermal RPA frequencies if x is
a self-consistent mean field solution, i.e., sνxν = vν〈Qν〉x.
If the factors ωα/λα are omitted, (7) is just the ratio of
the partition function of independent RPA bosons of ener-
gies ωα(x), to that of uncorrelated fermion pairs of ener-
gies λα(x), considered as bosons. The factors ωα/λα arise
due to the exclusion of the m = 0 term in (6), i.e., due to
the exact integration over the static components, and make
Crpa(x) > 0 and finite, even in the presence of vanishing
frequencies (like Goldstone modes) and also of imaginary
frequencies provided |βωα| < 2π. This allows to apply (7)
for arbitrary x, as required in (4), and not just at the self-
consistent mean field, if the temperature is sufficiently high.
At low T and away from the stable mean field, regions where
β2ω2α(x) ≤ −4π2 will normally arise, and (4) is no longer
applicable. This indicates the failure of the gaussian approx-
imation for the integral over xm/=0

ν in these regions due to
the onset of large amplitude quantal fluctuations.
The smoothing of the mean field transitions at finite tem-

perature is already attained in the SPA, obtained by neglect-
ing Crpa(x) in (4), which simply includes the statistical fluc-
tuations around the mean field, given by the minimum of
F (x). The SPA is valid for all T > 0 and becomes exact
at high temperatures (up to order β) in a finite configura-
tion space (Crpa(x)→ 1 for β → 0). The SPA improves the
standard mean field, while the SPA+RPA, when applicable,
improves both SPA and mean field + RPA. The accuracy of
the SPA at low T will depend actually on the choice of the
diagonal representation (1), which is not unique.
The present methods become particularly simple for

effective models containing just separable interactions, in
which the optimal diagonal form (1) is directly manifest. As
an illustrative example, we consider the well known pairing
plus quadrupole Hamiltonian [14],

H = H0 − 1
2χQ

† ·Q−
∑

τ=p,n

gτP
†
τPτ , (8)

where H0 is an effective spherical sp Hamiltonian, Qμ

quadrupole sp operators and P †
τ = 1

2
∑

k c
†
kτ c

†
k̄τ
monopole

pairing operators. Here τ denotes isospin and k = nljm the
labels of an oscillator basis, with l, (jm) the orbital and total

angular momenta. In heavy nuclei, (8) is meant as an ef-
fective Hamiltonian for valence nucleons within a restricted
configuration space, apt for describing the essential features
of pairing and shape deformations. More refined versions
include a few higher multipoles and isovector components
(see for instance [15]), although (8) is the essential part. For
moderate temperatures T < 1.8 MeV, total spin < 60, and
nuclei in the range 140 < A < 190, normally two oscillator
shells for each component (of dimension 2dτ ) are consid-
ered. The total number of many-body states in this space for
a rare earth nucleus like 164Er is already 2.9× 1043.
The SPA will involve an integral over 5 quadrupole vari-

ables xμ, which can be written in terms of intrinsic deforma-
tion parameters β, γ and 3 orientation angles, and the pairing
variables xτ = Δτe

iφτ . For calculations in hot rotating nu-
clei, a cranking term −ωJz is added to (8). The U (1) gauge
angles φτ and one of the orientation angles can be integrated
out. The final result is [6]

Zspa = N
∫ ∞

0
β4dβ

∫ π
3

0
sin(3γ)dγ

∫
dΩ

∏

τ

∫ ∞

0
ΔτdΔτ

×Tr exp{−[H(β, γ,Δ)−
∑

τ

μτNτ − ω · J ]/T},

H(β, γ,Δ) = H0 +
β2

2χ
− β(Q0 cos γ + Q2+Q−2√

2
sin γ)

+
∑

τ

Δ2
τ

gτ
−Δτ (P †

τ + Pτ )− 1
2gτ (Nτ − dτ )

where all operators refer now to the intrinsic frame, with
Ω = (θ, φ) the orientation of the rotation axes ω (J is the
total angular momentum operator). Here β, γ,Δν are the
deformation parameters and gaps of the intrinsic potential
(rather than density). Shape, pairing and orientation fluctu-
ations are thus directly obtained, including the proper inte-
gration measure, which was not apparent in the macroscopic
treatments [2, 3, 4, 5] (where the measure βdβdγdΔτ was
first employed). In the SPA+RPA, a factor Crpa(β, γ,Ω,Δ)
is included.
So far we considered GC statistics (fixed μτ and ω). In

a finite nucleus however, one is rather interested in statistics
and fluctuations for fixed particle number and spin (or spin
component). Projection in the saddle point approximation
leads to the replacement [11]

exp[−F (x, μτ , ω)/T ]→
exp[−F (x,Nτ , J)/T ]/[(2π)3D]

1
2

in the SPA integrand, where F (x,Nτ , J) is the free energy
for fixed Nτ , J (D is the fluctuation determinant). This im-
plies the adjustment of μτ and ω for each x = (β, γ,Ω,Δ)
by the corresponding constraints. The ensuing effects can
be significant at low T in the presence of shape coexis-
tence, as different configurations (like prolate or oblate de-
formation, normal or superfluid) may have quite different
values of μτ , ω for fixed Nτ , J . This approximate projection
is nonetheless not accurate for T → 0. In the SPA, the exact
projection in the form TrPNJ exp[−βH ′(x)], with PNJ the
particle number and spin projector, can be performed [10],
and improves significantly the T → 0 limit of expectation
values.
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Fig. 1. Top: Left: Average thermal energy in a pairing model (see text),
according to BCS, SPA, SPA+RPA (denoted as CSPA) and the exact result.
Right: Average energy in the nucleus 164Er for Hamiltonian (8), measured
from the T = 0 Hartree-Bogoliubov (MFA) energy. SPA’ depicts the aver-
age 〈H〉spa. Bottom: Average of the quadrupole deformation parameter β
(dimensionless) and of the proton (p) and neutron (n) gaps (in MeV). Here
SPA depicts the potential averages, while SPA(d) the corresponding density
averages

In order to visualize the accuracy of the previous meth-
ods, we first depict in Fig. 1 the average energy in a pair-
ing model (consisting of 20 sp levels [16], half filled, with
δ = ε/Tc ≈ 0.7), where the partition function can be exactly
calculated. The SPA energy (calculated as −∂ lnZspa/∂β)
gives the correct smoothed behavior, while the SPA+RPA
result is practically exact above the breakdown temperature
T ≈ 0.25Tc. We show then new results for the full Hamil-
tonian (8) in the nucleus 164Er, with the parameters of ref.
[14] (gp = 27/A, gn = 22/A, χ = 70A−1.4 MeV). We set
ω = 0, and employ number projection in the saddle point
approach. The mean field (thermal Hartree-Bogoliubov) ex-
hibits a deformed to spherical transition at T ≈ 1.7 MeV,
and superfluid to normal transitions at T ≈ 0.6 and 0.5 MeV
for protons and neutrons respectively, all of which appear
considerably washed out in the SPA. The RPA energy cor-
rection to SPA is significant, although it consists mainly of
exchange contributions. The full average 〈H〉spa containing
the exchange terms [10], is closer to the SPA+RPA result.
We also depict the average shape and pairing potential defor-
mations 〈β〉spa, 〈Δτ 〉spa, and the density deformations [11],

which are coincident in the MFA. Fluctuations are consider-
able and the deviation from the MFA behavior is significant.
The influence of the integration measure is very important,
particularly the factor β4, which strongly unfavors spheri-
cal configurations. This allows even to derive an effective
smooth MFA which qualitatively reproduces the SPA be-
havior [17]. SPA results for other nuclei can be found in
[10, 11, 16]. We conclude that the present techniques pro-
vide a powerful means to describe finite size effects in small
quantum systems at finite temperature. A detailed study of
the RPA correlations in this context is in progress.
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