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Entropic uncertainty relation for power-law wave packets
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Abstract

For the power-law quantum wave packet in the configuration space, the variance of the position observable may be divergent.
Accordingly, the information-entropic formulation of the uncertainty principle becomes more appropriate than the Heisenberg-
type formulation, since it involves only the finite quantities. It is found that the total amount of entropic uncertainty converges
to its lower bound in the limit of a large value of the exponent.  2002 Elsevier Science B.V. All rights reserved.

PACS: 03.65.-w; 03.65.Bz; 03.67.-a

In ordinary quantum-mechanical situations, the
amplitudes of wave packets decrease exponentially at
spatial infinities. However, in certain systems, power-
law wave packets may be realized. In spite of the fact
that they are simple systems, their physical properties
have not been fully investigated. In a recent paper
[1], Lillo and Mantegna have discussed the free
evolution of a power-law wave packet and have found
anomalous decay of the maximum of the wave packet,
depending on the power-law exponent. (See also
Ref. [2].)

To elucidate the physics of the power-law quantum
wave packets, it is also important to clarify their sta-
tistical properties. In this Letter, we study the uncer-
tainty relation associated with measurements of the
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position and momentum observables in such a wave
packet defined in the configuration space. This is a
highly nontrivial issue, since for the power-law wave
packet the ordinary measure of uncertainty, i.e., the
variance, may be divergent, in general, and therefore
the Heisenberg-type formulation of the uncertainty re-
lation is not very useful. To overcome such a diffi-
culty, we employ the information-entropic formula-
tion of the uncertainty relation. We present the analytic
expressions for the position and momentum entropies
and show that they are finite quantities even if the vari-
ance of the position observable diverges. We examine
the dependence of the uncertainty on the power-law
exponent. We shall see how the total amount of in-
formation entropy monotonically approaches the exact
lower bound for large values of the exponent.

The power-law quantum wave packet we consider
here is given as follows [1]

(1)φ(x)= N

(1 + x2)α/2
,
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where x is the dimensionless position coordinate,
α the exponent, and N the normalization constant.
One sees that this wave function is normalizable in
(−∞,∞) if

(2)α >
1
2
.

Then, the normalization factor is found to be given by

(3)N2 = �(α)√
π �(α − 1/2)

,

where �(s) is the Euler gamma function. As noted
in Ref. [1], the wave packet in Eq. (1) describes the
zero-energy eigenstate of a particle governed by the
Schrödinger equation with a potential U(x) of the
form

(4)U(x)= α(α + 1)x2 − α

2(1 + x2)2
.

Here and hereafter, both h̄ and the mass of the particle
are set equal to unity for the sake of simplicity. In the
special case when α = 1, φ(x) in Eq. (1) is referred to
as the Cauchy wave packet, which has been discussed
in Ref. [3].

For x tending to plus or minus infinity, |φ(x)|2
asymptotically behaves as |φ(x)|2 ≈ |x|−2α. Clearly,
the second moment of the position observable diverges

(5)
〈
X2〉

φ
≡ 〈φ|X2|φ〉 =

∞∫
−∞

dx x2∣∣φ(x)∣∣2 → ∞,

if the exponent is in the range

(6)
1
2
< α � 3

2
.

Therefore, the ordinary Heisenberg-type formulation
of the uncertainty relation for the position X and the
momentum P ,

(7)�X ·�P � 1
2
,

is not useful in this range of the exponent. That is,
knowing �X yields no information on �P , provided
that (�Q)2 ≡ 〈Q2〉 − 〈Q〉2 is the variance of the
observable Q.

For later convenience, we here present the momen-
tum representation (the Fourier transformation) of the

wave packet in Eq. (1)

φ̃(p)= 1√
2π

∞∫
−∞

dx eipxφ(x)

(8)= 21−α/2N
�(α/2)

|p|(α−1)/2K(α−1)/2
(|p|),

where Kν(z) (Re ν > −1/2) is the modified Bessel
function [4].

The information-entropic approach to the uncer-
tainty relation has been repeatedly investigated in the
literature [5–13]. A rigorous result relevant to our dis-
cussion here is that of Bialynicki–Birula and Myciel-
ski [14]. For measurements of the canonically conju-
gate pair of the position X and the momentum P of
the particle described by the normalized quantum state
|Φ〉, the associated information entropies are defined
by

(9)SX[Φ] = −
∞∫

−∞
dx

∣∣Φ(x)∣∣2 ln
∣∣Φ(x)∣∣2,

(10)SP [Φ] = −
∞∫

−∞
dp

∣∣Φ̃(p)∣∣2 ln
∣∣Φ̃(p)∣∣2

,

respectively, where Φ̃(p) = 〈p|Φ〉 is the Fourier
transformation of Φ(x) = 〈x|Φ〉, as in Eq. (8). Note
that these quantities are representation-dependent, in
contrast to the von Neumann entropy, S = − Tr(ρ lnρ)
with ρ = |Φ〉〈Φ|. The authors of Ref. [14] have shown
that the sum of these quantities has the following
optimal lower bound

(11)U [X,P :Φ] ≡ SX[Φ] + SP [Φ] � 1 + lnπ.

It is known that this lower bound can be achieved by
the coherent state, which also saturates the inequality
in Eq. (7). We mention that the uncertainty relation
in Eq. (11) has been generalized to the case of finite
temperature in Ref. [15]. It is also known [14] that,
for any quantum state with the finite variances, the
Heisenberg-type relation in Eq. (7) can be derived
from Eq. (11).

The superiority of the formulation in Eq. (11) over
that in Eq. (7) lies in the fact that both SX[φ] and
SP [φ] always remain finite for the power-law wave
packet, |Φ〉 = |φ〉, in the whole range of the exponent
in Eq. (2).
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Using Eqs. (1) and (3), SX[φ] is analytically calcu-
lated as follows:

SX[φ] = ln
[√

π �(α − 1/2)
�(α)

]
(12)+ α

[
ψ(α)−ψ(α − 1/2)

]
,

where ψ(s) = d ln�(s)/ds is the digamma function
[4]. In contrast to the variance (�φX)2, this quantity
is in fact finite. Likewise, SP [φ] is calculated to be

SP [φ] = ln
[

2α−2√π [�(α/2)]2�(α − 1/2)
�(α)

]

(13)− 23−α
√
π

�(α)

[�(α/2)]2�(α − 1/2)
I (α),

where

I (α)=
∞∫

0

dppα−1∣∣K(α−1)/2(p)
∣∣2

(14)× ln
[
pα−1∣∣K(α−1)/2(p)

∣∣2
]
.

Now, from Eqs. (12) and (13), we obtain

U [X,P :φ] = lnπ + (α − 2) ln 2

− 2 ln
�(α)

�(α/2)�(α − 1/2)
+ α

[
ψ(α)−ψ(α − 1/2)

]

(15)

− 23−α
√
π

�(α)

[�(α/2)]2�(α − 1/2)
I (α).

In Figs. 1–3, we present plots of SX[φ], SP [φ],
and U [X,P :φ] = SX[φ]+SP [φ], respectively. Fig. 1
shows that SX[φ] monotonically decreases with re-
spect to the exponent α, as expected, since a larger
value of α makes the wave packet be more local-
ized, leading to a smaller value of the entropy. Cor-
respondingly, Fig. 2 exhibits monotonically increas-
ing behavior of SP [φ]. An important result is de-
picted in Fig. 3. There, one clearly appreciates the fact
that U [X,P : φ] monotonically approaches the exact
lower bound 1 + lnπ with respect to α. It is gener-
ally believed that the lower bound is realized only for
the Gaussian wave packets. The present result offers
another example which asymptotically saturates the
information-entropic uncertainty relation.

In conclusion, we have shown that, for the power-
law quantum wave packets, the information-entropic

Fig. 1. Plot of SX[φ] with respect to α in arbitrary units.

Fig. 2. Plot of SP [φ] with respect to α in arbitrary units.

Fig. 3. Plot of U [X,P :φ] = SX[φ] + SP [φ] with respect to α

in arbitrary units. The horizontal line represents the lower bound
1 + lnπ .
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uncertainty relation is more useful than the
Heisenberg-type relation. We have clarified how the
information-entropic uncertainty approaches its lower
bound with respect to the value of the exponent of the
power-law wave packet.

In the present Letter, we have employed the Shan-
non entropy as a measure of uncertainty. It is known
that, for characterizing power-law distributions, the
Tsallis entropy [16] is a more natural measure than the
Shannon entropy. In Ref. [17], the Sobolev inequal-
ity, from which the uncertainty relation in Eq. (11) is
derived, is discussed in connection with the Tsallis en-
tropy. Moreover, in Refs. [18,19], discussions are de-
veloped about the possibility of utilizing the Tsallis
entropy as a measure of quantum uncertainty. Investi-
gations in this direction are expected to contribute to a
deeper understanding of the uncertainty principle and
to further reveal physical properties power-law quan-
tum wave packets.

Note added

In a recent paper [20], the information-entropic
uncertainty relation as well as the mutual informa-
tion entropy have been discussed for the multivariate
Cauchy–Lorentz distributions and the associated wave
packets. There, some interesting scaling behaviors in
terms of the number of the degrees of freedom have
been found.
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