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Abstract

In this work, a general definition of convolution between two ar-

bitrary Tempered Ultradistributions is given. When one of the Tem-
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pered Ultradistributions is rapidly decreasing this definition coincides

with the definition of J. Sebastiao e Silva. In the four-dimensional

case, when the Tempered Ultradistributions are even in the variables

k0 and ρ (see Section 5) we obtain an expression for the convolution,

which is more suitable for practical applications. The product of two

arbitrary even (in the variables x0 and r) four dimensional distribu-

tions of exponential type is defined via the convolution of its corre-

sponding Fourier Transforms. With this definition of convolution , we

treat the problem of singular products of Green Functions in Quantum

Field Theory. (For Renormalizable as well as for Nonrenormalizable

Theories). Several examples of convolution of two Tempered Ultradis-

tributions are given. In particular we calculate the convolution of two

massless Wheeeler’s propagators and the convolution of two complex

mass Wheeler’s propagators.

PACS: 03.65.-w, 03.65.Bz, 03.65.Ca, 03.65.Db.
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1 Introduction

The question of the product of distributions with coincident point singular-

ities is related in Field Theory, to the asymptotic behavior of loop integrals

of propagators.

From a mathematical point of view, practically all definitions lead to

limitations on the set of distributions that can be multiplied together to give

another distribution of the same kind.

The properties of ultradistributions (ref.[1, 2]) are well adapted for their

use in Field Theory. In this respect we have shown (ref.[3]) that it is possible

to define in one dimensional space, the convolution of any pair of tempered

ultradistributions, giving as a result another tempered ultradistribution. The

next step is to consider the convolution of any pair of tempered ultradistri-

bution in n-dimensional space. As we shall see, this follows from the formula

obtained in ref.[3] for one dimensional space.

However, the resultant formula is rather complex to be used in practical

applications and calculus. Then, for applications, it is convenient to consider

the convolution of any two tempered ultradistributions which are even in the

variables k0 y ρ (see section 5).

Ultradistributions also have the advantage of being representable by means
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of analytic functions. So that, in general, they are easier to work with them

and, as we shall see, have interesting properties. One of those properties is

that Schwartz tempered distributions are canonical and continuously injected

into tempered ultradistributions and as a consequence the Rigged Hilbert

Space with tempered distributions is canonical and continuously included in

the Rigged Hilbert Space with tempered ultradistributions.

This paper is organized as follow: in sections 2 and 3 we define the

Distributions of Exponential Type and the Fourier transformed Tempered

Ultradistributions. Each of them is part of a Guelfand’s Triplet ( or Rigged

Hilbert Space [4] ) together with their respective duals and a “middle term”

Hilbert space. In section 4 we give a general expression for the convolution

of any pair of n-dimensional tempered ultradistributions and some simple

examples. In section 5 we obtain the expression for the convolution of any

pair of even tempered ultradistributions. In section 6, we evaluate the con-

volution of two massless Wheeler’s propagators. In section 7 we evaluate the

convolution of two complex mass Wheeler’s propagators. Finally, section 8

is reserved for a discussion of the principal results. For the benefit of the

reader an Appendix is added containing some formulas utilized in the text.
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2 Distributions of Exponential Type

For the sake of the reader we shall present a brief description of the principal

properties of Tempered Ultradistributions.

Notations. The notations are almost textually taken from ref[2]. Let

Rn (res. Cn) be the real (resp. complex) n-dimensional space whose points

are denoted by x = (x1, x2, ..., xn) (resp z = (z1, z2, ..., zn)). We shall use the

notations:

(i) x+ y = (x1 + y1, x2+ y2, ..., xn+ yn) ; αx = (αx1, αx2, ..., αxn)

(ii)x ≧ 0 means x1 ≧ 0, x2 ≧ 0, ..., xn ≧ 0

(iii)x · y =
n∑

j=1

xjyj

(iV)| x |=
n∑

j=1

| xj |

Let Nn be the set of n-tuples of natural numbers. If p ∈ Nn, then

p = (p1, p2, ..., pn), and pj is a natural number, 1 ≦ j ≦ n. p + q denote

(p1+q1, p2+q2, ..., pn+qn) and p ≧ q means p1 ≧ q1, p2 ≧ q2, ..., pn ≧ qn.

xp means xp1

1 x
p2

2 ...x
pn
n . We shall denote by | p |=

n∑

j=1

pj and by Dp we denote

the differential operator ∂p1+p2+...+pn/∂x1
p1∂x2

p2 ...∂xn
pn

For any natural k we define xk = xk1x
k
2...x

k
n and ∂k/∂xk = ∂nk/∂xk1∂x

k
2...∂x

k
n

The space H of test functions such that ep|x||Dqφ(x)| is bounded for any
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p and q is defined ( ref.[2] ) by means of the countably set of norms:

‖φ̂‖p = sup
0≤q≤p,x

ep|x|
∣

∣Dqφ̂(x)
∣

∣ , p = 0, 1, 2, ... (2.1)

According to reference[5] H is a K{Mp} space with:

Mp(x) = e
(p−1)|x| , p = 1, 2, ... (2.2)

K{e(p−1)|x|} satisfies condition (N ) of Guelfand ( ref.[4] ). It is a countable

Hilbert and nuclear space:

K{e(p−1)|x|} = H =

∞
⋂

p=1

Hp (2.3)

where Hp is obtained by completing H with the norm induced by the scalar

product:

< φ̂, ψ̂ >p =

∞∫

−∞

e2(p−1)|x|

p∑

q=0

Dqφ̂(x)Dqψ̂(x) dx ; p = 1, 2, ... (2.4)

where dx = dx1 dx2...dxn

If we take the usual scalar product:

< φ̂, ψ̂ >=

∞∫

−∞

φ̂(x)ψ̂(x) dx (2.5)

then H, completed with (2.5), is the Hilbert space H of square integrable

functions.
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The space of continuous linear functionals defined on H is the space Λ∞

of the distributions of the exponential type ( ref.[2] ).

The “nested space”

H = (H,H,Λ∞) (2.6)

is a Guelfand’s triplet ( or a Rigged Hilbert space [4] ).

In addition we have: H ⊂ S ⊂ H ⊂ S
′

⊂ Λ∞ , where S is the Schwartz

space of rapidly decreasing test functions (ref[6]).

Any Guelfand’s triplet G = (Φ,H,Φ
′

) has the fundamental property

that a linear and symmetric operator on Φ, admitting an extension to a

self-adjoint operator in H, has a complete set of generalized eigen-functions

in Φ
′

with real eigenvalues.

3 Tempered Ultradistributions

The Fourier transform of a function φ̂ ∈ H is

φ(z) =
1

2π

∞∫

−∞

φ̂(x) eiz·x dx (3.1)

φ(z) is entire analytic and rapidly decreasing on straight lines parallel to the

real axis. We shall call H the set of all such functions.

H = F {H} (3.2)
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It is a Z{Mp} space ( ref.[5] ), countably normed and complete, with:

Mp(z) = (1+ |z|)p (3.3)

H is also a nuclear space with norms:

‖φ‖pn = sup
z∈Vn

(1+ |z|)
p
|φ(z)| (3.4)

where Vk = {z = (z1, z2, ..., zn) ∈ C
n :| Imzj |≦ k, 1 ≦ j ≦ n}

We can define the usual scalar product:

< φ(z), ψ(z) >=

∞∫

−∞

φ(z)ψ1(z) dz =

∞∫

−∞

φ̂(x)ψ̂(x) dx (3.5)

where:

ψ1(z) =

∞∫

−∞

ψ̂(x) e−iz·x dx

and dz = dz1 dz2...dzn

By completing H with the norm induced by (3.5) we get the Hilbert space

of square integrable functions.

The dual of H is the space U of tempered ultradistributions ( ref.[2] ). In

other words, a tempered ultradistribution is a continuous linear functional

defined on the space H of entire functions rapidly decreasing on straight lines

parallel to the real axis.

The setU = (H, H,U) is also a Guelfand’s triplet.
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Moreover, we have: H ⊂ S ⊂ H ⊂ S
′

⊂ U .

U can also be characterized in the following way ( ref.[2] ): let Aω be

the space of all functions F(z) such that:

I- F(z) is analytic for {z ∈ Cn : |Im(z1)| > p, |Im(z2)| > p, ..., |Im(zn)| >

p}.

II- F(z)/zp is bounded continuous in {z ∈ Cn : |Im(z1)| ≧ p, |Im(z2)| ≧

p, ..., |Im(zn)| ≧ p}, where p = 0, 1, 2, ... depends on F(z).

Let Π be the set of all z-dependent pseudo-polynomials, z ∈ Cn. Then

U is the quotient space:

III- U = Aω/Π

By a pseudo-polynomial we understand a function of z of the form

∑
s z

s
jG(z1, ..., zj−1, zj+1, ..., zn) with G(z1, ..., zj−1, zj+1, ..., zn) ∈ Aω

Due to these properties it is possible to represent any ultradistribution

as ( ref.[2] ):

F(φ) =< F(z), φ(z) >=

∮

Γ

F(z)φ(z) dz (3.6)

Γ = Γ1 ∪ Γ2 ∪ ...Γn where the path Γj runs parallel to the real axis from −∞

to ∞ for Im(zj) > ζ, ζ > p and back from ∞ to −∞ for Im(zj) < −ζ,

−ζ < −p. ( Γ surrounds all the singularities of F(z) ).

Formula (3.6) will be our fundamental representation for a tempered ul-
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tradistribution. Sometimes use will be made of “Dirac formula” for ultradis-

tributions ( ref.[1] ):

F(z) =
1

(2πi)n

∞∫

−∞

f(t)

(t1− z1)(t2− z2)...(tn− zn)
dt (3.7)

where the “density” f(t) is such that

∮

Γ

F(z)φ(z) dz =

∞∫

−∞

f(t)φ(t) dt (3.8)

While F(z) is analytic on Γ , the density f(t) is in general singular, so that

the r.h.s. of (3.8) should be interpreted in the sense of distribution theory.

Another important property of the analytic representation is the fact that

on Γ , F(z) is bounded by a power of z ( ref.[2] ):

|F(z)| ≤ C|z|p (3.9)

where C and p depend on F.

The representation (3.6) implies that the addition of a pseudo-polynomial

P(z) to F(z) do not alter the ultradistribution:

∮

Γ

{F(z) + P(z)}φ(z) dz =

∮

Γ

F(z)φ(z) dz +

∮

Γ

P(z)φ(z) dz

But:
∮

Γ

P(z)φ(z) dz = 0
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as P(z)φ(z) is entire analytic in some of the variables zj ( and rapidly de-

creasing ),

∴

∮

Γ

{F(z) + P(z)}φ(z) dz =

∮

Γ

F(z)φ(z) dz (3.10)

4 The Convolution

In ref.[3] we have defined and shown the existence of the convolution product

between to arbitrary one dimensional tempered ultradistributions.

We now define:

Hλ(k) =
i

(2π)n

∮

Γ1

∮

Γ2

kλ1F(k1)k
λ
2G(k2)

k − k1 − k2
dk1 dk2 (4.1)

(k− k1 − k2 =
∏n

i=1(ki − k1i − k2i)). Let bi be a vertical band contained in

the λi-plane pi Integral (4.1) is an analytic function of λ defined in a domain

B given by the cartesian product of vertical bands
∏

bi contained in the

cartesian product P =
∏

pi of the n λ-planes. Moreover, it is bounded by a

power of |k|. Then, according to the method of ref.[7], Hλ can be analytically

continued to other parts of P. In particular near the origin we have the

Laurent expansion:

Hλ(k) =
∑

n

H(n)(k)λn (4.2)
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We now define the convolution product as the λ-independent term of (4.2):

H(k) = H(0)(k) (4.3)

The proof that H(0)(k) is a Tempered Ultradistribution is similar to the one

given in ref.[3] for the one-dimensional case. For an immediate application

of (4.1-4.3) we can evaluate the product of two arbitrary derivatives of a

n-dimensional δ distribution. By calculating the convolution product of the

Fourier transforms of δ(m)(x) an δ(n)(x), and then antitransforming, we can

show that:

δ(m)(x) · δ(n)(x) = 0 (4.4)

extending the result obtained in ref.[3] for the one-dimensional case.

Likewise, we can obtain:

(xα1

1+ x
α2

2+...x
αn
n+) · (x

β1

1+ x
β2

2+...x
βn

n+) = (xα1+β1

1+ xα2+β2

2+ ...xαn+βn

n+ ) (4.5)

generalizing again the result of ref.[3].

As another example let us consider the product (x−n1y−m1) · (x−n2y−m2)

We have

F {(x−n1y−m1) · (x−n2y−m2)} =
(−i)n1+n2

(n1+ n2− 1)!
zn1+n2−1
1

[

i

4

z2λ11

λ1
+
i

2
ln(z1)+

π

2
Sgn[ℑ(z1)]

] (−i)m1+m2

(m1+m2− 1)!
zm1+m2−1
2

[

i

4

z2λ22

λ2
+
i

2
ln(z2) +

π

2
Sgn[ℑ(z2)]

]

=

12



(−i)n1+n2

(n1+ n2 − 1)!
zn1+n2−1
1

[

i

4λ1
[1+ 2λ1 ln(z1)] +

i

2
ln(z1) +

π

2
Sgn[ℑ(z1)]

]

×

(−i)m1+m2

(m1+m2 − 1)!
zm1+m2−1
2

[

i

4λ2
[1+ 2λ2 ln(z2)] +

i

2
ln(z2) +

π

2
Sgn[ℑ(z2)]

]

(4.6)

The (λ1; λ2)-independent term is:

(−i)n1+n2π

(n1+ n2− 1)!
zn1+n2−1
1

[

1

πi
ln(z1) −

π

2
Sgn[ℑ(z1)]

]

×

(−i)m1+m2

(m1+m2− 1)!
zm1+m2−1
2

[

1

πi
ln(z2) −

π

2
Sgn[ℑ(z2)]

]

(4.7)

and it is recognized to be F {x−n1−n2y−m1−m2 }

5 The Convolution of even four-dimensional

Tempered Ultradistributions

We pass now to consider the convolution of two even tempered ultradistri-

butions.

The Fourier transform of a distribution of exponential type, even in the

variables x0 and |~x| is by definition a even tempered ultradistribution in the

variables k0 and ρ = (k21+k
2
2+ · · ·+k2n)

1/2 Taking into account the equality:
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+∞∫

−∞

f̂(x)φ̂(x) dx =

∮

Γ

F(k)φ(k) dk =

+∞∫

−∞

f(k)φ(k) dk (5.1)

(where F(k) and f(k) are related by (3.7)) we conclude that f(k) is even in

k0 and ρ.

For most practical applications one has to deal with the convolution of

two Lorentz invariant ultradistributions. They are particular cases of ultra-

distributions which are even in two relevant variables: one temporal and the

other the spacial distance (The even ultradistributions).

Let as now consider f̂ ∈ H even. Then we can write:

f̂(x0, r) =
i

(2π)3r

+∞∫∫

−∞

f(k0, ρ)e
−ik0x0e−iρr ρ dρdk0 (5.2)

f(k0, ρ) = −
2πi

ρ

+∞∫∫

−∞

f̂(x0, r)e
ik0x0eiρr r drdx0 (5.3)

Let as now take ĝ ∈ H. Then according to (5.2):

f̂(x)ĝ(x) = −
1

(2π)6r2

+∞∫∫∫∫

−∞

f(k01, ρ1)g(k
0
2, ρ2)e

−i(k0
1+k0

2)x
0

e−i(ρ1+ρ2)r ×

× ρ1ρ2 dρ1 dρ2 dk
0
1 dk

0
2 (5.4)
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and Fourier transforming (5.4)

F {f̂(x)ĝ(x)}(k) =
i

(2π)5ρ

+∞∫

· · ·

∫

−∞

f(k01, ρ1)g(k
0
2, ρ2)e

i(k0−k0
1−k0

2)x
0

ei(ρ−ρ1−ρ2)r ×

× ρ1ρ2 dρ1 dρ2 dk
0
1 dk

0
2 r

−1dr dx0 (5.5)

Evaluating the integral in the variable x0 and calling h(k0, ρ) = F {f̂(x)ĝ(x)}(k)

in (5.5) we obtain

h(k0, ρ) = i

+∞∫

· · ·

∫

−∞

f(k01, ρ1)g(k
0
2, ρ2)δ(k

0− k01 − k
0
2)
ei(ρ−ρ1−ρ2)r

ρ
×

× ρ1ρ2 dρ1 dρ2 dk
0
1 dk

0
2 r

−1dr (5.6)

We want now to extend h(k0, ρ) to the complex plane as a tempered ultradis-

tribution. For this we can use for example, formula (3.7). First we consider

the term

ei(ρ−ρ1−ρ2)r

ρ
(5.7)

The extension to the complex plane is:

{Θ(r) Θ[ℑ(ρ)] −Θ(−r) Θ[−ℑ(ρ)]}
ei(ρ−ρ1−ρ2)r

ρ
(5.8)

where Θ is the Heaviside’s step function and ℑ denotes “Imaginary part”.
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On the other hand the extension of

δ(k0 − k01 − k
0
2) (5.9)

is

−
1

2πi(k0− k01− k
0
2)

(5.10)

Replacing [(5.8),(5.10)] in (5.6) and then integrating out the variable r we

obtain:

H(k0, ρ) =
1

2πρ

+∞∫∫∫∫

−∞

f(k01, ρ1)g(k
0
2, ρ2)

k0 − k01 − k
0
2

{Θ[ℑ(ρ)] ln(ρ1+ ρ2− ρ) +Θ[−ℑ(ρ)] ×

ln(ρ− ρ1− ρ2)} ρ1ρ2 dρ1 dρ2 dk
0
1 dk

0
2 (5.11)

where H(k0, ρ) is the extension of f(k0, ρ). Taking into account that f(k01, ρ1)

and g(k02, ρ2) are even functions in the first and second variables (5.11) takes

the form:

H(k0, ρ) =
1

4πρ

+∞∫∫∫∫

−∞

f(k01, ρ1)g(k
0
2, ρ2)

k0− k01− k
0
2

ln[ρ2− (ρ1+ ρ2)
2] ×

ρ1ρ2 dρ1 dρ2 dk
0
1 dk

0
2 (5.12)

The expression (5.12) for H(k0, ρ) can be re-writted in the form

H(k0, ρ) =
1

4πρ

∮

Γ0
1

∮

Γ0
2

∮

Γ1

∮

Γ2

F(k01, ρ1)G(k
0
2, ρ2)

k0− k01− k
0
2

ln[ρ2− (ρ1+ ρ2)
2] ×

16



ρ1ρ2 dρ1 dρ2 dk
0
1 dk

0
2 (5.13)

where F(k01, ρ1) and G(k02, ρ2) are respectively, the extensions of f(k01, ρ1)

and g(k02, ρ2) and where we have taken: |ℑ(k0)| > |ℑ(k01)| + |ℑ(k02)|, |ℑ(ρ)| >

|ℑ(ρ1)| + |ℑ(ρ2)|. In addition Γ01 , Γ
0
2 ,Γ1 and Γ2 are respectively, paths (as we

have described in section 3 ), in the variables k01, k
0
2, ρ1 and ρ2, enclosing all

the singularities of the integrand in (5.13). The difference between

∫
2ρ

ρ2− (ρ1+ ρ2)2
dρ and ln[ρ2− (ρ1+ ρ2)

2]

is an entire analytic function. With this substitution in (5.13) we obtain

H(k0, ρ) =
1

2πρ

∫

ρ dρ

∮

Γ01

∮

Γ02

∮

Γ1

∮

Γ2

F(k01, ρ1)G(k
0
2, ρ2)

k0 − k01 − k
0
2

1

ρ2− (ρ1+ ρ2)2
×

ρ1ρ2 dρ1 dρ2 dk
0
1 dk

0
2 (5.14)

Now we can use the method of ref.[3] to define the convolution for the case

in which F(k01, ρ1) and G(k
0
2, ρ2) are tempered ultradistributions. We define:

Hλ0λ(k
0, ρ) =

1

2πρ

∫

ρ dρ

∮

Γ01

∮

Γ02

∮

Γ1

∮

Γ2

k0 λ0
1 ρλ+1

1 F(k01, ρ1)k
0 λ0
2 ρλ+1

2 G(k02, ρ2)

k0− k01− k
0
2

×

1

ρ2− (ρ1+ ρ2)2
dρ1 dρ2 dk

0
1 dk

0
2 (5.15)
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Integral (5.15) is an analytic function of (λ0, λ) bounded by a power of |k|

and defined in a domain B given by the cartesian product of a vertical band

b0 contained in the λ0-plane and vertical band b contained in the λ-plane. We

can again extend this domain using the method given in ref.[7] and perform

the Laurent expansion :

Hλ0λ(k
0, ρ) =

∑

mn

H(m,n)(k0, ρ)λm0 λ
n (5.16)

We define the convolution product as the (λ0, λ)- independent term of (5.16).

H(k) = H(k0, ρ) = H(0,0)(k0, ρ) (5.17)

The proof that H(k) is an ultradistribution is similar to the one given in

ref.[3] for the one-dimensional case.

To simplify the evaluation of (5.15) we define:

Lλ0λ(k
0, ρ) =

∮

Γ01

∮

Γ02

∮

Γ1

∮

Γ2

k0 λ0
1 ρλ+1

1 F(k01, ρ1)k
0 λ0
2 ρλ+1

2 G(k02, ρ2)

k0 − k01 − k
0
2

×

1

ρ2− (ρ1+ ρ2)2
dρ1 dρ2 dk

0
1 dk

0
2 (5.18)

so that

Hλ0λ(k
0, ρ) =

1

2πρ

∫

Lλ0λ(k
0, ρ) ρ dρ (5.19)
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Now we go to show that the cut on the real axis of (5.17) hλ0λ(k
0, ρ) is a

even function of k0 and ρ. For this purpose we consider

Hλ0λ(k
0, ρ) =

1

4πρ

∮

Γ01

∮

Γ02

∮

Γ1

∮

Γ2

k0 λ0
1 ρλ+1

1 F(k01, ρ1)k
0 λ0
2 ρλ+1

2 G(k02, ρ2)

k0 − k01 − k
0
2

×

ln[ρ2− (ρ1+ ρ2)
2] dρ1 dρ2 dk

0
1 dk

0
2 (5.20)

(5.20) is explicitly odd in ρ. For the variable k0 we take on account that

eiπλ0{Sgn[ℑ(k
0
1)]+Sgn[ℑ(k0

2)]} = 1 and as a consequence (5.20) is odd in k0 too. We

consider now the parity in variable ρ.

∮

Γ0

∮

Γ

Hλ0λ(k
0,−ρ)φ(k0, ρ) dk0 dρ = −

+∞∫∫

−∞

hλ0λ(k
0,−ρ)φ(k0, ρ) dk0 dρ =

−

∮

Γ0

∮

Γ

Hλ0λ(k
0, ρ)φ(k0, ρ) dk0 dρ = −

+∞∫∫

−∞

hλ0λ(k
0, ρ)φ(k0, ρ) dk0 dρ (5.21)

Thus we have

hλ0λ(k
0,−ρ) = hλ0λ(k

0, ρ) (5.22)

The proof for the variable k0 is similar.
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6 The Convolution of two massless Wheeler’s

Propagators

The massless Wheeler’s propagator w0 is given by:

w0(k) =
i

k20 − ρ
2

(6.1)

It can be extended to the complex plane as a tempered ultradistribution in

the variables k0 and ρ:

W0(k) = −i
Sgnℑ(k0)

8k0

[

Sgnℑ(ρ) − Sgnℑ(k0)

ρ− k0
−

Sgnℑ(ρ) + Sgnℑ(k0)

ρ+ k0

]

(6.2)

where Sgn(x) is the function sign of the variable x.

We can now evaluate the convolution of two massless Wheeler’s propaga-

tors. Then according to (5.18) and (6.2) we can write:

Lλ0λ(k
0, ρ) = −

∮

Γ0
1

∮

Γ0
2

∮

Γ1

∮

Γ2

Sgnℑ(k01)

8k01

[

Sgnℑ(ρ1) − Sgnℑ(k
0
1)

ρ1− k
0
1

−
Sgnℑ(ρ1) + Sgnℑ(k

0
1)

ρ1+ k
0
1

]

Sgnℑ(k02)

8k02

[

Sgnℑ(ρ2) − Sgnℑ(k
0
2)

ρ2− k
0
2

−
Sgnℑ(ρ2) + Sgnℑ(k

0
2)

ρ2+ k
0
2

]

×

k0 λ0
1 ρλ+1

1 k0 λ0
2 ρλ+1

2

(k0− k01 − k
0
2)[ρ

2− (ρ1+ ρ2)2]
dρ1 dρ2 dk

0
1 dk

0
2 (6.3)

20



equation (6.3) can be written as:

Lλ0λ(k
0, ρ) = −

∮

Γ01

∮

Γ02

+∞∫∫

−∞

{
Sgnℑ(k01)

8ρ1

[

1

k01 − ρ1
−

1

k01 + ρ1

]

×

[

(ρ1+ i0)
λ+1

+ (ρ1− i0)
λ+1

]

+
1

8k01

[

1

k01 + ρ1
−

1

k01 − ρ1

]

×

[

(ρ1+ i0)
λ+1

− (ρ1− i0)
λ+1

]} {
Sgnℑ(k02)

8ρ2

[

1

k02 − ρ2
−

1

k02 + ρ2

]

×

[

(ρ2+ i0)
λ+1

+ (ρ2− i0)
λ+1

]

+
1

8k02

[

1

k02 + ρ2
−

1

k02 − ρ2

]

×

[

(ρ2+ i0)
λ+1

− (ρ2− i0)
λ+1

]} k0 λ0
1 k0 λ0

2 dρ1 dρ2 dk
0
1 dk

0
2

(k0− k01− k
0
2)[ρ

2
− (ρ1+ ρ2)2]

(6.4)

Integrating (6.4) in the variable k01 we obtain

Lλ(k
0, ρ) = −

∮

Γ02

+∞∫∫

−∞

{
iπ

4ρ1
Sgnℑ(k0)

[

1

k02 − (k0 − ρ1)
−

1

k02 − (k0+ ρ1

]

×

[

(ρ1+ i0)
λ+1

+ (ρ1− i0)
λ+1

]

+
iπ

4ρ1

[

2

k02− k
0
−

1

k02− (k0− ρ1)
−

1

k02 − (k0 − ρ1)

]

×

[

(ρ1+ i0)
λ+1

− (ρ1− i0)
λ+1

]} {
Sgnℑ(k02)

8ρ2

[

1

k02 − ρ2
−

1

k02 + ρ2

]

×

[

(ρ2+ i0)
λ+1

+ (ρ2− i0)
λ+1

]

+
1

8k02

[

1

k02 + ρ2
−

1

k02 − ρ2

]

×

[

(ρ2+ i0)
λ+1

− (ρ2− i0)
λ+1

]} dρ1 dρ2 dk
0
2

ρ2− (ρ1+ ρ2)2
(6.5)
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where we have selected λ0 = 0 due to the fact the integral is convergent for

λ0 = 0.

There have a sole term in (6.5) whose integral is not null. It is:

Lλ(k
0, ρ) = −

∮

Γ02

+∞∫∫

−∞

iπ

4ρ1
Sgnℑ(k0)

[

1

k02 − (k0− ρ1)
−

1

k02− (k0+ ρ1

]

×

[

(ρ1+ i0)
λ+1

+ (ρ1− i0)
λ+1

] Sgnℑ(k02)

8ρ2

[

1

k02 − ρ2
−

1

k02 + ρ2

]

×

[

(ρ2+ i0)
λ+1

+ (ρ2− i0)
λ+1

] dρ1 dρ2 dk
0
2

ρ2− (ρ1+ ρ2)2
(6.6)

Evaluation of (6.6) gives:

Lλ(k
0, ρ) =

π2k0

2

+∞∫∫

−∞

[

(ρ1+ i0)
λ+1+ (ρ1− i0)

λ+1
] [

(ρ2+ i0)
λ+1+ (ρ2− i0)

λ+1
]

dρ1 dρ2
[

(k20+ ρ1
2 − ρ22)2− 4k

2
0ρ1

2
]

[ρ2− (ρ1+ ρ2)2]
(6.7)

We can evaluate now the integral in the variable ρ2 in (6.7). The result is:

Lλ(k
0, ρ) =

π3

16ρ

(1+ cosπλ)2

sin π(λ+1)

2

∞∫

0

dρ1 ρ
λ
1 ×






e−
iπ
2
(λ+1)Sgnℑ(k0)(k0+ ρ1)

λ+1− e−
iπ
2
(λ+1)Sgnℑ(ρ)(ρ+ ρ1)

λ+1

(ρ− k0)
(

ρ+k0

2
+ ρ1

) −

e−
iπ
2
(λ+1)Sgnℑ(k0)(k0+ ρ1)

λ+1− e
iπ
2
(λ+1)Sgnℑ(ρ)(ρ1− ρ)

λ+1

(ρ+ k0)
(

ρ−k0

2
− ρ1

) −
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e
iπ
2
(λ+1)Sgnℑ(k0)(ρ1− k

0)λ+1− e−
iπ
2
(λ+1)Sgnℑ(ρ)(ρ1+ ρ)

λ+1

(ρ+ k0)
(

ρ−k0

2
+ ρ1

) +

e
iπ
2
(λ+1)Sgnℑ(k0)(ρ1− k

0)λ+1− e
iπ
2
(λ+1)Sgnℑ(ρ)(ρ1− ρ)

λ+1

(ρ− k0)
(

ρ+k0

2
− ρ1

)





(6.8)

The evaluation of (6.8) is tedious task. Fortunately lim λ→ 0 can be taken

without problem in the finals steps of the calculation. The result is:

L(k0, ρ) =
π3

4ρ

[π

2
Sgnℑ(k0)Sgnℑ(k0+ ρ) +

π

2
Sgnℑ(ρ)Sgnℑ(k0+ ρ) +

π

2
Sgnℑ(k0)Sgnℑ(ρ− k0) − Sgnℑ(ρ− k0)

]

(6.9)

Eq. (6.9) can be written:

L(k0, ρ) =
π4

8ρ

[(

Sgnℑ(k0) + Sgnℑ(ρ)
)

Sgnℑ(ρ+ k0) +

(

Sgnℑ(k0) − Sgnℑ(ρ)
)

Sgnℑ(ρ− k0)
]

=

π4

4ρ
Sgnℑ(k0)Sgnℑ(ρ) (6.10)

Taking into account that:

H(k0, ρ) =
1

2πρ

∫

L(k0, ρ)ρ dρ
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we obtain:

H(k0, ρ) =
π3

8
Sgnℑ(k0)Sgnℑ(ρ) = [W0 ∗W0](k

0, ρ) (6.11)

(The symbol ∗ indicates the convolution product).

Thus the cut of H(k0, ρ) along the real axis, i.e., the distribution h(k0, ρ)

is:

h(k0, ρ) =
π3

2
= [w0 ∗w0](k

0, ρ) (6.12)

7 The Convolution of two complex mass Wheeler’s

Propagators

The complex mass Wheeler’s propagator is:

wµ(x) = −
iπ

2

µn/2−1

(2π)n/2
Q

1/2(1−n/2)
− J1−n/2(µQ

1/2
− ) (7.1)

and it Fourier transform has the expression:

Wµ(k
0, ρ) = −

iSgn[ℑ(k0)]

8
√

k20 − µ
2

[

Sgn[ℑ(ρ)] − Sgn[ℑ(
√

k20 − µ
2)]

ρ−
√

k20 − µ
2

−

Sgn[ℑ(ρ)] + Sgn[ℑ(
√

k20 − µ
2)]

ρ+
√

k20 − µ
2

]

(7.2)
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Using (7.2) we have now:

L(k0, ρ) = −

∮

Γ01

∮

Γ02

∮

Γ1

∮

Γ2

Sgn[ℑ(k01)]

8
√

k021 − µ2
1

[

Sgn[ℑ(ρ1)] − Sgn[ℑ(
√

k021 − µ2
1)]

ρ1−
√

k021 − µ2
1

−

Sgn[ℑ(ρ1)] + Sgn[ℑ(
√

k021 − µ2
1)]

ρ+ 1+
√

k021 − µ2
1

]

Sgn[ℑ(k02)]

8
√

k022 − µ2
2

[

Sgn[ℑ(ρ2)] − Sgn[ℑ(
√

k022 − µ2
2)]

ρ2−
√

k022 − µ2
2

−

Sgn[ℑ(ρ2)] + Sgn[ℑ(
√

k022 − µ2
2)]

ρ2+
√

k022 − µ2
2

]

ρ1ρ2dρ1 dρ2 dk
0
1 dk

0
2

(k0− k01− k
0
2)[ρ

2− (ρ1+ ρ2)2]
(7.3)

where we have selected λ0 = λ = 0 due to that (7.3) is convergent in this

point (Observe the reader that it is due to the definition of L(k0, ρ)). Now

(7.3) is equal to:

L(k0, ρ) = −
1

4

∮

Γ01

∮

Γ02

+∞∫∫

−∞

Sgn[ℑ(k01)]

ρ21+ µ
2
1− k

02
1

Sgn[ℑ(k02)]

ρ22+ µ
2
2− k

02
2

×

ρ1ρ2

(k0− k01 − k
0
2)[ρ

2− (ρ1+ ρ2)2]
dρ1 dρ2 dk

0
1 dk

0
2 (7.4)

and can be re-written as:

L(k0, ρ) = −
1

16

∮

Γ01

∮

Γ02

+∞∫∫

−∞

Sgn[ℑ(k01)]
√

ρ21+ µ
2
1

[

1

k01−
√

ρ21+ µ
2
1

−
1

k01+
√

ρ21+ µ
2
1

]

×

Sgn[ℑ(k02)]
√

ρ22+ µ
2
2

[

1

k02 −
√

ρ22+ µ
2
2

−
1

k02 +
√

ρ22+ µ
2
2

]

1

(k0− k01− k
0
2)
×
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ρ1ρ2

ρ2− (ρ1+ ρ2)2
dρ1 dρ2 dk

0
1 dk

0
2 (7.5)

Taking into account that:

∮

Γ01

∮

Γ02

Sgn[ℑ(k01)]Sgn[ℑ(k
0
2)

k0− k01− k
0
2

[

1

k01−
√

ρ21+ µ
2
1

−
1

k01+
√

ρ21+ µ
2
1

]

×

[

1

k02−
√

ρ22+ µ
2
2

−
1

k02 +
√

ρ22+ µ
2
2

]

dk01 dk
0
2 =

−
32π2k0

√

ρ21+ µ
2
1

√

ρ22+ µ
2
2

[k20+ (ρ22+ µ
2
2) − (ρ21+ µ

2
2)]

2− 4k20(ρ
2
2+ µ

2
2)

(7.6)

Replacing this result in (7.5) we obtain

L(k0, ρ) = 2π2k0
+∞∫∫

−∞

1

[k20+ (ρ22+ µ
2
2) − (ρ21+ µ

2
2)]

2− 4k20(ρ
2
2+ µ

2
2)

×

ρ1ρ2

ρ2− (ρ1+ ρ2)2
dρ1 dρ2 (7.7)

Taking into account that

∫
ρ dρ

ρ2− (ρ1+ ρ2)2
= Θ[ℑ(ρ)] ln(ρ1+ρ2−ρ)+Θ[−ℑ(ρ)] ln(ρ−ρ1−ρ2) (7.8)

and using the result (7.7) we obtain

H(k0, ρ) =
πk0

ρ

+∞∫∫

−∞

1

[k20+ (ρ22+ µ
2
2) − (ρ21+ µ

2
2)]

2− 4k20(ρ
2
2+ µ

2
2)

×
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Θ[ℑ(ρ)] ln(ρ1+ ρ2− ρ) +Θ[−ℑ(ρ)] ln(ρ− ρ1− ρ2) dρ1 dρ2 (7.9)

The equation (7.9) can be written in the real ρ-axis as:

H(k0, ρ) =
iπ2k0

ρ

+∞∫∫

−∞

Sgn(ρ1+ ρ2− ρ) ρ1ρ2 dρ1 dρ2

[k20+ (ρ22+ µ
2
2) − (ρ21+ µ

2
2)]

2− 4k20(ρ
2
2+ µ

2
2)

(7.10)

After the evaluation of double integral of (7.10) we obtain:

H(k0, ρ) =
π3Sgn[ℑ(k0)]

4(k20− ρ
2)

√

(k20− ρ
2+ µ2

2− µ
2
1)

2− 4(k20− ρ
2)µ2

2 =

[Wµ1
∗Wµ2

](k0, ρ) (7.11)

8 Discussion

In a earlier paper [3] we have shown the existence of the convolution of two

one-dimensional tempered ultradistributions. In this paper we have extended

these procedure to n-dimensional space. In four-dimensional space we have

obtained a expression for the convolution of two tempered ultradistributions

even in the variables k0 and ρ.

When we use the perturbative development in Quantum Field Theory,

we have to deal with products of distributions in configuration space, or
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else, with convolutions in the Fourier transformed p-space. Unfortunately,

products or convolutions ( of distributions ) are in general ill-defined quanti-

ties. However, in physical applications one introduces some “regularization”

scheme, which allows us to give sense to divergent integrals. Among these

procedures we would like to mention the dimensional regularization method (

ref. [8, 9] ). Essentially, the method consists in the separation of the volume

element ( dνp ) into an angular factor ( dΩ ) and a radial factor ( pν−1dp ).

First the angular integration is carried out and then the number of dimen-

sions ν is taken as a free parameter. It can be adjusted to give a convergent

integral, which is an analytic function of ν.

Our formula (4.1) is similar to the expression one obtains with dimen-

sional regularization. However, the parameters λ are completely indepen-

dents of any dimensional interpretation.

All ultradistributions provide integrands ( in (4.1) ) that are analytic

functions along the integration paths. The parameters λ permit us to control

the possible tempered asymptotic behavior ( cf. eq. (3.9) ). The existence

of a region of analyticity for each λ, and a subsequent continuation to the

point of interest ( ref. [3] ), defines the convolution product.

For tempered ultradistributions (even in the variables k0 and ρ) we have
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obtained formula (5.15) for which are valid similar considerations to those

given for (4.1) The properties described below show that tempered ultra-

distributions provide an appropriate framework for applications to physics.

Furthermore, they can “absorb” arbitrary pseudo-polynomials, thanks to eq.

(3.10). A property that is interesting for renormalization theory. For this

reason we decided to begin this paper and also for the benefit of the reader we

began this paper with a summary of the main characteristics of n-dimensional

tempered ultradistributions and their Fourier transformed distributions of

the exponential type.
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