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Abstract

We analyze the order-α2
s QCD corrections to semi-inclusive deep inelastic scattering and present

results for processes initiated by a gluon. We focus in the most singular pieces of these corrections
in order to obtain the hitherto unknown NLO evolution kernels relevant for the non-homogeneous
QCD scale dependence of these cross sections, and to check explicitly factorization at this order. In
so doing we discuss the prescription of overlapping singularities in more than one variable.
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1. Introduction

In recent years there has been an increasing wealth of interest in semi-inclusive deep
inelastic scattering, driven both by crucial breakthroughs in the QCD description of these
processes [1–4] and also by an incipient availability of data encompassing polarized,
unpolarized, leading baryon, and diffractive deep inelastic phenomena [5].
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From the perturbative QCD standpoint, semi-inclusive deep inelastic scattering (SIDIS)
brings before theorists two novel and interesting features. On the one hand, fracture
functions which, in addition to structure and fragmentation functions, are required
for the correct description of hadrons produced in the forward direction and for the
factorization of collinear singularities. On the other, non-homogeneous Altarelli–Parisi
evolution equations, which highlights the interplay of the three intervening parton densities
in the scale dependence of these processes [1].

Although the main features related to SIDIS, and specifically to fracture functions, have
been studied at the leading order (LO) in QCD (order-αs in the cross section) [2,4], up
to now no computations had been done up to next to leading order (NLO) accuracy, as
it is standard in the inclusive case. In particular, there were neither explicit checks of
factorization at order-α2

s nor indications of how relevant the non-homogeneous evolution
might be at NLO.

In LO, non-standard evolution effects although non-negligible, are restricted to a
relatively small kinematic region, associated to the fragmentation configurations allowed
at that order [6]. This suggests to neglect these effects in many phenomenological analyses
of polarized SIDIS [7,8], leading baryon production [9] and diffractive DIS [6], provided
some cuts on data are introduced. In NLO the above mentioned kinematical restrictions are
no longer present, which in principle may lead to important corrections. In any case, their
phenomenological relevance needs to be assessed.

From a theoretical point of view, the computation of the SIDIS NLO corrections, and
specifically the explicit check of factorization of collinear singularities involve also some
subtleties which need close attention. At variance with the totally inclusive case [10], where
after a convenient integration over final states the remaining singularities may be written
as distributions in only one variable times a regular function, in the one particle inclusive
case at order α2

s , it is necessary to keep additional variables unintegrated. Consequently
one must deal with entangled singularities in more than one variable, corresponding, for
example, to three particles becoming collinear simultaneously. As usual for semi-inclusive
processes, in order to check factorization on has to keep track of the kinematical origin or
configuration which gives rise to the singularity, which represents a non-trivial additional
complication and requires a detailed analysis of the singularity structure characteristic of
the process.

In this paper we address the above mentioned issues restricting ourselves to processes
where the initial state parton is a gluon. This allows to analyze and answer the main issues
involved skipping for the moment, and for the sake of clarity, the formidable singularity
structure associated with virtual corrections to quark initiated processes, which will be
addressed in a forthcoming publication. In doing this, we develop suitable prescription
rules for dealing with the SIDIS singularity structure.

As result of our approach we obtain the hitherto unknown NLO non-homogeneous
kernels for fracture functions and discuss their distinctive features such as their non-
factorizable dependence upon two variables. We also verify explicitly the factorization of
collinear singularities up to order α2

s , and give the expression for the renormalized fracture

function in terms of the bare one. In order to asses the relevance of NLO corrections we
compare the effects of the new evolution kernels with the already known LO corrections.
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The outline of the paper is the following: in the next section we introduce the relevant
kinematics and conventions used and we extend the O(αs) results for the SIDIS cross
sections as required for the later factorization of collinear singularities at O(α2

s ). In the
third section we discuss the computation of amplitudes and phase space integration of
the O(α2

s ) processes. There, we introduce a suitable parameterization for the phase space
of the three final state particles, and extend some of the results given in Refs. [11–13]
for the angular integration of the corresponding amplitudes. In the fourth section we
analyze the SIDIS singularity structure at order α2

s and give details about the prescription
recipes required for dealing with it. In the fifth we address the issue of factorization and
technicalities associated with the convolution of distributions in many variables, present
the novel NLO kernels and discuss the evolution of fracture functions. In the last section
we present our conclusions.

2. Kinematics and O(αs) results

We begin considering the one-particle inclusive process in which a lepton of momentum
l scatters off a nucleon of momentum P ,

(1)l(l)+ P(P)−→ l′
(
l′
)+ h(Ph)+X,

and where in addition to the emerging lepton of momentum l′, a hadron h of momentum
Ph is tagged in the final state. X stands for all the unobserved particles. For simplicity we
consider only the exchange of one photon of momentum q = l′ − l. In order to characterize
the hadronic final state, in addition to the usual DIS variables

(2)
Q2 =−q2 =−(

l′ − l
)2
, xB = Q2

2P · q , y = P · q
P · l , SH = (P + l)2,

we introduce energy and angular variables

(3)vh = Eh

E0(1− xB)
, wh = 1− cos θh

2
,

where Eh and E0 are the energies of the produced hadron and of the incoming proton in
the �P + �q = 0 frame, respectively. θh is the angle between the momenta of the hadron and
the virtual photon in the same frame.

The corresponding cross section, differential in the final state lepton and hadron
variables, can be written as [2]

dσ

dxB dy dvh dwh

=
∑

i,j=q,q̄,g

1∫
xB

du

u

1∫
vh

dvj

vj

1∫
0

dwfi/P

(
xB

u

)
Dh/j

(
vh

vj

)
dσ̂ij

dxB dy dvj dwj

δ(wh −wj )

(4)+
∑ 1∫

du
M

(
xB

, (1− x )v

)
(1− x )

dσ̂i
δ(1−w ),
i xB
1−(1−xB)vh

u
i,h/P

u
B h B

dxB dy
h
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(a) (b)

Fig. 1. (a) Current and (b) target fragmentation processes.

where the sum is over all parton species.
In the first term of the r.h.s. of Eq. (4), dσ̂ij represents the partonic cross section for

the process l + i→ l′ + j + X, whereas fi/P and Dh/j are the usual partonic densities
and fragmentation functions. The variable u is related to the fraction of momentum of the
incoming parton ξ by ξ = xB/u, while vj and wj are the partonic analogs of vh and wh.
This term, represented in Fig. 1(a), describes a ‘current fragmentation’ process in which a
final state parton j fragments into the final state hadron h, which is produced in the same
direction than j .

In the second term of the r.h.s. of Eq. (4), dσ̂i stands for the inclusive partonic cross
section initiated by parton i and is convoluted with the fracture functions Mi,h/P . This
term, shown in Fig. 1(b), corresponds to a ‘target fragmentation’ process, where the initial
state nucleon fragments into the final state hadron and a parton, i , which participates in the
hard scattering. In the last case, the hadron is produced in the direction of the incoming
nucleon.

The above mentioned partonic cross sections can be calculated order by order
in perturbation theory and are related to the parton–photon squared matrix elements

H(n)
µν (i, j) and 
H(n)

µν (i) for the i + γ → j +X and i + γ →X processes, respectively:

dσ̂ij

dxB dy
= α2

em

xBSH

(
YM

(−gµν
)+ YL

4x2
B

Q2 PµPν

)
1
e2

∑
n


H(n)
µν (i, j)J (n)dvj dwj ,

(5)
dσ̂i

dxB dy
= α2

em

xBSH

(
YM

(−gµν
)+ YL

4x2
B

Q2 PµPν

)
1
e2

∑
n


H(n)
µν (i),

where n runs over the number of particles in the final state. Matrix elements are averaged
over initial state polarizations, summed over final state polarizations and integrated over
the phase space of the unobserved particles. J (n) is the Jacobian coming from the phase

space integration and depends upon the number of final state particles n. αem stands for
the fine structure constant and e is the electron charge. Finally, YM and YL are the standard
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Fig. 2. Born contribution to the cross sections.

Fig. 3. Real and virtual contributions to the αs cross sections.

kinematic factors for the contributions of each photon polarization and are given by,

(6)YM = 1+ (1− y)2

2y2 , YL = 1+ 4(1− y)+ (1− y)2

2y2 .

The total inclusive cross sections are well known up to order α2
s [10], and more recently

there have been impressive efforts to go beyond the NLO [14]. The corresponding complete
expressions for the singular and finite pieces up to order α2

s can be found in Ref. [10].
For the one-particle inclusive cross section, the zeroth-order in αs comes from the

diagram in Fig. 2 giving, in d = 4+ ε dimensions, the qq cross section:

(7)
dσ̂

(0)
qq,M

dxB dy dv dw
= cqδ(1− u)δ(1− v)δ(w),

with

(8)cq = α2

2xBSH

4π(2+ ε)e2
q YM.

The antiquark cross section dσ̂q̄q̄ is identical to dσ̂qq whereas all the remaining cross
sections vanish. The index M refers to the metric terms in Eq. (5), longitudinal
contributions are absent at tree level. Notice that at this order the quark is always produced
in the backward (w = 0) direction implying that forward hadrons (w = 1) would come
solely from target fragmentation processes, that is, those taken into account by fracture
functions.

The first order corrections to the one-particle inclusive cross section are also known.
Expressions for the singular and finite terms in dimensional regularization [15] can be
found in [2] for the unpolarized case and in [4] for the polarized one. In order to accomplish
the factorization of collinear singularities at O(α2

s ), one also needs the O(αs ) cross
sections up to order ε, for this reason we accordingly extend here the results of [2]. The

corresponding diagrams are shown in Fig. 3. As it is explained in Ref. [2], the integration
region for the cross section, Eq. (4), need to be splitted into two regions, B1 and B2
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respectively, in order to account for kinematical constraints in the phase space:

B1= {
u ∈ [xB, xu], v ∈ [a,1], w ∈ [0,wr ]

}
,

(9)B2= {
u ∈ [xu,1], v ∈ [vh,1], w ∈ [0,wr ]

}
,

with xu = xB/(xB + (1− xB)vh). The metric terms of the unpolarized cross sections can
be expressed in the following form:

(10)dσ̂
(1)
qq(q̄q̄),M

∣∣
B1 = cqCε

{
2
ε
P (0)
q←q(u)δ(1− v)δ(w)+C

(1)
1qq,M + εD

(1)
1qq,M

}
,

(11)dσ̂
(1)
qg(q̄g),M

∣∣
B1 = cqCε

{
2
ε
P (0)
qg←q(u)δ(a − v)δ(1−w)+C

(1)
1qg,M + εD

(1)
1qg,M

}
,

(12)

dσ̂
(1)
gq(gq̄),M

∣∣
B1 = cqCε

{
2
ε
P

(0)
q̄q←g(u)δ(v− a)δ(1−w)+ 2

ε
P (0)
q←g(u)δ(1− v)δ(w)

+C
(1)
1gq,M + εD

(1)
1gq,M

}
,

(13)

dσ̂
(1)
qq(q̄q̄),M

∣∣
B2 = cqCε

{
2
ε

(
P (0)
q←q (u)δ(1− v)+ P (0)

q←q (v)δ(1− u)
)
δ(w)

+C
(1)
2qq,M + εD

(1)
2qq,M

}
,

(14)dσ̂
(1)
qg(q̄g),M

∣∣
B2 = cqCε

{
2
ε
P (0)
g←q(v)δ(1− u)δ(w)+C

(1)
2qg,M + εD

(1)
2qg,M

}
,

(15)dσ̂
(1)
gq(gq̄),M

∣∣
B2 = cqCε

{
2
ε
P (0)
q←g(u)δ(1− v)δ(w)+C

(1)
2gq,M + εD

(1)
2gq,M

}
,

where Cε is defined by

(16)Cε = αs

2π
fΓ

(
Q2

4πµ2

)ε/2
, fΓ = Γ (1+ ε/2)

Γ (1+ ε)

and

(17)a = (1− u)xB

u(1− xB)
, wr = (1− v)(1− u)xB

v(u− xB)
.

The P
(0)
i←j are the usual LO Altarelli–Parisi kernels [16], whereas the P

(0)
jk←i are the

unsubstracted ones. Expressions for them and for the coefficient functions C(1) can be
found in Appendix B of Ref. [2]. Notice that in order to match our notation the results of
Ref. [2] should be multiplied by a factor δ(wr −w). The coefficients D(1) are explicitly
given in Appendix A below. Similar expressions for the longitudinal cross sections, which
are finite at this order, can be obtained from the results in Ref. [2].

Notice that at this order, the fragmenting parton can be produced in any direction,
including the forward one, but all singular contributions come either from the backward
or from the forward direction. The former terms are factorized into partonic densities

and fragmentation functions, whereas the forward singularities can only be factorized in
the redefinition of fracture functions. This factorization gives rise, as we have already
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mentioned, to non-homogeneous terms in the evolution equations of fracture functions [1].
Notice also that singular terms in the forward direction are always accompanied by a
δ(v− a) factor. This is a characteristic feature of the LO results that in general, will not be
present at the α2

s order.

3. O(α2
s ) amplitudes and phase space integration

In this section we outline the computation of the order α2
s amplitudes for the one-particle

inclusive cross sections. At this order the relevant amplitudes have either two or three final
state partons, related to virtual and real contributions, respectively. We have computed the
corresponding hadronic tensors Hµν in d = 4+ ε dimensions, in the Feynman gauge, and
taking all the quarks to be massless.

Algebraic manipulations were performed with the aid of the program MATHEMAT-
ICA [17] and the package TRACER [18] to perform the traces over the Dirac indices. In
order to obtain the one-particle inclusive cross sections, one has to integrate the resulting
matrix elements over the internal loop momenta and over the phase space of the unob-
served particles in the final state, which is one of the hardest and most delicate parts of the
calculation.

As we mentioned, in the present paper we restrict ourselves to gluon initiated processes,
the corresponding O(α2

s ) real contributions (gg and gq processes) are shown in Fig. 4. For
the first of these processes, the phase space integration is over the momenta of the quark–
antiquark pair, whereas for the second it is over the gluon–antiquark momenta. To perform
this integrals, we choose to work in the center of mass frame of the two unobserved partons
and get for the phase space:

dP S3 =Q2 1
Γ (1+ ε)

(
Q2

4π

)ε

(4π)−4
(

1− xB

xB

)1+ε/2(u− xB

xB

)ε/2

× v1+3ε/2θ(wr −w)(wr −w)ε/2wε/2

(18)× (1−w)ε/2dv dw sin1+ε β1 sinε β2 dβ1 dβ2.
Fig. 4. Real contributions to the α2
s cross sections.
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The angles β1 and β2 are the polar and azimuthal angles of one of the unobserved partons
defined in the mentioned frame. The orientation of the axes in this frame was chosen in
order to simplify the functions to be integrated. v and w are the energy and the angle of
the fragmenting parton, respectively. In this case, as we anticipated, there is no correlation
between them, but the θ function splits the integration region R in the u, v and w volume:
R = B0∪B1∪B2 where B0 is given by

(19)B0= {
u ∈ [xB, xu], v ∈ [vh, a], w ∈ [0,1]}

and B1 and B2 are the LO regions given in Eq. (9).
As it is common practice, in order to perform the angular integration, matrix elements

have to be decomposed, via partial fractioning, in such a way that all the angular integrals
end in the standard form [12]

(20)I (k, l)=
π∫

0

dβ1

π∫
0

dβ2
sin1+ε β1 sinε β2

(a + b cosβ1)k(A+B cosβ1 +C sinβ1 cosβ2)l
.

This kind of integrals can be classified into four categories according to whether their
parameters satisfy either a2 = b2 or A2 = B2 + C2, both relations simultaneously, or
neither of them. In the present case, after the partial fractioning we obtained 31 independent
integrals. 23 of these integrals were calculated to all orders in ε extending the results of
Refs. [11–13]. The remaining 8, which we were not able to calculate to all orders, need to
be carefully handled before expanding them in a power series in ε.

The difficulty with the above mentioned integrals is that ε is not only regulating the
β integration, but also the singularities in the remaining variables: u, v and w. Although
the integrals may be regular functions of these variables, their coefficients may be not.
An illustrative example of this situation is given by the integral I (1,1)|A2=B2+C2 , as in
Eq. (20) with k = 1, l = 1, and satisfying A2 = B2 + C2, for which the order by order
computation in ε gives (Eq. C30 in Ref. [12])

(21)I (1,1)|A2=B2+C2 = π

aA− bB

{
2
ε
+ log

[
(aA− bB)2

(a2 − b2)A2

]
+O(ε)

}
.

Let us first consider the case when a + b ∼ (1 − w). As long as the coefficient of this
integral is regular at w = 1, the above expression is integrable as function of w. However,
if the coefficient has an extra factor of (1−w)−1 the resulting expression is ill defined due
to the logarithm in Eq. (21) which behaves as log(1− w). In order to skip this problem,
one can recast Eq. (20) using the general methods described in Appendix A of Ref. [11]
obtaining:

I (1,1)|A2=B2+C2

=−
1∫
dx

π(1− x)−1+ε/2
0
A(a − b)+ b(A−B)x
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(22)

×
{(

A

A(a − b)+ b(A−B)x

)ε/2

× (a + b)ε/2
2F1

[
ε

2
, ε,1+ ε; b(A−B)− 2Ab

A(a − b)+ b(A−B)x

]
− 2

}
.

The integral in last equation can be splitted into two pieces, one containing the
hypergeometric function, which can be integrated order by order in a power expansion
in ε after factoring out (a + b)ε/2, and the other which can be integrated to all orders in ε:

(23)

I (1,1)|A2=B2+C2 = π

aA− bB

{
4
ε
+ 2 log

[
aA− bB

(a − b)A

]

+ (a + b)ε/2
[
−2

ε
+ log[a − b]

]
+O(ε)

}
.

Notice that factoring out (a + b)ε/2 before the expansion in powers of ε avoids the
appearance of powers of log(a + b) in the series, which would be singular in the w→ 1
limit. In this way we obtain well defined integrals in w, as long as ε > 0, even if the
coefficient has a pole in w = 1, which is rather frequent. In some cases, the angular
integrals have singularities in u, v or w by themselves, but they can be managed in the
same way as in the example above.

The procedure just illustrated was performed for all the 8 integrals and for the different
combinations of singularities in u, v and w; expressions for them are available upon
request. It is also important to stress that, as the singular distributions that show up in
the matrix elements after the angular integration give rise to additional poles in ε, it is
necessary to calculate contributions up to order ε3 in the angular integrals. Fortunately,
these poles are always accompanied by one or more δ functions and those higher order
terms only need to be calculated in the corresponding limits, what simplifies considerably
the integrals.

Virtual contributions for the gq subprocess are obtained from the interference of the one
loop graphs in Fig. 5 with the box graphs in Fig. 3. Integration over the loop momentum
was done using the standard Passarino–Veltman [19] reduction algorithm and computing
the resulting 2, 3 and 4-point scalar integrals. The integration over the phase space of the
unobserved antiquark can be trivially performed using the energy–momentum conservation
δ function. After this integration, the remaining phase space can be written as

dP S(2) = 1
8πΓ (1+ ε/2)

(
Q2

4π

)ε/2
u(1− xB)

u− xB

(
1− xB

xB

)ε/2

(24)× vεwε/2(1−w)ε/2 δ(wr −w)dv dw,
Fig. 5. One loop contributions to the α2
s gq cross section. Diagrams obtained from the first four by reversing the

quark line must be also taken into account.
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where v and w are the energy and angular variables of the hadronizing quark, respectively.
As can be seen from the δ function in Eq. (24), these two variables are correlated, which is
a distinctive feature of the two particle phase space. It implies an additional constraint over
the integration region: as w = wr � 1 then v � a should be satisfied and, as it happens
for the order αs corrections, the integration region V has to be splitted into V = B1 ∪ B2
where B1 and B2 have been already defined in Eq. (9).

4. Singularity structure

Once the angular integrations are performed, the hadronic tensor shows a rich variety
of singularities in the (u, v,w) space, regulated by the parameter ε. As it is standard in
this kind of calculations, the above mentioned singularities should be prescribed in order
to get a series expansion in powers of ε suitable for making explicit their cancellation.
These cancellations are performed by coupling constant renormalization for the UV
singularities, by cancellations between virtual and real contributions for the soft ones, and
by renormalization of parton densities, fragmentation and fracture functions in the collinear
case.

A standard example for the above mentioned prescriptions is the appearance of factors
like (1 − u)−1+ε in the totally inclusive cross section where, after the phase space
integration, u is the only remaining variable. In this case one can use the standard
substitution:

(25)(1− u)−1+ε ≡ 1
ε
δ(1− u)+

(
1

1− u

)
+u[0,1]

+O(ε),

where (1/(1− u))+u[0,1] is the usual ‘plus’ distribution:

(26)
1∫

0

du

(
1

1− u

)
+u[0,1]

f (u)=
1∫

0

du
f (u)− f (1)

1− u
.

However, in the one-particle inclusive case, the structure of the singularities is much more
complex, mixing the three variables and consequently this simple prescription is no longer
adequate. In Fig. 6 we show the curves along which the singularities in the regions B0 and
B1 appear in the v–w plane after the angular integration is performed. We will focus on
this two regions because they contain all the singularities in the forward direction which
need to be factorized in the redefinition of fracture functions. The case of region B2 is
quite similar to that of B1 without the complications of the poles in w =wr = 1 but with
additional singularities along the plane u = 1, and it will be discussed at the end of this
section.

A simple inspection of Fig. 6 allows one to distinguish different possibilities for the
singularity structure of the terms in the hadronic tensor. In principle the integration leads to
terms that can have none, one, or two poles along the thick curves in the figure, respectively.
The case of a single pole can easily be handled with minor modifications to the
prescription formula in Eq. (25). For terms with more than a single pole, the singular
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Fig. 6. Position of the singularities in the v–w plane for xB � u � xu . The bold lines represent the curves where
the hadronic tensor becomes singular.

curves can either intersect themselves (for example, poles in w = 1 and w = wr ) or not
(for instance, w= 0 and w = 1).

Terms with poles along two non-intersecting curves can be shown to be always
transformed by partial fractioning into two terms with single poles, which reduce to the
previous case. On the other hand, the case of two intersecting singular curves cannot be
reduced to a simpler one and needs to be treated in a more subtle way.

Overlapping singularities as those mentioned in the previous paragraph can be further
classified according to whether: (a) both curves lie in the integration region, like w = 0
and w =wr in region B1; (b) one of them comes from the outside of the integration region
but intersects it at some point, as it is the case of w = 1 and w = wr in B0; and (c) both
curves converge into a single point of the integration region but coming from the outside,
like w =−(1− v)/v and w =−xB(1− v)/v.

The first and third occurrences can be cast into the second, by partial fractioning, leaving
us with only one case. The technique we employed to treat it is better illustrated by means
of an example. Let us consider the two-dimensional integral

(27)I (ε)=
1∫

0

dx

1∫
0

dy f (x, y)(1− y)−1+ε(1− xy)−1+ε,

where f (x, y) is a regular function in all the integration region. The integrand has poles
along the curves y = 1 and y = 1/x which intersect at x = 1, y = 1. These singularities

are regulated if ε > 0 (notice that the integral remains finite even if the term ε in the
exponent of (1 − xy) is absent). If one wrongly uses the recipe in Eq. (25) to prescribe
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the singularity in y = 1 and then again to deal with the pole in x = 1 coming from the δ

term, one ends with ill-defined terms (more precisely terms with ‘plus’ distributions which
are not integrable) and the leading singularity, in this case a double pole ε−2, is accounted
twice. The correct way to deal with this integral is to re-write it as

I (ε)=
1∫

0

dx

1∫
0

dy f (x,1)(1− y)−1+ε(1− xy)−1+ε

(28)+
1∫

0

dx

1∫
0

dy
(
f (x, y)− f (x,1)

)
(1− y)−1+ε(1− xy)−1+ε.

The second term is integrable in the limit ε→ 0 whereas in the first one the integration
over y can be performed and gives

I (ε)=
1∫

0

dx (1− x)−1+2εf (x,1) 2F1[ε,2ε,1+ ε;x]
ε

(29)+
1∫

0

dx

1∫
0

dy
f (x, y)− f (x,1)
(1− y)(1− xy)

+O(ε).

Now, the integral in the first term can be prescribed using (25). Doing that substitution, we
end with the following identity:

(1− y)−1+ε(1− x y)−1+ε =
{

1
2ε2 +

π2

6

}
δ(1− x)δ(1− y)

+
{

1
ε

(
1

1− x

)
x[0,1]
+ 2

( log(1− x)

1− x

)
x[0,1]

}
δ(1− y)

(30)+
(

1
(1− y)(1− xy)

)
y[0,1]
+O(ε).

The ‘plus’ distribution 1/((1− y)(1− xy))y[0,1] stands for the second term in the r.h.s. of
Eq. (29). The factor 1/2 in the double pole is a consequence of the fact that the singular
curve y = 1/x only intersects the integration region in a single point.

Prescriptions for all the singular (but regular at u = 1) terms appearing in the matrix
elements can be found, besides some subtleties related to the integration intervals in B1 and
B2, with the technique shown in the example. Expressions for the prescriptions relevant in
the w = 1 region can be found in Appendix B.

The only remaining item is the prescription of singularities in u= 1 in B2. These poles
always appear as factors 1/(1−u) and only give rise to singular integrals (when ε→ 0) in
terms proportional to δ(w) or δ(wr−w) that come from the prescription of the singularities
in the v–w plane. This is so because of the upper limit wr in the w integration which goes

to zero when u→ 1. For the δ terms, the prescription of the singularities in u= 1 can be
done exactly as in Eq. (25).
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5. Factorization of singularities

As we mentioned in the previous section, once the angular integration and the
prescription of the singularities in the u, v and w variables are accomplished, the partonic
cross sections exhibit a complex structure of poles in ε. Explicit expressions for this
structure in region B0 can be found in Appendix C. Adding virtual and real contributions
all IR divergences cancel out, leaving us with the UV and collinear poles. UV poles are
canceled by means of coupling constant renormalization:

(31)
αs

2π
= αs(M

2
R)

2π

(
1+ αs(M

2
R)

2π
fΓ

β0

ε

(
M2

R

4πµ2

)ε/2)
,

where MR is the renormalization scale and β0 is the lowest order coefficient function in
the QCD β function:

(32)β0 = 11
3

CA − 4
3
nf TF

with CA =N for SU(N) and TF = 1/2 as usual; nf stands for the number of active quark
flavours.

Collinear singularities have to be factorized in the redefinition of parton densities,
fragmentation and fracture functions. The redefinition of parton densities is exactly the
same as in totally inclusive DIS whereas fragmentation functions are renormalized as they
are in one-particle inclusive electron–positron annihilation. Expressions for renormalized
parton densities and fragmentation functions, up to order α2

s and in the MS factorization
scheme, can be found in Refs. [10,20], respectively.

Notice that the renormalization of parton densities and fragmentation functions implies
convolutions between the evolution kernels and the SIDIS cross sections. At variance with
the totally inclusive case, the convolutions between the O(αs) cross section and the LO
kernels include plus distributions in more than one variable which need to be handled with
care. In order to make explicit the cancellations between the O(α2

s ) cross sections and
these counterterms, the results of the above mentioned convolutions need to be expressed
in terms of the very same variables used for the cross sections. One way to accomplish this
is to retain to all orders in ε the O(αs) cross sections, that is without replacing the singular
factors like (1− u)−1+ε in terms of distributions as described in the previous section, and
rewrite the plus distributions in the LO kernels using

(33)
(

1
1− x

)
+x[0,1]

→ lim
ε′→0

(1− x)−1+ε′ − 1
ε′

δ(1− x)+O
(
ε′

)
.

In this way the appearance of plus distributions is avoided and the convolutions can be
explicitly performed. The resulting expressions can be prescribed, keeping up to constant
terms in ε and ε′, in exactly the same way as the O(α2

s ) cross sections. Notice that at this
point the poles in ε′ must cancel and the limit ε′ → 0 can be safely taken, reflecting the
fact that the LO kernels were already regular. The above mentioned procedure allows to
extend the results of Ref. [21] to SIDIS.
Once the renormalization of parton densities and fragmentation functions is accom-
plished, the remaining singularities occur in the region B0 and are proportional to δ(1−w),
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that is the forward direction, so they have to be factorized into renormalized fracture func-
tions. Otherwise, factorization would be broken. The bare fracture functions can be written
in terms of renormalized quantities as:

Mi,h/P (ξ, ζ )= 1
ξ

ξ
ξ+ζ∫
ξ

du

u

1−u
u∫

ζ
ξ

dv

v
∆ki←j (u, v,Mf )f

r
j/P

(
ξ

u
,M2

f

)
Dr

h/k

(
ζ

ξv
,M2

f

)

(34)+
1∫

ξ
1−ζ

du

u
∆i←j (u,Mf )M

r
j,h/P

(
ξ

u
, ζ,M2

f

)
,

where the factorization scale has been chosen to be the same for the three distributions.
The functions ∆i←j and ∆ki←j are fixed in order to cancel all the remaining singularities
in the cross section.

The homogeneous kernels ∆i←j are the same that appear in the inclusive case for parton
densities and can be obtained from the corresponding transition functions in Ref. [10],
whereas the non-homogeneous ∆ki←j are presented, for the case j = g, in this paper for
the first time. Explicitly:

(35)∆gg←g(u, v) =− αs

2π
fΓ

(
M2

f

4πµ2

)ε/2 2
ε
P̃ (0)
gg←g(u, v),

∆gq←g(u, v)=∆gq̄←g(u, v)

=
(

αs

2π

)2
f 2
Γ

(
M2

f

4πµ2

)ε

(36)

×
{

2
ε2

(
P̃ (0)
gq←q(u, v)⊗P (0)

q←g(u)+ P̃
(0)
q̄q←g(u, v)⊗ P (0)

g←q(v)

+ P̃ (0)
gg←g(u, v)⊗′ P (0)

q←g(u)
)
− 1

ε
P (1)
gq←g(u, v)

}
,

∆q̄q←g(u, v)=∆qq̄←g(u, v)

=− αs

2π
fΓ

(
M2

f

4πµ2

)ε/2 2
ε
P̃

(0)
q̄q←g(u, v)+

(
αs

2π

)2
f 2
Γ

(
M2

f

4πµ2

)ε

×
{

2
ε2

(
P̃

(0)
q̄q←g(u, v)⊗ P (0)

g←g(u)+ P̃
(0)
q̄q←g(u, v)⊗ P (0)

q←q (v)

+ P̃
(0)
q̄q←g(u, v)⊗′ P (0)

q←q (u)+
1
2
β0 P̃

(0)
q̄q←g(u, v)

)
1

}

(37)−

ε
P

(1)
q̄q←g(u, v) ,
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where αs is the bare coupling constant, the convolutions are defined as

f (u, v)⊗ g(u)=
1

1+v∫
u

dū

ū
f

(
ū, v

)
g

(
u

ū

)
,

f (u, v)⊗ g(v)=
1−u
u∫

v

dv̄

v̄
f

(
u, v̄

)
g

(
v

v̄

)
,

(38)f (u, v)⊗′ g(u)=
1−uv∫
u

dū

ū

u

ū
f

(
ū,

u

ū
v

)
g

(
u

ū

)
,

and

(39)P̃
(0)
ki←j (u, v)= P

(0)
ki←j (u)δ

(
v − 1− u

u

)
.

Finally the O(α2
s ) kernels are given by

P (1)
gq←g(u, v)

= CATF

{
−(3− 8u)u

2
− 4(1− u)u

v
− 8u3

(1− uv)4 +
8u2(1+ u)

(1− uv)3

− 2u(1+ 4u− 3u2)

(1− uv)2 + 2(1− 3u)u
1− uv

+ log
(

v

1− u

)
2P (0)

q←g(u)

v(1− uv)

+ log(1+ v)

[
−u(1+ 2u)− u2v + 2uP (0)

q←g(−u)
1− uv

]

+ log
(

1− u− uv

v

)[
2(1− 3u)u− 6P (0)

q←g(u)

v
− 3u2v

+ 2u(1+ 4u)
1− uv

− 2u(1+ 2u+ 4u2)

(1− uv)2 + 4u2(1+ u)

(1− uv)3 −
4u3

(1− uv)4

]

+ log(u)
[

4(−1+ u)u+ 2u2v + 4P (0)
q←g(u)(2− uv)

v(1− uv)

]

+ log(1− uv)

[
u(3+ 2u)+ 2P (0)

q←g(u)

v
+ u2v + 8u3

(1− uv)4

8u2(1+ u) 4u(1+ 2u+ 4u2) 4u(1+ 3u)
]}
−
(1− uv)3 + (1− uv)2 −

1− uv
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(40)

+CFTF

{
4u+ u2(1− 4v)

1− u
− u3v

(1− u)2 +
3

(1+ v)2 −
2+ 5u
1+ v

+ log(v)
[

u3v

(1− u)2 +
1

(1+ v)2 +
1− 2u
1+ v

− u2(2+ v)

1− u

]

+ log(1+ v)

[
4P (0)

q←g(u)

v
− 2

(1+ v)2 −
2(1− 2u)

1+ v
+ 2u2(2+ v)

]

+ log(1− u)

[−4u3

1− u
+ 2u4v

(1− u)2 + 4P (0)
q←g(u)

(
4u

1− u
− 3

v

− 2u2v

(1− u)2

)]
+ log(1− u− uv)

[
−2u− 2u3v

(1− u)2 −
1

(1+ v)2

− 1− 2u
1+ v

+ 2u2(2+ v)

1− u
+ 6P (0)

q←g(u)

(
2
v
− 2u

1− u
+ u2v

(1− u)2

)]}
,

and

P
(1)
q̄q←g(u, v)

= CATF

{
−u(1− 4u)− 8

u(1+ v)4 +
8(1+ u)

u(1+ v)3 −
2(1+ 4u− 3u2)

u(1+ v)2

+ 2(1− 3u)
1+ v

+ log(1− uv)
(1− 2uv+ u2(1+ v2))

1+ v

+ log(1− u)
P

(0)
q←g(u)

1+ v
+ log

(
1− u− uv

1− u

)

×
[

2
1+ v

− 3u
1− u− uv

]
P (0)
q←g(u)+ log(u)

[
2(1− u)u+ 2u2v

− 2uP (0)
q←g(u)

1− u− uv

]
+ log(1+ v)

[
u(4+ u)− u2v + 8

u(1+ v)4

− 8(1+ u)

u(1+ v)3 +
4(1+ 2u+ 4u2)

u(1+ v)2 − 4(1+ 3u)
1+ v

+ 2uP (0)
q←g(u)

1− u− uv

]

+ log
(

1− u− uv

v

)[
u(1+ 3u)− 3u2v + 4

u(1+ v)4 −
4(1+ u)

u(1+ v)3

+ 2(1+ 2u+ 4u2)

u(1+ v)2 − 2(1+ 4u)
1+ v

+ 3uP (0)
q←g(u)

1− u− uv

]

− 4
[
u(1− u)+ log(af )P (0)

q←g(u)
]( 1

af − v

)
v[0,af ]

(0)
(

log(af − v)
) [
+ 4Pq←g(u) af − v v[0,af ]

+ u− 4(1− u)u log(1− u)
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− (
log(1− u)2 + 2 log(1− u) log(u)+ 2 Li2(u)

)
P (0)
q←g(u)

]
δ(af − v)

}

+CFTF

{
4u2v

1− u
+ u3v

(1− u)2 +
3u2

(1− uv)2 −
2u+ 5u2

1− uv
+ log(1− u− uv)

×
[
− u3v

(1− u)2 +
u2

(1− uv)2 +
(1− 2u)u

1− uv
− u(1− uv)

1− u

]

+ 2 log(1− uv)

[
u(1+ u)− u2v − u2

(1− uv)2 −
(1− 2u)u

1− uv

+ uP
(0)
q←g(u)

1− u− uv

]
+ 4 log(u)

[
−u(1− u)− u2v + uP

(0)
q←g(u)

1− u− uv

]

+ log(v)
[

2u2(1− v)

1− u
+ 2u3v

(1− u)2 −
u2

(1− uv)2 −
(1− 2u)u

1− uv

+ 6u3v2P (0)
q←g(u)

(1− u)2 (1− u− uv)

]

+ 2 log(1− u)

[(
4u

1− u
− 3u

1− u− uv
+ 4u2v

(1− u)2

)
P (0)
q←g(u)

− u4v

(1− u)2 −
u3

(1− u)

]
+ 4

[
−u

4
+ (1− u)u log(af )

(41)+
(
ζ(2)+ log(1− u)2

4
+ Li2(u)

)
P (0)
q←g(u)

]
δ(af − v)

}
,

where af = (1− u)/u. Although ∆qg←g is formally a NLO kernel, it occurs for the first
time at order α3

s thus it does not show up in the present calculation. Notice that the NLO
kernels depend on both u and v variables and that this dependence cannot be factorized.

Once obtained the explicit expressions for the relations between renormalized and
bare fracture functions, we can easily derive the evolution equations for the renormalized
fracture functions, which can be written as

∂Mr
i,h/P (ξ, ζ,M2)

∂ logM2

= αs(M
2)

2π

1∫
ξ

1−ζ

du

u

[
P

(0)
i←j (u)+

αs(M
2)

2π
P

(1)
i←j (u)

]
Mr

j,h/P

(
ξ

u
, ζ,M2

)

+ αs(M
2)

2π
1
ξ

ξ
ξ+ζ∫
ξ

du

u

1−u
u∫

ζ
ξ

dv

v

[
P̃

(0)
ki←j (u, v)+

αs(M
2)

2π
P

(1)
ki←j (u, v)

]

(
ξ

) (
ζ

)

(42)× f r

j/P u
,M2 Dr

h/k ξv
,M2 ,
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Fig. 7. Non-homogeneous contributions to the derivative of Mq for different values of ξ and ζ . Inset plots show
the integral over Q2 of this contributions taking MN.H.

q (Q2
0)= 0 with Q0 = 1 GeV as a reference.

where the NLO kernels P
(1)
i←j (u) are 1/8 of those given in Ref. [22] due to the different

conventions implemented. At variance with the LO case where the kernels are proportional
to δ(v− (1− u)/u), the NLO kernels have support in all the integration region in the non-
homogeneous term of Eq. (42). Due to this fact, at NLO, the non-homogeneous terms in
the evolution equations do not take the familiar form given in Eq. (12) of Ref. [1]. In terms
of moments, Eq. (42) can be written as:

∂Mr
i,h/P [m,n]
∂ logM2 =Mr

i,h/P [m,n]Pi←j [m]
(43)+ f r

j/P [m+ n− 1]Dr
h/k[n]P̂ki←j [m− 1, n],

where the moments are defined as

(44)F [m,n] =
1∫

0

dξ

ξ

1−ξ∫
0

dζ

ζ
ξmζ nF (ξ, ζ ), F [m] =

1∫
0

dξ

ξ
ξmF(ξ),

and

(45)P̂ki←j [m,n] =
1∫

0

dξ

ξ

1−ξ∫
0

dζ

ζ
ξmζ nPki←j

(
ξ,

ζ

ξ

)
.

Fig. 7 compares (for different values of ξ and ζ ) the relative size of the LO and NLO
contributions to the non-homogeneous term in the evolution equation (42) computed with
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standard sets of parton distributions [23] and fragmentation functions [24] for the case
i = q and h= π+. The inset plots show the integral over Q2 of this contributions. Notice
that only those terms proportional to fg/P were taken into account in the O(α2

s ) pieces.
In reference [9] it was found that the LO non-homogeneous contribution falls rapidly as ζ

grows. This behavior is related to the shrinkage of the integration region and with the fall
of fragmentation functions, Dh/i(z), in the limit z→ 1. This is also the case of the NLO
contributions. At moderate and large values of ξ (ξ � 0.1) the O(α2

s ) contributions are
typically one order of magnitude smaller than the O(αs) ones so NLO and LO results differ
only by a few percents. This can be traced back to the extra power of αs and the small size
of the integration region since the interval of the v integral in Eq. (42) shrinks to the point
(1− u)/u when ξ → 1− ζ . However, when ξ diminishes the integration region expands
and NLO contributions grow considerably faster than the LO ones which are kinematically
restricted to the curve v = (1− u)/u. The remarkable growth of the O(α2

s ) terms makes
these contributions even larger than the constrained O(αs ) pieces at lower values of ξ and
thus a priori non-negligible in the evolution equations.

Of course, in order to assess the actual relevance of the NLO non-homogeneous effects
in the full evolution of fracture functions, one needs a realistic (based on actual data)
estimate for the size and shape for these functions at a given scale, and compute the
evolution taking into account all the appropriate kernels, but our present results suggest
that non-homogeneous NLO effects could be relevant.

6. Summary and conclusions

In this paper we have computed the O(α2
s ) gluon initiated QCD corrections to one

particle inclusive deep inelastic processes. At variance with the inclusive case, in one
particle inclusive processes the kinematical characterization of the final state particle
requires to preserve the full dependence of the amplitude in the relevant variables. This
impedes the cancellation of some singularities to be later factorized into fracture functions
and leads to a non-trivial singularity structure. In order to deal with this we have highlighted
the importance of collecting to all orders the potentially singular factors in the 3-particle
final state angular integrals and implemented a general approach for the prescription of
overlapping singularities.

By the explicit replacement of the bare parton densities, fragmentation and fracture
functions with the corresponding renormalized quantities in both the O(αs) and O(α2

s )

cross sections, we have explicitly verified the factorization of collinear singularities
obtaining for the first time the relevant kernels at this order. In doing so, we give a recipe
for dealing with convolutions of distributions in more than one variable which occur in the
computation of the α2

s contribution coming from the convolution of O(αs) cross sections
and renormalized functions. We also derived the evolution equations for fracture functions
valid at NLO.

Regarding the phenomenological consequences of these corrections, we have found that
the O(α2

s ) contributions to the evolution equations are mild in most of the kinematical

range, however, they are as important or even larger than the αs ones for small values
of xB , where these last contributions are suppressed by the available phase space. This
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behaviour, at variance with the LO case, allows the non-homogeneous effects to be sizeable
even at larger hadron momentum fractions, thus being relevant for the scale dependence
for diffractive and leading baryon processes.
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Appendix A

In this appendix we present the results obtained for the coefficients D(1) in the O(αs )

cross sections. They are

D
(1)
1qq,M =

CF

2

{[
(1− u) log

(
1− u

u

)
+

(
π2

6
+ log( 1−u

u
)2

2

)
pgq←q(u)

]

× δ(1− v)δ(w)+ δ(wr −w)

[
pgq←q(u)

(
log(1− v)

1− v

)
+v[a,1]

+
(

1− u+ log
(

1− u

(1− a)u

)
pgq←q(u)

)(
1

1− v

)
+v[a,1]

− 2(v − a)

(1− a)2(1− u)
+ (1− v− 2(1− a)u)

(1− a)2(1− u)

[
log

(
(1− u)(1− v)

(1− a)u

)

(A.1)+ log
(
v − a

1− a

)
− 1

]
+ 1

1− v
log

(
v − a

1− a

)
pgq←q(u)

]}
,

D
(1)
1qg,M =

CF

2

{[
(1− u) log

(
1− u

u

)
+

(
π2

6
+ log( 1−u

u
)2

2

)
pgq←q(u)

]

× δ(v − a)δ(1−w)+ δ(wr −w)

[
pgq←q(u)

(
log(v− a)

v − a

)
+v[a,1]

+
(

1− u+ log
(

1− u

(1− a)u

)
pgq←q(u)

)(
1

v − a

)
+v[a,1]

− 2(1− v)

(1− a)2(1− u)
+ (v − a − 2(1− a)u)

(1− a)2(1− u)

[
log

(
(1− u)(1− v)

(1− a)u

)

(A.2)+ log
(
v − a

1− a

)
− 1

]
+ 1

v − a
log

(
1− v

1− a

)
pgq←q(u)

]}
,

(1) TF

{[
π2 ( (

1− u
)

π2 )

D1gq,M = 2 6

+ 2(1− u)u log
u

− 1−
6
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+ log( 1−u
u

)2pq̄q←g(u)

2

](
δ(v − a)δ(1−w)+ δ(1− v)δ(w)

)
+

[
−2(1+ a − 2v) log(1− a)

(1− a)2

− 2
1− a

(
log

(
1− u

(1− a)u

)
+ log

(
1− v

1− a

)
+ log

(
v − a

1− a

)
− 1

)

+
(

1
v − a

log
(

1− v

1− a

)
+ 1

1− v
log

(
v − a

1− a

))
pq̄q←g(u)

+
(

2(1− u)u+ log
(

1− u

(1− a)u

)
pq̄q←g(u)

)

×
((

1
1− v

)
+v[a,1]

+
(

1
v − a

)
+v[a,1]

)

+ pq̄q←g(u)

((
log(1− v)

1− v

)
+v[a,1]

(A.3)+
(

log(−a + v)

v − a

)
+v[a,1]

)]
δ(wr −w)

}
,

D
(1)
2qq,M =CF

{[
−2u(1− xB)+ xB

u− xB
− 1+ u

2(1− v)
log

(
v − a

1− a

)

+ 1+ v

2(1− u)
log

(
u− xB

1− xB

)
+ 1

2

(
2u2(1− xB)

(u− xB)2 −
u(1+ v)(1− xB)xB

(u− xB)2

− (1+ v)xB

u− xB

)(
1+ log

(
(1− u)(1− v)

(1− a)v

)
+ log

(
v − a

1− a

))

+ 1+ v2

2(1− u)(1− v)
log

(
v − a

(1− a)v

)
− 1+ v

2

(
log(1− u)

1− u

)
+u[0,1]

− 1+ u

2

(
log(1− v)

1− v

)
+v[0,1]

+
(

1− u

2
− (1+ u) log(1− u)

2

− (1+ u2)

2(1− u)
log

(
u− xB

1− xB

)
+

(
log(1− u)

1− u

)
+u[0,1]

)(
1

1− v

)
+v[0,1]

+
(

1− v

2
− (1+ v) log(1− v)

2
+ (1+ v2) log(v)

2(1− v)

+
(

log(1− v)

1− v

)
+v[0,1]

)(
1

1− u

)
+u[0,1]

]
δ(wr −w)

+
[(
−π2

12
(1+ v)+ log(1− v) log(v)

1− v
+ log(v)2

2(1− v)

(1− v) log((1− v)v) (1+ v) log((1− v)v)2 π2 (
1

)

+

2
−

4
+

6 1− v +v[0,1]
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+ 1
2

(
log(1− v)2

1− v

)
+v[0,1]

)
δ(1− u)+

(
−π2

12
(1+ u)

− log(1− u)

1− u
log

(
u− xB

1− xB

)
+ 1

2(1− u)
log

(
u− xB

1− xB

)2

+ (1− u)

2
log

(
1− u

(1− a)u

)
+ (1+ u)

4
log

(
1− u

(1− a)u

)2

+ π2

6

(
1

1− u

)
+u[0,1]

+ 1
2

(
log(1− u)2

1− u

)
+u[0,1]

)
δ(1− v)

(A.4)+ δ(1− u)δ(1− v)

(
8+ π2

4
− 2ζ(3)

)]
δ(w)

}
,

D
(1)
2qg,M =

CF

2

{[
v log

(
(1− v)v

)+(
π2

6
+ log((1− v)v)2

2

)
pg←q(v)

]

× δ(1− u)δ(w)+ δ(wr −w)

[
pg←q(v)

(
log(1− u)

1− u

)
u[0,1]

+ (
v − log

(
(1− v)v

)
pg←q(v)

)( 1
1− u

)
u[0,1]
+ (1− u)u2

(v − a)(u− xB)2

− 2u2v(1− xB)

(v − a)(u− xB)2 +
vxB

u(v − a)(1− xB)
+ uv2(1− xB)xB

(v − a)(u− xB)2

+ v2xB

(v − a)(u− xB)
−

(
−4u+ u(2+ uv2)

1− u+ uv

− 1+ u2

(v − a)(1− u+ uv)(1− xB)
+ (1− u)u2(1− v)

(u− xB)2 − (1− 2u)u
u− xB

+ 2u2(1− v)

u− xB
+ 1+ uv

1− u+ uv
pg←q(v)

)

×
(

log
(
(1− u)(1− v)

(1− a)u

)
+ log

(
v− a

1− a

))

(A.5)+ 1
1− u

(
log

(
v− a

(1− a)v

)
− log

(
u− xB

1− xB

))
pg←q(v)

]}
,

D
(1)
2gq,M = TF

{[
(1− u)u

(
log

(
1− u

(1− a)u

)
− 1

)

+ 1
4

(
π2

3
+ log

(
1− u

(1− a)u

)2)
pq̄q←g(u)

]
δ(1− v)δ(w)

+ δ(wr −w)

[
1
2

(
log(1− v)

1− v

)
v[0,1]

pq̄q←g(u)(
1

(
1− u

))(
1

)

+ (1− u)u+

2
pq̄q←g(u) log

(1− a)u 1− v v[0,1]
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+ 1
2(v − a)

+
(

1
2(v− a)

pq̄q←g(u)− 1
1− a

)(
log

(
(1− u)(1− v)

(1− a)u

)

(A.6)+ log
(
v − a

1− a

)
− 1

)
+ 1

2(1− v)
log

(
v − a

1− a

)
pq̄q←g(u)

]}
,

where

(A.7)pgq←q(x)= 2
1

1− x
− 1− x,

(A.8)pq̄q←g(x)= 1− 2x + 2x2,

(A.9)pg←q(x)= 2
x
− 2+ x.

Appendix B

The redefinition of fracture functions can only factorize singularities in the forward
region. In the hadronic tensor these singularities show up after the angular integration
as (1 − w)−1+ε factors which have to be prescribed as explained in Section 3. As we
mentioned there, special care has to be taken with overlapping singularities. In this case,
inspection of Fig. 6 shows that the only problematic configurations are terms singular along
w = 1 and w =wr in regions B0 and B1. Using the procedure described in Section 3 we
obtained suitable prescriptions in both regions:

(1−w)−1+ε1(wr −w)−1+ε2

(B.1)

B0−→ 1
ε1(ε1 + ε2)

Γ (1+ ε1)Γ (1− ε1 − ε2)

Γ (1− ε2)
δ(1−w)δ(a − v)(a − z)ε1+ε2

× (
a(1− a)

)1−ε1−ε2 + 1
ε1

δ(1−w)
(
(a − v)−1+ε1+ε2

)
+v[z,a]

× (
v(1− a)

)1−ε1−ε2w−ε1
r 2F1

[
ε1, ε1 + ε2,1+ ε1; 1

wr

]
+ (

(1−w)−1+ε1(wr −w)−1+ε2
)
+w[0,1],

(1−w)−1+ε1(wr −w)−1+ε2

(B.2)

B1−→ 1
ε2 (ε1 + ε2)

Γ (1+ ε2)Γ (1− ε1 − ε2)

Γ (1− ε1)
δ(1−w)δ(v − a)(1− a)ε1+ε2

× (
a(1− a)

)1−ε1−ε2 + 1
ε2

δ(wr −w)
(
(v − a)−1+ε1+ε2

)
+v[a,1]

× (
v(1− a)

)1−ε1−ε2w−ε2
r 2F1[ε2, ε1 + ε2,1+ ε2;wr ]

+ (
(1−w)−1+ε1(wr −w)−1+ε2

)
+w[0,wr ],
where ε1 and ε2 are multiples of the regulator ε. Notice that these expressions are valid to
all orders in ε. Terms singular only along w = 1 can be prescribed using the standard rule
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in Eq. (25). Terms singular in w = 1 and w = 0 can be managed by partial fractioning:

(B.3)
1

1−w

1
w
= 1

1−w
+ 1

w

and be prescribed also as in Eq. (25).

Appendix C

The singular pieces of the order α2
s partonic cross sections σ̂gg and σ̂gq in region B0 can

be written as

dσ̂
(2)
gg,M

∣∣
B0 =

∑
q

cq C2
ε

{
1
ε2

[
8P (0)

q←g(u)P
(0)
g←q(v)δ(w)

+ 4
(
P (0)
q←g(u)⊗ P̃ (0)

gq←q(u, v)+ P (0)
g←q(v)⊗ P̃

(0)
q̄q←g(u, v)

+ P (0)
q←g(u)⊗′ P̃ (0)

gg←g(u, v)
)
δ(1−w)

]+ 1
ε

[
2P (1)

gq←g(u, v)δ(1−w)

+ 2P (0)
q←g(u)⊗C

(1)
1qg,M(u, v,w)+ 2P (0)

g←q(v)⊗C
(1)
1gq,M(u, v,w)

(C.1)+ 2
1− xB

xB
P̃ (0)
gg←g(u, v)⊗′ C(1)

g,M(u)δ(1−w)
]+O

(
ε0)},

dσ̂
(2)
gq,M

∣∣
B0 = cqC

2
ε

{
1
ε2

[
2
(
P̃

(0)
q̄q←g(u, v)⊗′ P (0)

q←q(u)+ P̃
(0)
q̄q←g(u, v)⊗ P (0)

q←q (v)

+ P̃
(0)
q̄q←g(u, v)⊗ P (0)

g←g(u)−
1
2
β0P̃

(0)
q̄q←g(u, v)

)
δ(1−w)

+ 4P (0)
q←g(u)P

(0)
q←q (v)δ(w)

]
+ 1

ε

[
P

(1)
q̄q←g(u, v)δ(1−w)

− β0 C
(1)
1gq,M(u, v,w)+ 2P (0)

g←g(u)⊗C
(1)
1gq,M(u, v,w)

+ 2P (0)
q←q(v)⊗C

(1)
1gq,M(u, v,w)

(C.2)+ 2
1− xB

xB
P̃

(0)
q̄q←g(u, v)⊗′ C(1)

q,M(u)δ(1−w)

]
+O

(
ε0)},

where the P̃
(0)
ki←j (u, v) are defined in Eq. (39) and the functions C

(1)
i,M(u) are the coefficient

functions of totally inclusive DIS at O(αs ), they can be found in Refs. [2,10]. Convolutions
between kernels are as in Eq. (38) with the replacement v→ (1− xB)v/xB whereas the
convolutions between kernels and coefficient functions are given by

Pi←j (u)⊗C(u, v,w)=

xB
xB+(1−xB)z∫

dū

ū
Pi←j

(
u

ū

)
C

(
ū, v,w

)
,

xB
xB+(1−xB)v
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(C.3)Pi←j (v)⊗C(u, v,w)=
1∫

a(u)

dv̄

v
Pi←j

(
v

v̄

)
C

(
u, v̄,w

)
,

(C.4)

P̃ki←j (u, v)⊗′ C(u)=
1∫

xB−uv(1−xB)

xB

u

ū

dū

ū
P̃ki←j

(
ū,

vu(1− xB)

xBū

)
C

(
u

ū
, v,w

)
.
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