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Summary

We have performed virtual screening to identify new lead trypanothione reductase inhibitor (TRI) compounds, enzyme present
in Tripanozoma cruzi, the agent responsible of Chagas disease. From a training set of 58 compounds, linear discriminant analysis
(LDA) was performed using 2D and 3D descriptors as discriminating variables in order to find out which function of descriptors
characterizes the active TRI. The values of the statistical parameters F - Snedecor and Wilk’s X for the discriminant function (DF)
showed good statistical significance, as long as the rate of success in the prediction for both the training and the test set: 91.38%
and 88.63%, in that order. Internal validation through the Leave — Group — Out methodology was performed with good results,
assuring the stability of the DF. Afterwards, the DF was applied in virtual screening of 422,367 compounds. The optimum range
of values of octanol — water partition coefficient for a compound to develop trypanothione reductase inhibition was applied as

a second filtering criteria. 739 structurally heterogeneous drugs of the virtual library were selected as promissory TRI.

Introduction
Motivation

Chagas disease or American Trypanosomiasis, a protozoan
infection caused by Trypanosoma cruzi, occupies, among
protozoan — caused diseases, the third place in the number of
deaths per year, after malaria and schistosomiasis [1]. Itis a
major health problem in Latin America, where current esti-
mates indicate about 20 million people infected with T. cruzi,
almost 100 million in risk of being infected and 500,000 new
cases reported each year. Approximately ten percent of the
infected people come from Argentina. This means more than
5 percent of Argentina’s population suffers from Chagas dis-
ease, which explains our particular concern in the search of
new antichagasic agents.

There is neither a vaccine nor any preventive treatment
for this parasitosis. Current chemotherapy remains unsatis-
factory. Available drugs are benzmidazole and nitrofurans
such as nifurtimox. The latter has undergone several rumors
of discontinuation [2, 3], probably because of limited mar-
kets or the potential risks the pharmaceutical companies may
incur because of suspicion of long-term toxicity [4]. Both
drugs have significant activity only in the acute and short-

term chronic phases. Their efficacy, however, is very low in
the established chronic phase, which is prevalent in Latin
America and is considered incurable [S]. Their efficacy also
varies according to geographical areas, mainly because of
differences in drug susceptibility of different T. cruzi strains
[2, 6]. Moreover, both medications have important side ef-
fects such as anorexia, vomiting, peripheral neuropathy and
allergic dermopathy, which can result on treatment discon-
tinuation [2, 5].

Descriptor-based virtual screening arises as one interest-
ing option for researchers from developing countries to dis-
cover, in short time and with low costs, promissory drugs in
the fight against Chagas.

Virtual screening (vs) in the search of new leads

A drug discovery cycle demands from 10 years or more
and the estimate cost in the research and development is $
1,000 million in research and development cost. The costs
and risks of the development of new drugs for the Third
World by pharmaceutical industry are out of balance with
the perceived limited profits and the long payback period.
As mentioned before, even the production of some exist-
ing drugs for the treatment of parasitosis is threatened with
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discontinuation, because of limited markets and suspicion of
long-term adverse effects [4]. The situation is even worse for
the academic sector, where funds needed for preclinical and
clinical evaluation of drug candidates are not always easy to
obtain. Such economic pressure to deliver “best —in-class”
drugs has forced drug discovery scientist to develop compu-
tational alternatives in the search of new lead drugs, in order
to reduce the probability of unsatisfactory results in pre-clinic
and clinic evaluation stages [7, 8].

Several methods have been proposed and employed for
virtual screening of databases of small organic compounds in
order to find tight binders to a given protein target. There are
two approaches to this problem. The first of them is “VS by
docking” [9], which requires previous knowledge of the 3D
structure of the target protein binding site to prioritize com-
pounds by their likelihood to bind to the protein. The other
approach involves similarity-based and QSAR VS, where no
information on the protein is necessary. Instead, compounds
that are known to act by one specific mechanism of action are
used as a structural query. The in silico screening procedure
extracts compounds from the database according to an appro-
priate similarity criteria [10]. Similarity-based VS can be car-
ried in two different ways. In the “small molecule alignment”
approach, a compound that is known to bind to the target pro-
tein, such as the natural substrate or an inhibitor, is used as
the reference molecule. During screening, the molecules from
the compound database (the test molecules) are superposed
onto the reference molecule. The superposition places chem-
ically similar parts of the molecules on top of each other,
with a preference on aligning groups able to participate of
short range interactions, e.g. H-bonds. Ligand superposition
is, however, costly in terms of required computer time. Taking
into consideration that chemical databases usually include up
to millions of compounds, superimposition is not always ap-
plicable to the search of new leads through large compounds
databases. This lead us to the “descriptor based screening”,
which deals with molecular representations that allow for a
much more efficient comparison.

For the present work we employed this latter approach,
through linear discriminant analysis, in the search for new
leaders through more than 422,000 chemical structures. We
chose to employ both theoretical 2D and 3D descriptors as
independent variables of the DF. There is a considerable de-
bate in literature whether 2D or 3D descriptors are superior,
with many articles supporting either opinion [11-13]. Keep-
ing in mind that activity is spatial conformation dependent,
2D descriptors are surprisingly powerful, as revealed by sev-
eral of the cited bibliographic comparisons. This suggests
that in some cases the molecular features critical for activity
can be deduced from 2D representations or graphs that do not
consider, in a explicit way, conformational concerns. Rather
than deciding on one or the other dimensionality approach,
we decided on combination of both types of descriptors in or-
der to capture complementary information. This strategy has
been suggested as the best approach by many authors [14,
15]. The 2D descriptors used in the present work can be clas-

sified as topological indexes (TIs). TIs are molecular descrip-
tors derived from graph-theoretical invariants and accounts
for structural information contained in two-dimensional rep-
resentation of molecules. Although their physicochemical
meaning is not always clear, they have some important advan-
tages: they require a low computational cost for their calcula-
tion and, as theoretical entities, they can be easily calculated
for all the existing, new, and in-development chemical struc-
tures without further information than the 2D representation
of the molecule [16, 17].

The aim of this study is the development of a new QSAR
model based on LDA to predict antitrypanosomal activity
through trypanothione reductase (TR) inhibition and, there-
fore, to employ it in rational selection of new antichagasic
drugs. This approach allowed the classification of candidate
drugs as active and inactive, identifying 739 promissory can-
didates among 422,367 compounds previous to correspon-
dent in vitro assays.

Trypanothione reductase: A potential target for
antichagasic compounds

TR is an NADPH-dependent flavoenzyme which regenerates
a glutathione-spermidine conjugate, N,N-bis(glutathionyl)
spermidine, named trypanothione, from its oxidized form
(Figure 1). The enzyme is responsible for the maintenance of
the redox balance in the Trypanosomatids family, to which
the parasites of the genres Trypanosoma and Leishmania
belong to. Trypanosomatids do not possess the classic
redox system based upon the couple glutathione/glutathione
reductase (GR). Despite 41% of homology, TR and GR show
almost total discrimination toward their respective substrates.
The couple trypanothione/trypanothione reductase has been
demonstrated to be essential for the survival of these parasites
within the oxidative environment of the host [18]. Moreover,
TR is more expressed in infectious than in non—infectious
forms of Leishmania [19], which could indicate an associa-
tion between the enzyme activity and the infective capacity.
For these reasons, although many other molecular targets
are object of current studies in the fight against Chagas [2],
TR is still considered as a promising target for the design of
new trypanocidal drugs, as demonstrated by recent papers
focalizing in TR and TR inhibitors [18-23]. These studies
are based on the hypothesis that it may be possible to find
selective medicines which interfere in the trypanothione
metabolism of trypanosomatid parasites without distressing
the glutathione metabolism of the human host and, therefore,
reducing side effects associated to the drug.

Methods
Calculation of molecular descriptors

Dragon computer software was employed to calculate
molecular descriptors [24]. Dragon can calculate up to
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Figure 1. Scheme of the reaction catalyzed by Trypanothione reductase.

1,612 descriptors, among them topological and geometrical
descriptors, which are used in this study. Dragon is widely
used in QSAR studies for modeling of both physicochemical
and biological properties [25-28].

Linear discriminant analysis

The aim of LDA is to find an algorithm capable of distin-
guishing among two or more categories of objects [29], in
this particular case compounds active and inactive against
Trypanosoma cruzi through TR inhibition. The use of LDA
has been applied extensively in drug discovery, mainly by
the Las Villas and the Valencia groups [30-34]. Recently,
Meneses- Marcel et al. successfully employed this approach
in the search of treatment for trichonomiasis, another impor-
tant parasite- originated disease [35].

The first step in the search of a good linear DF is to
use a dataset with good structural diversity. To ensure this
point, we selected a dataset of 102 compounds, 50 of them
with proven antitrypanosomal activity against extracellular
forms of the parasite (epimastigotes and trypomastigotes)
and 52 with different or no pharmacological activities. We
have considered “active” any compound with ICs( against
T. cruzi below 100 pmol. The 102 compounds were split,
at random, into training and test sets that include 58 and 44
molecules, in that order. The mechanism of action of the
selected compounds has been, at least partially, explained
through subversive (“turncoat”) inhibition of trypanothione
reductase, although other simultaneous mechanisms, such as
redox cycling with production of hydrogen peroxide and su-
peroxide anion, are admitted in some cases. The training set
was composed by 29 active compounds; the remaining 29
(as well as the ones of the test set) compounds have been
given other therapeutic uses and belong to the “inactive”
category. They were randomly extracted from Merck Index
[36]. The 29 compounds classified as “active” included in
the training set are showed in Figure 2, while the 29 inac-
tive compounds are presented in Figure 3. The active com-
pounds of the training set were extracted from several bibli-

ographic sources [18, 21, 22, 37-39]. Although most of TR
inhibitors are nitroaromatic compounds, we included thirteen
compounds without this function, so that the chosen DF was
able to select not just nitro compounds as promissory agents.
The high proportion of non-nitro drugs among those selected
during the subsequent VS process indicates this strategy was
successful and that the DF is not biased towards the selec-
tion of nitro agents (further discussion of this point can be
found in the conclusions). Visual inspection of Figure 2 shows
that the active drugs in the training set include at least five
analog series, which guarantees structural diversity. Figure 3
reveals that random selection of the inactive compounds of
the training set has resulted in structural diversity of the drugs
included in the non—active category.

We used BMDP and STATISTICA statistical packages
to derive the LDA-based QSAR model [40, 41]. The selec-
tion of the descriptor was based on the Fisher-Snedecor F
statistical. Stepwise, the discriminating variables (topolog-
ical indices and 3D descriptors calculated by Dragon) that
add the most to the separation of the groups of interest (ac-
tive and inactive compounds) are entered into (or the variable
that adds the least is removed from) the discriminating func-
tion (DF). Activity was codified by a dummy variable (class).
The variable indicates either the presence (class =1) or ab-
sence (class=—1) of activity against 7. cruzi through TR
inhibition. The DF has the general formula:

Class = agxg + a1xy + apxp + ...+ apxp +c¢ (1)

where xo, x1, ..., x, represent the chosen descriptors and
ap, ai, ..., ay represent the coefficients of the classifica-
tion function, determined by the least-squares method. We
employed the principle of parsimony, choosing a DF with
high statistical significance but having as few parameters as
possible. The proportion between the number of cases and
the number of variables included in the equation was ob-
served in order to avoid over-fitting and chance correlations.
The analyzed statistical parameters were Wilk’s A statistic,
Fisher ratio (F) and the p-level (p). Internal validation through
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Figure 2. Structures of the 29 active compounds included in the training set.
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Figure 3. Structures of the 29 inactive compounds included in the training set. Structural diversity can be appreciated. In parenthesis, below each compound,

we present its therapeutic use according to Merck Index 13th.
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Leave-Group-Out methodology was also performed, in order
to assure no molecule of the training set has excessive influ-
ence over the generated DF. We inspected the percentage
of good classifications in both groups (active and inactive
molecules) as well as the total percentage of good classifica-
tions. Model predictability was tested with an external pre-
diction series of compounds (those referred as the test set)
which were not used to develop the DF. A posterior prob-
ability P (%) was assigned to each compound to score its
biological activity.

Pharmacological distribution diagrams (PDD)

The generated DF is capable of describing pharmacological
activity patterns, but also non-activity patterns. A PDD is a
frequency distribution diagram of a dependent variable (in our
case, value of the DF for each compound of the training and
the test sets) in which the ordinate represents the expectancies
of this variable for every interval. The expectancies of the DF
are defined as the probability that a compound will be active
or inactive for a range of values of the DF. They are obtained
by means of the expressions indicated below [42]. The 100
that appears in the discriminator prevents from dividing by
Zero.

E percentage — of — actives
a =
(percentage — of — inactives + 100)

2

Ei percentage — of — inactives
1 =
(percentage — of — actives 4 100)

3

The main advantage of these diagrams is that they allow
the visual determination of the intervals of the DF where there
is a maximum probability of finding new active compounds
and a minimum of encountering inactive ones. Therefore,
they facilitate the election of the cutoff value that one will
apply in the virtual screening procedure to differentiate active
from inactive compounds.

Application of the df in virtual screening and log p value as
a second filtering criteria

The validated QSAR model was then applied to the prediction
of activity of more than 422,000 compounds. The descriptors
included in the model, as well as the Moriguchi log P (mlog
P) [43], were calculated in Dragon and it was verified that
the descriptors values fall within the chemical space defined
by the training set. The Moriguchi log P was then applied as
a secondary filtering criteria.

In order to be effective in the chronic stage of Chagas
disease, it is essential that the antichagasic drug reach the
intracellular form of the parasite. This is a matter of great im-
portance, since that is the phase of Chagas that currently lacks
of adequate treatment. When it comes to an oral treatment,
an antichagasic agent acting through TR inhibition must be
able to penetrate the intestinal membrane of the human host,

the cellular membrane of the affected organs and the parasite
membrane before producing its therapeutic effect. Therefore,
octanol-water partition coefficient (log P) is a critical param-
eter regarding antichagasic activity. Daunes and D’ Silva have
pointed optimum log P value to develop antichagasic activity
through TR inhibition in 5.8, with a log P range from 4 to
7 required for good parasite membrane penetration [44, 45]
while Aguirre et al. [46] fixed this value in about 2.3 in a
rational design study for trypanothione reductase inhibitors.

In the other hand, the Lipinski rule of five states that poor
absorption or permeation of a drug is more likely when the
molecular weight of the compound is over 500, there are
more than five hydrogen bond donors (expressed as the sum
of hydroxyl and amino groups present in a molecule), the cal-
culated octanol-water partition coefficient (clog P) is over 5
or the mlog P is over 4.15, and there are more than 10 hy-
drogen bond acceptors. Compound classes that are substrates
for biological transporters are exceptions to Lipinski’s rule. If
two parameters are out of the range then a poor absorption or
permeability is likely to occur [47, 48]. Besides, lipophilicity
is a possible contributory factor to the toxicity of a drug. The
relationship between log P and toxicity is further complicated
by the increased residence time in lipid-containing structures
of compounds with high log P. Compounds with very high log
P can accumulate within the organism and cause long-term
adverse effects [49].

However, a recent study shows that from 1,791 synthetic
oral drugs approved or marketed from 1937 to the present,
152 (about 8.5 percent) have clog P values above 5 (which
is considered equivalent to a mlog P value of 4.15) [50].
Furthermore, Ghose et al. [48] have noticed that mean log
P values for some specific types of drugs can be below
or above the preferred log P range (in general therapeutic
agents) of 1.3 to 4.1. Many of the exceptional drugs with
clog P values above 7.0 signaled by Ghose et al. are an-
tiparasitary agents (among them: dymanthine, zilantel, bis-
bendazole, halofantrine, lapinone, menoctone, aminoquinol
and chloramphenicole palmitate). Consequently, there is now
considerable interest in the potential of lipid formulations
for oral administration [51]. Lipid systems can assure a su-
perior bioavailability of drugs with high log P, with two
prominent consequences: they allow pharmacological activ-
ity to be achieved with lower doses and they allow utiliza-
tion of lipophilic drugs whose high potency allows the use
of very low doses, compensating the higher toxicity linked
to high log P values. In other words, there are currently
many pharmacological and pharmaceutical reasons not to
straightforward discard lipophilic drugs that have shown high
potency.

From the exposed considerations it is clear that choosing
and adequate range of log P values to use as secondary
filtering criteria for antichagasic drugs is not a simple matter.
On this basis we decided to select, after VS, only those
compounds with Moriguchi log P (mlog P) value between
1.5 and 5.0, allowing some slight flexibility in the Lipinski
rule regarding log P but carefully watching that none of



selected compounds infringes the other parameters in the
“rule of five”.

Results
Discriminant function

Several DFs were tested. Among those with lowest Wilk’s A
value, we selected the one with the best performance in the
external validation, that is, the DF with the highest percentage
of good classifications in the test set. The chosen function
was:

Class = —4.8095 — 42.7723 JGI6 — 0.0376 QXXp
+2.6058 PJI3 + 24.2097 JGI4 + 0.0106 ZM2V.
N =58 F=17.026 U — statistic (Wilk’s 1)
=0.379 p < 0.0000

This equation is statistically significant above 99.99% level.
Concerning the variables all are significant above 99%. The
Wilks’ statistic for the overall discrimination can take val-
ues in the range of 0 (perfect discrimination) to 1 (no dis-
crimination). The value obtained for this statistic (0.379)
shows the selected DF is able to discriminate among active
and inactive compounds against Chagas through TR inhi-
bition. This can be visually corroborated by inspection of
Figure 4. The set of descriptors showed low values of the
mean correlation coefficient of the intercorrelation matrix,
Ry = 0.353. The weakest and strongest correlation coef-
ficients being Ry, = 0.219 and Rg = 0.626. This means all
variables included in the function are weakly correlated (far
below the maximum linear correlation coefficient of R =
0.9 admitted by the non—redundant descriptors principle [25,
52]). JGI4 and JGI6 are Galvez Mean Topological Charge
Indexes of fourth and sixth orders; [53] QXXp represents
the Qxx COMMA? value weighted by atomic polarizabil-
ity [54]; PJI3 denotes the 3D Petitjean Shape Index [55]
and ZM2V stands for the Second Zagreb index by Valence
Vertex Degrees [56]. QXXp and PJI3 are geometrical de-
scriptors, while JGI4, JGI6 and ZM2V are topological in
nature.

The results of compound classification are showed in Ta-
ble 1. The model correctly classifies 91.38 percent of the
compounds from the training set and 88.63 percent of the
test set (external validation). The rate of “false actives” is
similar to 10 percent for the training set. It is desirable for
the number of false active compounds to be as low as possi-
ble because this number represents inactive compounds that
would be sent to biological assays with the consequent loss
of time and resources. The obtained value implies about one
of ten compounds send to biological assays will show no ac-
tivity against 7. cruzi, which would be an acceptable rate of
failure. Nevertheless, as explained below, the use of PDDs to
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Table 1. Classification of compounds from the training and test sets.
When generic name does not exist, the chemical name is used. Poste-
rior probabilities and predicted class associated to each compound are
showed. Only five compounds (out of 58) are misclassified in the train-
ing set. Compounds with AP = (posterior probability of being active —
posterior probability of being inactive) < 5% are considered unclassi-
fied (U).

Compound Prob% Class

Training set active compounds

(4)-(4aS,12bS)-4,4,12b-Trimethyl-1,2,3,4,4A ,5,6 5066 U
12b-octahydro- benzo[a]anthracene-8,11-dione
p-Naphthoquinone 82.02 +
Naphthazarin 96.69 +
p-Benzoquinone 9798 +
2,3-dimethyl-p-benzoquinone 68.22 +
(4)-(4aS,14bS)-4,4,14b-Trimethyl-1,2,3,4,4a,5,6 89.22 4+
14b-octahydro-benzo[a]naphthacene-8,13-dione
2-(5-amino-1,3,4-oxadiazolyl)5-nitrofurane 97.38 +
2-methyl-3-(N-boc-4-aminobutyl)juglone 99.23  +
3(N-boc-5-aminopentyl)menadione 9631 +
3-[(N-1-propyl-3-methyl-piperazide) 96.21 +
propanamideplumbagine
3-(1-propyl-3-methylpiperazinyl)menadione 9742 +
3-(4-carboxybutyl)menadione 89.62 4+
2-formyl-5-nitrofurane semicarbazine 7041 +
Benzmidazol 9427 +
Megazol 4717 -
Nifurtimox 92.19 +
5-amino-3-phenyl nitrobenzofuran 5452 +
6-carboxy-3-phenyl nitrobenzofuran 99.46  +
1,4-Bis{3-[N-(benzyl)amino]propyl }piperazine 898 —
1,4-Bis{3-[N-(napht-2-ylmethyl)amino] propyl} 9421 +
piperazine
1,4-Bis{3-[N-(benzofur-3-ylmethyl)amino] 95.52 +
propyl}piperazine
3-(4-carboxymethylphenyl) nitrobenzofuran 98.02 +
5-carboxyethyl-3-phenyl nitrobenzofuran 99.53  +
5-carboxymethyl-3-phenyl nitrobenzofuran 9494 +
5-(4-carboxymethyl)phenyl-3-phenyl nitrobenzofuran  99.80  +
1-methyl-2-[5-(4-chlorophenylhidrazone)-1,3,4- 99.53 +
thiadiazolyl]-5-nitroimidazol
1-methyl-2-[5-(4-nitrophenylhidrazone)-1,3,4- 99.92  +
thiadiazolyl]-5-nitroimidazol
1-methyl-2-[5-(2-hydroxyphenylhidrazone)-1,3.4- 99.78  +
thiadiazolyl]-5-nitroimidazol
1-methyl-2-[5-(3-hydroxy-4-metoxi-phenyl 99.94  +

hidrazone)-1,3,4-thiadiazolyl]-5-nitroimidazol

Training set inactive compounds

1,2-Benzanthracene 41.09 —
Acedapsone 6.04 —
Acetohexamide 035 -
Alpha-pinene 45.09 —
Benserazide 3995 -
Bentazon 029 —
Ciclopirox 1.02 -
Cifenline 644 —
Cinolazepam 31.87 —
Fluvoxamine 7.63 —
Folpet 0.80 -
Lefetamine 021 -
Molindone 2.61 -
Monobenzone 25.66 —
Nicotinyl alcohol 311 -

(Continued on next page)
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Table 1. (Continued)

Compound Prob% Class
Nordazepam 033 —
Norepinephrine 1153 -
Octamoxin 0.00 —
Opromazine 027 -
Osalmid 69.03 +
Oxadixyl 1194 —
Pimpinellin 829 —
Razoxane 3693 —
Rilmenidine 7857  +
Surinamine 083 —
Repinotan 047 —
Veratramine 1.40
Zotepine 4.22
Zoxazolamine 6549 4+
Test set active compounds
3-(4-carboxybutyl)plumbagin 9297 +
3-(1-propyl-3-(3-propylamino)piperazinyl) menadione 67.21  +
3(N-boc-4-aminobutyl)menadione 88.36 +
3(N-boc-3-aminopropyl)menadione 84.66 +
3-(5-carboxypentyl)plumbagin 92.69 +
5-[4-(2-hydroxiehtyl)phenyl]-3- 88.58 +
phenylnitrobenzofuran
Juglone 9477 +
3-(5-carboxypentyl)menadione 8427 +
5-(2-hydroxiethyl)-3-phenylnitrobenzofuran 7447  +
(+)-(4aS,12bS)-4,4,12b-Trimethyl-1,2,3,4,4a,5, 40.70 -
6,12b-octahydro-benzo[a]anthracene-8,11-dione
(-)-(7R,7aS,11aS)-7-[1,3]Dioxolan-2-yl-7a,11, 3.66 —
11-trimethyl-7,7a,8,9,10,11,11a,12
octahydro-benzo[a]anthracene-1,4-dione
6-carboxymethyl-3-phenylnitrobenzofuran 9744 +
5-carboxy-3-phenylnitrobenzofuran 94.56 +
5-carboxymethyl-3-(3-bromophenyl) nitrobenzofuran ~ 96.08  +
5-(2-carboxyehtyl)-3-phenylnitrobenzofuran 95.08 +
5-carboxymethyl-3-(2-fluorophenyl)nitrobenzofuran 98.84 +
1-methyl-2-[5-(4-bromophenylhidrazone)-1,3,4- 97.18 +
thiadiazolyl]-5-nitroimidazol
1-methyl-2-[5-(3,4-dihydroxyphenylhidrazone)-1,3,4- 99.43 4+
thiadiazolyl]-5-nitroimidazol
1-methyl-2-[5-(4-hydroxyphenylhidrazone)-1,3,4- 99.82  +
thiadiazolyl]-5-nitroimidazol
2-phenyl-5-(3,4-dihydroxyphenylhidrazone)-1,3,4- 87.19 +
thiadiazole
(+)-(4aS,12bS)-4,4,9,10,12b-Pentamethyl- 92.74 +
1,2,3,4,4a,5,- 6,12b-octahydro-9-hydroxi- benzo
[a]anthracene-8,11-dione
Test set inactive compounds
Clenbuterol 22.88 —
Clobenfurol 4337 -
Dexamethasone 6091 +
Dexanabinol 0.21 -
Dexetimide 236 —
Dexpanthenol 0.63 —
Gossypol 88.04 +
Grepafloxacin 39.00 —
Guaiacol 3636 —
Guanadrel 483 —
Halazepam 75.64 +
Sulbenox 1.14 -
Sulbentine 850 —

(Continued on next page)

Table 1. (Continued)

Compound Prob% Class
Tiamenidine 1.77 -
Tiaprost 354 -
Tiazofurin 3035 -
Trimethadione 140 —
Trithiozine 541 -
Vedaprofen 1.04 —
Venlafaxine 0.06 —
Xenbucin 0.51 -
Zaltoprofen 39.89  —
2-phenyl-5-(3,5-di-t-buthyl-4- 6.62 —

hydroxyphenylhidrazone)-1,3,4-thiadiazole

define the cutoff value to be used in the VS allows to reduce
even more the “false active” rate. The correct classification
of 2-phenyl-5-(3,5-di-t-buthyl-4-hydroxyphenylhidrazone)-
1,3,4-thiadiazole represents further evidence of the good clas-
sification capability of the DF, since this compound is actually
inactive against 7. cruzi but structurally similar to other 1,3,4-
thiadiazole-2-arylhydrazone active derivatives that are in-
cluded (and correctly classified) in both the training and test
sets.

Robustness of the selected DF was assessed through cross
validation through the leave-group-out methodology. The
validation of an internal set through this methodology is il-
lustrated in Table 2. Six runs were carried out. In each run,
ten compounds (both from the active and inactive category)
were extracted from the training set to the test set, generating
one new DF with the remaining 48 compounds of the training
set. Wilks” A values for each equation are displayed, as well
as the percentage of total good classifications for both the
new training and the test sets in each run. The average per-
centage of success for the training set is 89.93% and for the
test set 88.55%. The results were similar to the ones obtained
with the actual DF (91.38 and 88.63%), which indicates the
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Figure 4. Plot of the Probability of belonging to the active group for each
compound in both the training and the test sets. Active compounds are num-
bered below 50. Visual inspection of the plot reveals that the DF is able to
separate the compounds in two well differenced zones: about 90 percent of
the active compounds present probabilities of being active above 90%, while
most of the non—active compounds (83%) showed posterior probability val-
ues below 40 percent.
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Table 2. Results of internal validation for DF. It can be appreciated that neither the statisticals A and F nor the percentages of good classifications vary
significantly with the removal of ten inactive and active compounds, in each leave-group-out run, from the training set.

Number of
Leave one
Out Cross
validation

N

Wilks
A F P

Percentage of
total correct

classifications
in training set

Percentage of

good

classifications

in test set

Compounds removed from the original training set

1

48

48

48

48

48

48

0.364 14.70 <0.0000

0.365 14.60 <0.0000

0.406 12.29 <0.0000

0.356 14.82 <0.0000

0.358 15.09 <0.0000

0.385 13.43 <0.0000

89.58

89.58

89.58

89.58

91.66

89.58

88.89

88.89

90.74

88.89

87.04

87.04

Lefetamine; molindone; monobenzone; nicotinyl alcohol;
nordazepam; 2-(5-amino-1,3,4-oxadiazolyl)
S-nitrofurane; megazol; nifurtimox; 1-methyl-2-[5-
(4-chlorophenylhidrazone)-1,3,4-thiadiazolyl]-5-
nitroimidazol; 1,4-Bis{3-[N-(benzyl)amino]propyl}
piperazine

Bentazon; ciclopirox; cifenline; cinolazepam; fluvoxamine;
2-formyl-5-nitrofurane semicarbazine; benzmidazol;
(+)-(4aS,14bS)-4,4,14b-trimethyl-1,2,3,4,4a,5,6
14b-octahydro-benzo[a]naphthacene-8,13-dione;
p-Naphthoquinone; 3-(4-carboxybutyl)menadione

Rilmenide; surinamide; veratrapine; zotepine;
14b-octahydro-benzo[a]naphthacene-8,13-dione;
benzmidazole; 2-formyl-5-nitrofurane semicarbazine;
(+)-(4aS,12bS)-4,4,12b-Trimethyl-1,2,3,4,4A ,5,6
12b-octahydro- benzo[a]anthracene-8,11-dione;
1-methyl-2-[5-(2-hydroxyphenylhidrazone)-1,3,4-
thiadiazolyl]-5-nitroimidazol; 6-carboxy-3-phenyl
nitrobenzofuran

pimpinelline, octamoxin, opromazine, osalmid, oxadixyl,
norepinephrine, 5-carboxyethyl-3-phenyl
nitrobenzofuran, 3-(4-carboxybutyl)menadione,
2-formyl-5-nitrofurane semicarbazine;
1-methyl-2-[5-(3-hydroxy-4-metoxi-phenyl
hidrazone)-1,3,4-thiadiazolyl]-5-nitroimidazol

Alpha-pinene; ciclopirox; folpet; razoxane; repinotan;
megazol; 1-methyl-2-[5-(4-chlorophenylhidrazone)-
1,3,4-thiadiazolyl]-5-nitroimidazol; p-Benzoquinone;
6-carboxy-3-phenyl nitrobenzofuran; 2-methyl-3-
(N-boc-4-aminobutyl)juglone

1,2-Benzanthracene; acedapsone; acetohexamide; zotepine;
zoxazolamine; 1-methyl-2-[5-(4-nitrophenylhidrazone)-
1,3,4-thiadiazolyl]-5-nitroimidazol; 5-carboxyethyl
-3-phenyl nitrobenzofuran; 1-methyl-2-
[5-(2-hydroxyphenylhidrazone)-1,3,4-thiadiazolyl]-5-
nitroimidazol; 3-(4-carboxybutyl)menadione

Expectancies

DF value

0 Active

Non active

Expectancie
o
=
[6)]

] ] i O Active

b Non Active

DF value

Figure 5. PDD for training set (left) and test set (right The good separation of the groups according to the DF values is clear. The cutoff value to apply in the
VS was derived from the PDD of both sets. Compounds with DF function between 0.5 and 2.0 were considered potentially active.
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Table 3. We present the molecule number (corresponding to the number
given to the molecules in Figure 6a and b), molecules names, DF and mlog
P values of the 40 structures selected through the VS process with highest
DF values (over the interval 0.5-2.0). Generic names are presented when
available; otherwise, chemical names are showed.

Molecule
Number

Molecule name

DF

mlog P

1

11

12

14

15

16

17

18

19

20

21
22

3-(4-chlorophenyl)-5-[1-(4-nitro-pheny1)-
5-(trifluoromethyl)pyrazol-4-yl]-1,2.4-
oxadiazole
2-(trifluoromethyl)-5-[[2-
(trifluoromethyl)-3H-benzoimidazol-5-
ylloxy]-3H-benzoimidazole
6-methoxy-2-(1,1,2,2,3,3,4,4-
octafluorobutyl)chromen-4-one
2-[[4-amino-5-(2-fluorophenyl)-1,2,4-
triazol-3-yl]sulfanyl]-N-(2,3,4,5,6-
pentafluorophenyl)acetamide
2,2,2-trifluoro-N-[2-[4-[(2,2,2-
trifluoroacetyl)amino]phenyl]-3H-
benzoimidazol-5-yl]Jacetamide
N-[4-(1,3-dihydrobenzoimidazol-2-
yl)phenyl]-2,3,4,5,6-pentafluoro-
benzamide
3-[4-(trifluoromethoxy)phenyl]-1-[[4-
(trifluoromethoxy)phenyl]
carbamoylamino]urea
1,2.4,5-tetrafluoro-3-(4-nitrophenoxy)-6-
(trifluoromethyl)benzene
N-[4-(1,3-dihydrobenzoimidazol-2-
yl)phenyl]-2,3,5,6-tetrafluoro-4-
methoxy-benzamide
[4-[[3-(5-chlorobenzooxazol-2-
yl)phenyl]iminomethyl]phenyl]
furan-2-carboxylate
3-[3,5-bis(trifluoromethyl)phenyl]-5-
(oxazol-5-yl)-1,2,4-oxadiazole
(4E)-2-(4-nitrophenyl)-4-[[5-[3-
(trifluoromethyl)phenyl]-2-
furyl]methylidene]-1,3-oxazol-5-one
1-[(2,3,5,6-tetrafluoropyridin-4-yl)
amino]-3-[4-
(trifluoromethyl)phenylurea
[2-nitro-4-(trifluoromethyl)phenyl]
3-(trifluoromethyl)benzoate
ethyl-2,3,5,6-tetrafluoro-4-(2,3,4,5,6-
pentafluorophenoxy)benzoate
3-(2,6-Dinitro-4-trifluoromethyl-
phenoxy)-benzo[c]chromen-6-one
3-(4-methyl-1,3-thiazol-2-yl)-7-
[(2,3,4,5,6-pentafluorophenyl)
methoxy]chromen-2-one
[3-(4-chlorophenyl)-4-oxo-2-
(trifluoromethyl)chromen-7-yl]
furan-2-carboxylate
[3-(4-chlorophenyl)-4-oxo-chromen-7-yl]
4-methyl-3,5-dinitro-benzoate
2,3,4,5,6-pentafluorophenyl)
carba-moylmethyl
2,4-dihydroxybenzoate
6-nitro-2-(trifluoromethyl)chromen-4-one
[4-(4-nitrobenzoyl)oxyphenyl]
4-nitrobenzoate

1.99

1.95

1.94

1.93

1.92

1.84

1.74

1.73

1.70

1.69

1.51

1.50

1.49
1.49

2.64

3.16

2.56

3.16

4.35

3.04

4.59

3.67

2.71

4.89

4.08

4.05

3.40

2.68

1.91
4.15

(Continued on next page)

Table 3. (Continued)

Molecule
Number  Molecule name DF  mlogP
23 2,3,5,6-tetrafluoro-4-[4-(2,3,5,6- 1.48 2.61
tetrafluoropyridin-4-
yl)oxyphenoxy pyridine
24 2-[[4-amino-5-(4-methoxyphenyl)-1,2,4- 147 191

triazol-3-yl]Jsulfanyl]-N-(2,3.,4,5,6-
pentafluorophenyl)acetamide

25 (4E)-2-(2-chloro-4-nitro-phenyl)-4-[[5- 1.45 3.58
(3-nitrophenyl)-2-furylJmethylidene]-
1,3-oxazol-5-one

26 7-(2,3,4,5-tetrafluorophenyl)-2- 145 231
(trifluoromethyl)-6-thia-1,3,4,8-
tetrazabicyclo[3.3.0]octa-2,4,7-triene

27 [2-(4-methoxyphenyl)-4-oxo-chromen-6 144 3.19
-yl] 4-chloro-3-nitro-benzoate
28 [(2E)-2-(benzo[1,3]dioxol-5- 1.39 197

ylmethylidene)-3-oxo-benzofuran-6-yl]
benzo[1,3]dioxole-5-

29 [2-nitro-4-(trifluoromethyl)phenyl] 1.39 454
2,6-difluorobenzoate

30 [3-(2-chlorophenyl)-4-oxo-chromen-7-yl]  1.38 3.74
4-methyl-3,5-dinitro-benzoate

31 1-[[5-(trifluoromethoxy) 1 H-indole-2- 1.37 2.25

carbonyl]amino]-3-[4-
(trifluvoromethoxy)phenyljurea

32 1-[(2,3,5,6-tetrafluoropyridin-4- 1.37 271
yl)amino]-3-[2-
(trifluoromethyl)phenyl]urea

33 2,2 2-trifluoro-N-[2-[4-[5-[(2,2,2- 1.35 3.26
trifluoroacetyl)amino]-3H-
benzoimidazol-2-yl]phenyl]-3H-
benzoimidazol-5-yl]acetamide

34 1-bromo-2,3,5,6-tetrafluoro-4-(2,3,5,6- 1.34 4.69
tetrafluoro-4-methoxy-
phenoxy)benzene
35 octafluorobenzidine 1.34  4.09
36 [1-amino-2,2-difluoro-2-[(2S)- 1.31 2.78

2,3,3,4,4,5,5-heptafluorooxolan-2-
ylJethylidene]-benzothiazol-2-yl-

azanium

37 N1, N2’-bis(3- 1.30 191
nitrobenzoyl)ethanedihydrazide

38 N-[2-[3-naphthalen-2-yl-5-(trifluoro- 1.29 197

methyl)pyrazol-1-yl]-2-oxo-ethyl]-5-
nitro-3H-imidazole-4-carboxamide

39 N-[4-(5-chlorobenzooxazol-2-yl)phenyl]-  1.27 2.83
1-(6-nitrobenzo[1,3]dioxol-5-
yl)methanimine

40 N-[[4-(carbamoylmethoxy)phenyl] 1.26 2.39

methylideneamino]-4-(1,1,2,2-
tetrafluoroethoxy)benzamide

stability of the model. Table 2 also shows which compounds
were removed for each leave— n—out run.

Virtual screening

After visual inspection of PDDs for training and test sets (Fig-
ure 5), the range 0.5-2.0 for the DF values was employed as
criteria to decide if a compound was promissory as an anticha-
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Figure 6. (a) Structures 1-20 of the 40 drugs selected through VS with highest DF values in the interval 0.5-2.0. The numeration is in correspondence with
the numbers of each drug in Table 3.
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gasic agent (or not). Although there are high probabilities for
a compound with DF value above 0 to be active, we preferred
to minimize the “false active” rate, choosing an interval of
DF values with low overlapping in respect to the non-active
plot. This way we try to assure the bioassayed compounds are
active. As already mentioned, mlog P value was employed as
a second filtering criteria, giving priority to those compounds
with mlog P between 1.5 and 5.0.

739 compounds were selected as promissory antichagasic
agents through TR inhibition. The DF and mlog P values of
the forty compounds with higher log P value are presented in
Table 3. Their structures are shown in Figure 6a and b.

Conclusions

From the results that have been exposed, we can formulate
several observations:

e The internal validation of the DF showed good results. It is
remarkable that every one of the models generated in each
of the six leave-group-out runs presented similar results
to those of the original model obtained with the complete
58-molecules training set. This seems to indicate the DF
presents good stability.

e The external validation showed good results, with nearly
90% good classifications in the test sets. This indicates
only one in ten of the molecules selected in the VS would
be a “false active” if we consider that molecules with a DF
value below zero are no TR inhibitors. This is an acceptable
failure rate; however, this false active rate can be minimized
using a smaller range of values for active structures during
the VS. On the basis of the PDDs observation, we selected
only those structures with DF values between 0.5 and 2.0.

e The 739 promissory compounds selected through the VS
procedure represent only 0.2% of the total screened struc-
tures. This (together with the fact that DF performed well
in the external validation set of both active and non-active
molecules) may indicate the DF generated has good selec-
tivity, since we expect only a small number of compounds
to be selected as promissory structures.

e 238 of the selected structures (32.2%) are nitro compounds.
In contrast, the nitro group is present in only 0.3% of the
total screened structures. This means the high percentage
of nitro-compounds among the selected structures is de-
rived from the DF classification and is not a consequence
of a similar high percentage of nitro-compounds among
the structures of our virtual screening library. Given the
fact that there is strong presence (55.2%) of nitroaromatic
drugs in the training set, the DF function is able to recog-
nize the presence of the nitro function as one of the features
that adds to the activity of the drug, which arises as fur-
ther evidence of the chemical significance of the model.
The high percentage of nitroaromatic compounds in the
training set is a consequence of the fact that most iden-
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tified TR inhibitors are nitro-compounds. However, there
is still a high percentage of the selected structures that do
not present the nitro-function in their molecular structure
(67.8%), which indicates the inclusion of non-nitro drugs
in the training set was a good strategy and that the DF is
not biased towards the selection of nitro-compounds.

e 57.2% of the selected structures are fluorinated. If we
consider that no fluorinated active drug was included in
the training set and that further analysis of the 422,367
molecules analyzed in the VS has revealed that about 14%
of the tested molecules contained fluorine, two remarks
can be made:

— The DF function is able to select molecules with struc-
tural features that do not appear in those of the training
set, which means it can be used as a tool in the search
of new leads. The high percentage of fluorinated drugs
among the selected molecules is not a consequence of
an analog high percentage of fluorinated drugs among
the screened molecules.

— From the greater incidence of fluorinated drugs within
the 739 selected compounds compared to the incidence
of fluorinated compounds within the 422,367 screened
structures, it seems that apparently fluorine chemistry
is a potential source of new antichagasic agents. This
has been previously stated in literature and it seems to
be confirmed by the present study [58]. Moreover, 31 of
the 40 molecules with highest DF values are fluorinated
(Figure 6a and b).

e 87 compounds (11.8%) among the 739 selected break the
Lipinski rule of five, having one parameter out of range
(the mlog P value). None of the 739 selected compounds
has more than one parameter of the Lipinski rule of five out
of range. This means all the selected structures are good
candidates for oral administration.
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