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A B S T R A C T   

The transfer learning of a neural network is one of its most outstanding aspects and has given supervised learning 
with neural networks a prominent place in data science. Here we explore this feature in the context of strongly 
interacting many-body systems. Through case studies, we test the potential of this deep learning technique to 
detect phases and their transitions in frustrated spin systems, using fully-connected and convolutional neural 
networks. In addition, we explore a recently-introduced technique, which is at the middle point of supervised and 
unsupervised learning. It consists in evaluating the performance of a neural network that has been deliberately 
“confused” during its training. To properly demonstrate the capability of the “confusion” and transfer learning 
techniques, we apply them to a paradigmatic model of frustrated magnetism in two dimensions, to determine its 
phase diagram and compare it with high-performance Monte Carlo simulations.   

1. Introduction 

The field of machine learning, in particular deep learning, has gained 
a prominent place in practically all areas associated with technology [1]. 
This is the result of the symbiosis between data generation, computing 
power, and algorithm development. What makes machine learning 
techniques especially useful in many applications is the automatic 
search for patterns and underlying models in the data. These models are 
then used to classify, predict, generate, and make decisions about new 
events or data. 

The characteristic elements of the many-body interacting systems, 
such as high dimension, correlations, symmetries, and phase transitions, 
naturally emerge in data science and machine learning [2–5]. 

For this reason, it is evident that neural network techniques, which 
have been fundamental in data science and machine learning, will also 
play an important role in the physics of interacting many-body systems. 
This fact is reflected in some recent articles [6–8]. Our work points in 
this direction, taking a step forward in the implementation of neural 
networks to study frustrated magnetism (systems where cannot simul
taneously minimize the energy contribution of all the magnetic 
couplings). 

In this paper, motivated by the work of Carrasquilla and Melko [9] 

and the research carried out recently [10–29], to cite a few, we analyze a 
variety of correlated classical spin models using neural networks. This 
provides a complement to more traditional methods, which include 
diverse analytical and computational tools [30,31]. 

This work focuses on the flexibility and the generalization power 
provided by the use of fully-connected neural networks, also called 
dense neural networks (DNN)[32] and convolutional (CNN) neural 
networks. These architectures are schematically indicated in Fig. 1 (a) 
and (b), respectively. We aim to explore the possibilities that these 
techniques can offer in the study of correlated systems, beyond a 
particular and precise determination of a phase transition in a specific 
model and lattice. A key ingredient in this study is the incorporation of 
frustration into the system. That is why we choose to study purely an
tiferromagnetic systems where frustration emerges naturally. Unlike 
previous studies where the performance of neural networks in ferro
magnetic systems is explored, when studying a frustrated system, whose 
order parameter is more complex, some architectures begin to fail and 
more complex neural networks must be used. 

Throughout this paper, different types of spin lattices are explored 
(Fig. 1 (c-e)), together with several groups of hyperparameters [2], to 
test the performance of a given neural network against a classification 
task. The data in our work is synthetically generated by Monte Carlo 
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simulations [33], which we implement for the different models and 
lattices studied. 

For the supervised-network training, we test different types of input 
data, such as local spin configurations and correlations. This allows us to 
analyze the advantages and possibilities offered by the different types of 
features and their relevance in each particular case. 

Most of the computations performed in this work are open source 
[34]. The corresponding codes are freely accessible via GitHub and data 
is available upon request to the authors. We have relegated most of the 
technical details about training and network architectures to the 
Appendix. 

A significant part of this work is devoted to studying the “transfer 
learning” ability of neural networks in this kind of phase classification. 
Transfer learning consists of exploiting the predictive capacity of a 
neural network beyond the context in which it has been trained. In the 
framework of machine learning, the concept of transfer learning is broad 
[2]. It may be indirect, such as fine-tuning transfer learning, in which a 
pre-trained model in a certain domain is then fine-tuned in another 
domain, and feature-based transfer learning, in which certain interme
diate features of a model are transferred to another domain. In order to 
clearly differentiate the scenarios where we will test the ability to 
generalize the knowledge obtained in the training for a neural network, 
we will use different labels. We use the label direct transfer learning, 
where the model trained in one domain is directly applied to another 
domain. This presents several levels of complexity. At a more basic level, 
networks trained in a restricted sector of a given model and lattice, for 
example at low and high temperatures, are used to predict its transition 
temperature [24]. At a higher level, networks trained with a certain 
model and lattice are used to predict properties, such as critical transi
tion temperature, of the same lattice but in another model[13], we label 
this scenario as model transfer learning. Further increasing the 
complexity, networks trained with a given model and lattice are used to 
predict the same properties in a different model and lattice [9], we label 
this scenario as model-lattice transfer learning. We note that, although 
these are not standard names, their use will make the explanation of the 
results clearer. 

As we have mentioned, the different transfer processes has been used 
in other works. However, the novelty here is its application to more 
complex systems, where frustration induces high degeneracy, repre
senting a greater challenge to the power of generalization of the network 
as a classifier. We analyze these transfer learning processes on different 
realizations of the antiferromagnetic Ising model, including first- and 
second-neighbor interactions on the square, honeycomb, and triangular 

lattices. 
The last part of our work explores a technique that could be 

considered a middle point between supervised and unsupervised 
learning. This method[35] of “learning by confusion” exploits the 
variability of a network performance that has been deliberately trained 
with incorrect labels. The advantage of this technique is that it does not 
need the correct labels for learning and can detect phase transitions, or 
at least significant pattern variations that suggest such a transition. This 
is the reason why it can be considered an unsupervised learning method. 
With the confusion technique, we teach a network to classify the phases 
of the AFM Ising model on the square lattice with second-neighbors 
interactions, which is an archetype of classical frustrated two- 
dimensional magnetism. This study complements the phase diagram 
determined with a CNN by model transfer. 

For completeness, in the following we present a brief discussion of 
the prominent aspects of the Ising model family of interacting systems 
that we are going to analyze using neural networks. 

We consider the Ising model in the absence of magnetic field 
described by the following Hamiltonian H, representing the energy of 
the system 

H =
∑

i,j
Ji,jσiσj, (1)  

in several two-dimensional lattices, where Ji,j is the coupling between 
spins σi and σj (which can take values {±1}) on sites i and j. Throughout 
the text, we simplify the notation by denoting first neighbors couplings 
as J and we use J2 for second neighbors. Here, we will be particularly 
focused on the AFM case (Ji,j > 0), due to its higher complexity and 
richness. The ferromagnetic case (Ji,j < 0), although equally important, 
offers fewer difficulties and has been much more explored using neural 
networks, driven by Carrasquilla and Melko’s work [9], among others. 
The two-dimensional Ising model on the square lattice with first- 
neighbor interactions J was analytically solved by Onsager in 1944 
[36]. He showed that there is an order–disorder phase transition for the 
infinite square lattice at the critical temperature Tc =

2|J|
ln(1+

̅̅
2

√
)
≃ 2.269|J|

in units of Boltzmann constant kB. On the honeycomb lattice, the critical 
temperature is also analytically available [37], Tc =

2|J|
ln(2+

̅̅
3

√
)
≃ 1.519|J|. 

In both cases the result is valid for FM (J < 0) and AFM (J > 0) in
teractions. Solutions for general lattice topologies and couplings are 
obtained by means of series expansions and numerical methods, such as 
Monte Carlo [33]. 

The concept of frustration, which accounts for the impossibility of 

Fig. 1. Schematic representation of the neural net
works and lattices implemented in this work. (a) 
Fully-Connected Neural Network, or Dense Neural 
Network (DNN). (b) Convolutional Neural Network 
(CNN). The input features correspond to 2D system 
configurations which are re-shaped into a 1D struc
ture for the DNN, while in the CNN the input is the 
2D “image” of the configuration. In both cases, the 
two-neurons output layer corresponds to order–dis
order probabilities. (c) Triangular, (d) Square and (e) 
Honeycomb lattice.   
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simultaneously minimizing all the couplings in the Hamiltonian from 
Eq. 1, takes the Ising model to a higher order of complexity. Frustration 
can take place in different ways, either due to the structure of the lattice 
itself or due to the inclusion of interactions beyond first neighbors, with 
additional finite couplings J2, J3, etc. The AFM Ising model with first- 
neighbor couplings on the triangular lattice is an example of the first 
type. In this case, it is not possible to arrange the spins so that all in
teractions between them are antiparallel. Even in a single triangle of the 
lattice, if two antiparallel spins are placed on two vertices, the third 
vertex cannot be antiparallel to the other two. The system is “frustrated” 
because it cannot simultaneously minimize the energy contribution of 
all three couplings. As a consequence, there is no single way to minimize 
the system energy and it becomes degenerate at T = 0 [38]. This is a 
crucial difference with the FM counterpart, where the energy is mini
mized by placing all the spins in parallel. 

On the other hand, the AFM Ising model with second-neighbor 
couplings on the square and honeycomb lattice illustrates the second 
case of frustration. Here the first neighbors can be arranged antiparallel, 
but if second neighbors are included this cannot be satisfied anymore. 
These are some of the cases we analyze in this work. 

A direct consequence of frustration is the high degeneracy of the 
ground state, resulting in a wider variety and complexity of structures 
[39]. This makes frustrated systems ideal to explore the power of clas
sification and generalization of neural networks in condensed matter 
interacting systems. 

2. Training I: Local transfer 

In this section, we begin our study of the phase diagrams with neural 
networks by exploring their performance to classify ordered and disor
dered phases by local transfer. We also present the general procedure for 
generating and labeling data, as well as the training-test scheme that we 
follow in the supervised learning part of the work. 

2.1. Honeycomb lattice 

To begin with, we considered the AFM Ising model on the honey
comb lattice. We start by considering the simplest neural network, a 
DNN. 

We found that to classify the ordered and disordered phases in the 
AFM Ising model on the honeycomb lattice, it is enough to use a DNN 
with a single hidden layer of 16 neurons. As input variables, in this case, 
we use the local spin configurations that we compute from Monte Carlo 
simulations [33]. Since this is a binary classification problem involving 
ordered and disordered configurations, we employ the binary cross- 
entropy cost function, together with an L2 regularization to further 
control overfitting (see Appendix for further details). 

Monte Carlo generation of tagged data is performed as follows. We 
run 400 independent simulations starting from the high-temperature 
phase. The whole temperature range is partitioned, and for each tem
perature, the spin configuration and the temperature are saved once 
equilibrium is reached. Data with T < Tc is labeled with 0 and data with 
T > Tc is labeled with 1. 

The data generated in the simulations is split 70% for training and 
validation and 30% for the test (prediction). Note that the temperature 
information is not introduced explicitly during training, since the DNN 
only uses the local spin configurations as input features and the labels 
0 and 1 for minimizing the cost function. The temperature is used only in 
the test stage to analyze the performance of the classification and pre
diction of the critical temperature. 

To be able to say if a prediction is correct or incorrect using super
vised learning architectures, one has to compare it with the sample label. 
There are several ways to measure the performance of a neural network. 
Here we employ the accuracy, which is defined as the ratio between the 
number of well-classified samples and the total number of samples. The 
accuracy may depend on several factors such as the characteristics of the 
system near the transition temperature, the size of the training set, the 
geometry of the network used, etc. In any case, a validation accuracy of 
0.99, for instance, tells us that the DNN correctly classified 99 out of 100 
snapshots of the validation set (which is not used for training). 

To test the network’s ability to predict beyond the data in which it is 
trained, we have trained the network in a range of temperatures that 
excludes a window of width w, centered at the transition temperature Tc. 
This case illustrates the local transfer process. Dense neural networks 
have shown that they can determine the transition temperature of a 
ferromagnetic system in this way. They show that they can learn simple 
order parameters such as magnetization. However, in the antiferro
magnetic case, the order parameter is not so simple and depends on the 
lattice geometry. 

Fig. 2 presents the results obtained for the classification of the or
dered and disordered phases in the AFM Ising honeycomb lattice, for 
three different lattice sizes N of 100,400, and 900 spins. In particular, it 
shows the probability of belonging to each phase as a function of tem
perature. This probability is obtained for each temperature by averaging 
the values predicted by the network on test data (not used for training) 
corresponding to this temperature. The shaded gray region indicates the 
range of data excluded for training (local transfer). Since the classifica
tion is binary, only the probability curve of one class is required for each 
size. For example, the blue curve starting at the top left of Fig. 2 indicates 
the probability of belonging to the ordered class for N = 900, while the 
lower blue curve to the left indicates the probability of belonging to the 
disordered class. Both curves add probability 1 and therefore are not 
independent (they are symmetric with respect to the line p = 0.5). 
However, throughout work, we show both probability curves as a visual 
guide to locate the predicted critical temperature, i.e. the crossing 

Fig. 2. Local (non-frustrated) DNN transfer. DNN output layer probabilities 
averaged over the test dataset as a function of T for the AFM-Honeycomb lat
tice. The lattice sizes are N = 100, 400 and 900 sites. The training data corre
sponds to the ranges 0.02 < T/J < 1.22 and 1.82 < T/J < 4.53. The shaded 
gray region represents the hidden set of data during training, and the vertical 
dotted black line shows the analytical result for the honeycomb lattice critical 
temperature in the thermodynamic limit. Validation accuracy, i.e. the ratio of 
correct predictions over the total number of predictions at the validation stage 
is 0.99, for N = 100, 400 and 900 sites (see Appendix for further details). 
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between both curves. The analytical critical temperature for the Ising 
honeycomb lattice (in units of kB), Tc ≃ 1.519J, is indicated by the black 
dotted line in Fig. 2. 

First, note that the DNN clearly separates the ordered and disordered 
classes for temperatures far from the transition This is reflected in a 
probability prediction of approximately 1 (0) for the ordered (disor
dered) phase on the left and vice versa on the right. 

However, as the temperature approaches Tc, the DNN finds it more 
difficult to differentiate between the two phases, which is indicated by 
the approach of the curves to the intermediate zone of the Fig. 2. The 
crossing of both curves at p = 1/2 defines the transition temperature 
predicted by the DNN for each size. 

As it can be observed in Fig. 2, the prediction of the critical tem
perature is very close and slightly shifted to the right of the critical 
value, for each size. However, for N = 100 (green curves) the loss of 
predictive power falls faster and is noisier than in the other sizes. This 

reflects the limitations and finite-size effects when using a smaller 
lattice. 

The most important aspect to emphasize here is the performance of 
the DNN in the intermediate zone around the critical temperature, 
denoted by the gray area. Given that this intermediate zone is deliber
ately removed from training, the predictions made in this region man
ifest the generalizing power of the network beyond training. In other 
words, the DNN predicts the critical temperature with high accuracy 
despite never having seen data from the transition zone. This example 
illustrates the efficiency of local transfer with DNNs on non-frustrated 
lattices. 

2.2. Triangular lattice 

To test the performance of DNNs in a more complex context, we 
analyzed the AFM Ising model on the triangular lattice. 

In the thermodynamic limit, this system has finite zero-point en
tropy, is disordered at all temperatures, and has no Curie point [38]. 
However, the Monte Carlo simulation of the model shows a maximum in 
the specific heat at a certain temperature T*, below which short-range 
correlations emerge. The task of the neural network, in this case, is to 
differentiate low and high-temperature configurations, i.e. on both sides 
of T*, when trained with samples of Monte Carlo simulations, excluding 
a window around T*. 

In the following, we set system sizes to N = 900 sites. Fig. 3 shows 
our results for the triangular lattice, trained with two different input 
features, using a DNN with a hidden layer of 32 neurons. The blue line 
shows the results obtained by training the network with local spin 
configurations, while the orange line corresponds to the ones obtained 
by training with correlations. The latter has been shown to be useful in 
multicomponent models, such as the Potts model [15]. For the Ising 
model we have evaluated the correlations Cx,y = σx,yσL/2,L/2, relative to 
the center (L/2, L/2) of a L × L lattice with periodic boundary condi
tions. Subscripts x, y denote the spin position, relative to the vectors of 
the lattice unit cell. As can be observed in Fig. 3, in both cases, the DNN 
underestimate the position of T*, indicated by the dashed vertical line in 
the figure. Using local spins as input features, the DNN predicts the T* 

that falls slightly outside the left zone excluded from training (shaded 
gray area). The use of correlations in the training process improves the 
prediction of T*, which falls inside the zone excluded from training. 
However, the additional complexity that frustration introduces in the 
triangular lattice reduces the DNN’s performance to determine T* in 
both cases. The overall performance of the network is quite insensitive 
to differences in the choice of hyperparameters of the network or 
alternative ways of evaluating correlations [15]. The AFM Ising model 
on the triangular lattice shows the limitations of DNNs in the presence of 
frustration and suggests the usage of higher-complexity neural network 
architecture would be more appropriate for this problem. 

To address the previously-mentioned problem of limited DNN’s 
performance in a frustrated lattice, we analyzed the Ising AFM model on 
the triangular lattice with a CNN. Convolutional networks are well- 
adapted to classify images, which in our case are the local spin config
urations for each temperature value. The CNN extracts the relevant 
features from the input image through a successive application of pre
processing filters and then these feature maps serve as input for a final 
dense network. The filters and DNN parameters are learned during 
training. 

Fig. 4 shows the results obtained using a CNN for the classification of 
low and high-temperature configurations of the AFM Ising model on the 
triangular lattice. The results were obtained by implementing a CNN 
with a convolutional layer of 10 filters, followed by a dense layer of 10 
neurons. As before, we have applied the strategy of training excluding a 
window around T*, limited by the shaded gray area. Unlike the DNN 
results in Fig. 3, the probability curves cross around T*, indicated by the 
dashed vertical line. 

Fig. 3. Local (frustrated) DNN transfer. DNN output layer probabilities aver
aged over the test set, as a function of temperature for the AFM-Triangular 
lattice. The blue crosses and orange circles correspond to training with local 
spin configurations and correlations, respectively. The shaded gray region in
dicates the range of data that was excluded for training. The vertical dashed 
black line corresponds to the temperature T* where the specific heat of the 
system reaches its maximum value in the Monte Carlo simulation. In both cases 
the DNN underestimates T*, i.e. the crossing of both probability curves due to 
the additional complexity that frustration introduces in the triangular lattice. 
Validation accuracy: 0.97 for spin configurations and 0.98 for correlations. 

Fig. 4. Local (frustrated) CNN transfer: Output probabilities as a function of 
temperature, for the AFM-triangular lattice using a CNN. The shaded gray area 
corresponds to the range of data that was not used for training. The vertical line 
denotes the value of T*, where the specific heat of the system reaches its 
maximum value with N = 900 sites. Validation accuracy of 0.99. 
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Since the CNNs show higher performance than DNNs in frustrated 
systems, in the following sections we will concentrate on the imple
mentation of CNNs in these systems. In particular, we will analyze other 
aspects associated with the performance of CNNs and their power of 
generalization, not only at the local transfer level as we have done here. 
We will fully explore the potential of CNNs to predict transitions in other 
models as well as model and lattices in which the network has not been 
trained, i.e. CNN model transfer, and model-and-lattice transfer 
respectively. 

We would like to end this section by making a general comment on 
the number of layers and the depth of the networks used. It is possible to 
increase the number of layers in the network, however it does not 
significantly improve the accuracy for the cases under study. In contrast, 
as the neural network gets deeper the number of trainable parameters 
augments exponentially, which significantly increases the computa
tional cost and the likelihood of overfitting. In our cases, the neural 
network must be able to detect ordered phases (or low temperature 

regimes) outside the training range. For this reason, it is very important 
to avoid overfitting. 

3. Training II: Model transfer 

As we discussed in the previous section, the CNNs can be very 
powerful to differentiate between low and high-temperature configu
rations in frustrated models as the AFM-triangular lattice, by training at 
temperatures away from T* (local transfer). One step further would be to 
apply pre-trained neural networks in a given model and lattice to predict 
transitions in other models or lattices. In this section, we address model 
transfer by analyzing the performance of a pre-trained CNN to study 
another model, different from the one in which it was trained. 

We start by training the CNN on the AFM Ising model on the hon
eycomb lattice with first-neighbor couplings (J), excluding a region 
around the critical temperature. To this end, we map the honeycomb 
lattice to a square array as detailed in Appendix B. This allows us to carry 
out comparisons and the lattice transfer in this work. Next, we evaluate 
its performance on data generated in the honeycomb lattice with first- 
and second-neighbor interactions, i.e. finite J2. If the ratio of second- to 
first-neighbor coupling J2/J is small, the system remains in the same 
phase and it is reasonable to think that the CNN will be able to recognize 
the order. However, the transition temperature is a function of J2/J and 
a priori it is not clear that the CNN can correctly detect the Tc behavior. 

In Fig. 5 we show results of the probabilities predicted for the Néel 
ordered and disordered phases as a function of temperature. Each curve 
corresponds to a different value of the frustrating coupling J2/J and the 
dashed vertical lines indicate the respective Monte Carlo estimations of 
the critical temperatures (See Appendix for details). 

Let us recall that the CNN has not been trained with the presence of 
frustrating interactions, nor near the transition of the first-neighbor 
model, and yet for small values of J2 the convolutional network pre
diction is remarkable. 

The system has a low-temperature phase transition at J2/J = 0.25, 
from the Néel phase to another phase where there is no long-range order 
due to the ground state degeneracy [40]. As J2/J approaches 0.25 in 
Fig. 5 the CNN probability output changes progressively. At J2/J =

0.25, there is zero probability prediction that the system is ordered for 
all temperatures. As the neural network was trained to learn the dif
ference between Néel order and disorder, this outcome suggests that the 
system abandons the Néel ordered phase at J2/J = 0.25. 

To further explore model transfer, we have also analyzed the Ising 
model with first and second-neighbor couplings on the square lattice, 

Fig. 5. Model transfer on the honeycomb lattice: CNN-predicted probabilities 
for ordered and disordered phases as a function of temperature in the AFM- 
honeycomb lattice. The CNN was trained using data for which J2/J = 0 and 
temperatures outside the shaded gray area. Vertical dotted lines represent the 
Monte Carlo estimation of the transition temperatures. The network is able to 
correctly estimate the transition temperature of the model with second- 
neighbor interactions, despite being trained in the nearest-neighbor model. 
As J2/J approaches 0.25 the change in the probability output suggests the 
presence of a phase transition. In the legend the J2 values are in units of J. 
Validation accuracy: 0.99. 

Fig. 6. Model transfer on the square lattice: Left: CNN output layer probabilities for Néel ordered and disordered phases for different values of 0⩽J2/J < 0.5. The 
CNN was trained only with J2/J = 0 data and temperatures outside the shaded gray area. Validation accuracy: 0.98. The CNN captures correctly the behavior of the 
transition temperature with respect to the parameter that regulates the frustration of the system, J2/J. Right: CNN output layer probabilities for collinear-ordered and 
disordered phases for different values of 0.5 < J2/J⩽1. The CNN was trained only for J2/J = 1 and temperatures outside the shaded gray area. Validation accuracy: 
0.99. We observe a similar behavior as in the left panel but as the ratio J2/J decreases. In both panels, for J2 ≈ 0.5J the change in the probability predictions suggests 
a phase transition, consistent with the zero-temperature Néel - collinear transition at J2/J = 0.5. Dashed vertical lines indicate the Monte Carlo estimation for the 
transition temperatures. In the legends the J2 values are in units of J. 
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starting from two different limiting cases. On the one hand, we trained a 
CNN with AFM Ising model data on the square lattice with first-neighbor 
couplings excluding as before the zone around the transition. Next we 
analyzed the network performance on the square lattice, including 
frustrating second-neighbor interactions J2. The left panel of Fig. 6 
shows the results of the network predictions for the transition temper
ature between the disordered and Néel phases for different values of 
frustration J2/J, whereas the dashed vertical lines indicate the Monte 
Carlo estimated critical temperatures. As can be observed, the CNN 
predicts accurately the change in the critical temperature for small J2/J. 
For J2/J ≈ 0.5 the prediction becomes less accurate. This is consistent 
with the T = 0 transition from Néel to collinear phase at J2/J = 0.5, 
characterized by a highly degenerate ground state [41]. 

On the other hand, we trained a CNN at J2 = J, i.e. far from the 

maximal frustration point, J2/J = 0.5, excluding as before the transition 
zone. The transition between the collinear and disordered phases ex
hibits a different nature (first or second-order transition depending on 
J2) and has been studied in detail [41–43]. Following the same pro
cedure as before, we evaluated the CNN performance by varying J2/J 
from 1 up to J2/J ≃ 0.5. Results are shown in the right panel of Fig. 6 
and a behavior similar to the left panel can be observed but on the other 
side of the transition. 

With the transition temperatures predicted by the CNN, shown in 
Fig. 6, we built the temperature vs. frustration phase diagram of the 
frustrated Ising model on the square lattice, presented in Fig. 7. There 
are three phases, where the system presents Néel-order, collinear-order, 
or is disordered (paramagnetic phase). The blue (orange) line that sep
arates the Néel-ordered (collinear-ordered) phase from the para
magnetic phase is constructed with the critical temperatures predicted 
by the CNN trained only in the region indicated by the thick vertical red 
lines on the left (right), with J2 = 0 (J2 = J). The CNN-predicted critical 
temperatures denoted here by blue (orange) triangles correspond to the 
intersections at p = 0.5 from the left (right) panel of Fig. 6. The inset in 
Fig. 7 shows the same transition temperatures, plotted with the scale of 
Fig. 2 of Ref. [41], along with that Figure. The comparison made in the 
inset shows the excellent agreement between our CNN predictions and 
the high-precision Monte Carlo results of Ref. [41], indicated with green 
circles and red squares. This is remarkable considering that almost the 
complete phase diagram was obtained by transfer learning since only 
spin configurations at temperatures within a restricted region (thick 
vertical red lines) were used as training data. 

This result shows the robustness of the CNNs to generalize their 
predictions to different models from those in which they were trained, 
performing equally well in phase transitions of different nature, as 
illustrated in this example for the frustrated Ising model on the square 
lattice. 

In the following section we further test the generalization power of 
CNNs by simultaneously performing a transfer in model and lattice. 

4. Training III: Model-and-lattice transfer 

We conclude the transfer learning study by analyzing the general
ization power of a CNN trained with a given lattice and model and 
evaluating its performance on another lattice and another model 

Fig. 7. Frustrated phase diagram by transfer learning. Main panel: CNN pre
dicted phase diagram of the frustrated AFM Ising model on the square lattice 
with critical temperatures corresponding to the crossings at p = 0.5 of Fig. 6. 
Blue (orange) triangles indicate transition points from the Néel (collinear) to 
disordered phase, predicted via transfer learning from J2/J = 0 (J2/J = 1). The 
horizontal red dashed line indicates the temperature value used for confusion 
method training shown in Section 5. Inset: The green circles and red squares 
display high-precision Monte Carlo results of Fig. 2 from Ref. [41]. Orange and 
blue triangles display data from the main panel and were added for comparison. 
As can be observed, the resulting temperatures are in excellent agreement with 
the reference values despite training only with data from a very limited region 
of the phase diagram, indicated by thick vertical red lines at J2 = 0 and J2 = J. 

Fig. 8. Model-and-lattice transfer: CNN output layer probabilities on the square 
lattice as a function of temperature for different frustration values J2. The CNN 
was only trained with the J2 = 0 honeycomb lattice data, with temperatures in 
the range 0.02 < T/J < 1.22 and 1.82 < T/J < 4.53 (the same as in Fig. 2). 
Vertical dotted lines indicate the corresponding Monte Carlo estimation of 
transition temperatures. In the legend the J2 values are in units of J. Validation 
accuracy: 0.99. 

Fig. 9. Learning frustration by confusion: Results were obtained by applying 
the confusion method to the low-temperature phases of the frustrated J−J2 

AFM Ising model on the square lattice. The training was implemented at T/J =

0.02, indicated by the horizontal red dashed line in Fig. 7. The central peak of 
the characteristic “W-shape” is very close to 1/2, which reflects the zero- 
temperature phase transition at J2/J = 1/2 from the Néel to the collinear 
phase. This indicates that the confusion method is a powerful technique to 
determine phase transitions even in the presence of frustration. 
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simultaneously, i.e model-and-lattice transfer. 
Keeping the number of training parameters as low as possible, the 

network can be forced to learn only the main features from the training 
data corresponding to a certain model and lattice. In this way, it is 
capable of correctly predict the critical temperature from data corre
sponding to a different model and lattice (see details in the Appendix). 

We train a CNN with Monte Carlo spin configurations of the AFM 
nearest-neighbor Ising model on the honeycomb lattice excluding the 
phase transition zone, and we use it to predict the transition tempera
tures in the frustrated Ising model on the square lattice. As we map the 
honeycomb lattice to a square array (see Appendix B), the paramagnetic 
phase in both systems looks the same to the network, but the two low- 
temperature orderings are different. Hence, in general, a trained 
model cannot classify correctly the Néel ordered snapshots from the 
square lattice. Nonetheless, performing several pieces of training it is 
possible to obtain a model that achieves this task, and the number of 
tries necessary was found to be no greater than 80, which takes no longer 
than 2 h. To find this model the process is as follows: Once the network is 
trained on the honeycomb lattice, we use it to predict the order–disorder 
probabilities on the square lattice at some fixed value of J2, say J2 =

0.1. If these two probabilities do not cross each other at any tempera
ture, the trained model does not predict a transition, it is discarded, and 
a new training on the honeycomb lattice is performed. If, in contrast, the 
two probabilities cross each other, the model is saved. We emphasize 
here that this selection process does not utilize any a priori knowledge 
on the transition temperatures in the square lattice. 

Fig. 8 shows the results of the CNN predictions on the frustrated 
square lattice for different frustration values J2 as a function of tem
perature. As before, the dotted lines indicate the corresponding Monte 
Carlo estimation of the critical temperatures. The CNN’s Tc estimations 
are very close to those of the Monte Carlo simulations up to J2 values 
near to the transition between the Néel and the collinear phases at J2 =

0.5J [41]. 

5. Training IV: Learning frustration by confusion 

To further explore the magnetic phases in frustrated systems via deep 
learning, in this section we discuss the “confusion” learning technique 
[35]. This method can be considered a hybrid between supervised and 
unsupervised learning methods. The central idea of confusion learning is 
based on evaluating the accuracy, i.e. the ratio of correct predictions 
over the total number of predictions, of a network trained with a set of 
intentionally incorrect labels. For completeness, we briefly describe the 
method. Supposing that data depends on a parameter that lies in the 
range [a,b], in which there is a phase transition at the critical point c*, the 
method consists of proposing an arbitrary critical point c and training 
the network by giving the label 0 to all data with parameters smaller 
than c, and giving the label 1 to the rest. Next, the accuracy of the trained 
network on the complete training set, P(c), is evaluated with respect to 
the proposed critical point c. 

By sweeping the c values and repeating the process over the range [a,
b], the function P(c) is obtained, which exhibits a W-shape with its in
termediate peak located at the true critical point c*. 

The reason for this is as follows. When c = a or c = b all data is 
labeled with the same label, and therefore the network predicts with 
100% accuracy. This explains the two ends of the W-shape. The central 
maximum in the network performance occurs when the proposed crit
ical point c coincides with the true critical point c*. In this case, the 
training process is equivalent to the standard supervised learning of the 
network. 

Fig. 9 shows the results obtained by applying the confusion method 
to the low-temperature phases of the frustrated J−J2 AFM Ising model 
on the square lattice. In this case, the training process was performed at 
T/J = 0.02, indicated by the horizontal red dashed line in Fig. 7 (see the 
Appendix for the CNN implementation details). For T→0, the model 
presents a phase transition at J2/J = 1/2 from Néel to collinear order 
[41]. Note how the central peak of the W-shape emerges very close to 1/ 
2 in Fig. 9, indicating that the method can precisely determine the 
transition. 

It is important to recall that the confusion method can detect changes 
in data patterns that are not necessarily associated with a physical phase 
transition. In this sense, the method is an indicator of a transition, which 
should be contrasted with other methods or prior knowledge of the 
physics involved. 

6. Conclusions 

In this work, we have explored the ability of neural networks to 
generalize knowledge beyond their training. This aspect of transfer 
learning, which has become a cornerstone in data science, has been 
discussed here in the context of antiferromagnetic Ising spin systems. 

The transfer learning analysis was carried out in three stages of 
increasing order of generality demand. 

We call the first case local transfer. Here, given a model on a lattice, 
we train a neural network to distinguish spin configurations far from the 
corresponding order–disorder transition temperature. Then we analyze 
the performance of the neural network to differentiate both phases in the 
complete range of temperatures, and we determine the transition tem
perature. This target is outside the training zone, although within the 
same model and lattice, hence the term “local” transfer. Our result is as 
follows. For non-frustrated lattices, local transfer works properly with 
DNNs. In this work, we illustrate this case with the AFM first neighbors 
Ising model on the honeycomb lattice (Fig. 2). However, for frustrated 
lattices, DNNs are not sufficiently accurate to guarantee adequate local 
transfer. This was tested not only with spin configurations but also with 
correlations as input features to train the neural network. We exempli
fied this case with the AFM first neighbors Ising model on the triangular 
lattice. The structure of the lattice gives rise in this case to frustration 
and consequently high degeneracy. This makes it difficult for the DNN to 
classify properly (Fig. 3). This difficulty is overcome using a convolu
tional network, whose pre-processing filter architecture extracts more 
representative features directly from the image of the configurations, 
making it suitable in high degeneracy cases (Fig. 4). 

The second case analyzed was model transfer, in which we train a 
CNN using data on a given lattice (excluding the transition zone) and we 
then test its capability to classify data of a more general model on the 
same lattice. We illustrated this case with three examples. In the first 
one, we train the CNN with data corresponding to the non-frustrated 
AFM Ising model on the honeycomb lattice and we use it to classify 
data adding finite next-neighbors antiferromagnetic interactions. 

(Fig. 5). For the other two examples we carried out a similar pro
cedure, but for the AFM Ising model on the square lattice. We train the 
CNN far away from the maximally frustrated point J2 = J/2, i.e., with 
data with J2 = 0, or J2 = J, respectively. With these two pieces of 
training, we construct the phase diagram of Fig. 7. The agreement of our 
CNN results with high-precision Monte Carlo results [41] depicted in the 
figure inset is significant, considering the small region of training. 

These results indicate that CNNs generalize appropriately from the 
features learned in the restricted models where they were trained. The 
CNN not only quantitatively identifies the transitions between the 
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ordered and high-temperature phases but also gives evidence of the 
transitions between the low-temperature phases. 

Finally, for the third and most demanding case, we considered model- 
and-lattice transfer. To this end, we train a convolutional network with 
spin configurations corresponding to the non-frustrated AFM Ising 
model on the honeycomb lattice, and we test the CNN performance on 
the frustrated AFM Ising model on the square lattice. The results in Fig. 8 
show that it is possible to find a model that can generalize adequately, 
finding the order–disorder transitions for different frustration values, 
and signaling the low-temperature phase transition induced by 
frustration. 

The transfer learning results presented in this work indicate that 
neural networks, in particular convolutional networks, can be adequate 
generic classifiers, exhibiting high performance when properly trained 
in minimal architectures, even in cases of high degeneracy such as the 
frustrated systems already analyzed. We plan to apply similar methods 
to other frustrated models at classical [44] and quantum level [45–47]. 

In addition to the implementation of supervised transfer learning, in 
this paper, we addressed the “learning by confusion” technique. 

We implemented learning by confusion on the J−J2 model on the 
square lattice using a CNN. Our results, depicted in Fig. 9, clearly show 
that the method can detect the emergence of the transition between the 
low-temperature phases. This is evidenced by the intermediate peak of 
the characteristic “W” shape of the predicted accuracy in Fig. 9, which is 
located very close to the transition point at J2 = 0.5J. 

The previous example highlights the main advantage of the confu
sion method, i.e. not having to rely on correct labeling beforehand to 

detect pattern changes in the configuration data. In this case, the neural 
network learns to differentiate the low-temperature phases when frus
tration generates high degeneracy. In this sense, learning by confusion 
offers a complementary tool to the supervised learning techniques pre
sented above. 
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Appendix A. Methods 

The computations performed in this paper are open source and written in C and Python, using specific libraries such as Keras for deep learning. 
Monte Carlo simulations: The Monte Carlo generation of tagged data, using a Metropolis Algorithm and single-spin-flip dynamics, is performed as 

follows. We run 400 independent simulations starting from the high-temperature phase (in general T0 = 4.5J). A set of 200 evenly-spaced temperature 
values is obtained from the range [0,T0], and for each temperature, the spin configuration and the temperature are saved once equilibrium is reached. 
Thus, our dataset for each lattice and each model considered consists of 80000 samples. 

We use the analytical expressions available for the critical temperature in the cases of the non-frustrated Ising model on the square and honeycomb 
lattices. In the other cases, the location of the Monte Carlo specific heat maximum, for N = 900 sites, is taken as an estimator for the order–disorder 
transitions. In this work, this procedure was carried out for the frustrated Ising model on the square, honeycomb, and triangular lattices. In the latter, 
the above-mentioned maximum does not represent an order–disorder transition. In this case, we identify this temperature as T* to avoid confusion. 

Training procedure: The data generated by Monte Carlo simulations is split 70% for training (10% of which is taken for validation) and 30% for the 
test, i.e. prediction. Data with T < Tc is labeled with 0 and data with T > Tc is labeled with 1. The same exclusion process is carried out around T* for 
the triangular lattice. Temperature values are only used in the test stage, to analyze the performance of the classification, and to estimate the critical 
temperature. We have trained the network in a range of temperatures that excludes a window |T−Tc| < wJ, with 0.1⩽w⩽0.3. Therefore, no infor
mation about the critical region is introduced during training (local transfer). For model transfer and model-and-lattice transfer we used a similar 
procedure but validating on a different model as well as a different model and lattice to the training one, respectively. In the range of windows 
analyzed there are no significant variations in the accuracy. 

Dense Neural Networks (DNN): In Fig. 2 we use as input a vector with the local spin configurations that we compute from the Monte Carlo sim
ulations, normalized to 0 (spin down) or 1 (spin up). Three DNNs have an input layer having N = 100,400 and 900 nodes, corresponding to three 
system sizes, respectively. The single hidden layer contains 16 neurons with ReLu activation functions. The stochastic optimization method is Adam, 
and the loss function is categorical cross-entropy. For training, we use roughly 50000–70000 configurations, 10% of which is used for validation 
during training. The learning rate is order 10−4, the batch size is 128, the L2 regularization factor is order 10−5, and the number of epochs is 10, giving 
a final validation accuracy of 0.99 and a validation loss of order 10−2. The output layer has two neurons (binary classification), with Softmax acti
vation functions. The probability curves in Figs. 2 and 3 are the result of the average over roughly 150 independent samples from the test set for each 
temperature. In Fig. 3 both spin configurations and spin correlations input variables are normalized to 0 or 1. The hyperparameters that changed with 
respect to the previously mentioned are the number of neurons in the hidden layer, increased from 16 to 32, and the number of epochs increased from 
10 to 20. The final validation accuracy is roughly 0.98 and there is a validation loss of order 10−1 over the training dataset. . 

Convolutional Neural Networks (CNN): The input is a 30x30 matrix, with normalized spin configurations. Data segmentation in train, validation, and 
test sets, is made as in the DNN case. Several architectures are suitable for classification tasks. The CNNs used consist of firstly in one or two con
volutional layers of 3 to 10 filters of size 3x3, each followed by a max- or average-pooling layer. Then, the data is flattened to a one-dimensional vector 
which is the input of a dense layer with 3 to 16 neurons with ReLu activation functions. The optimization method is Adam, and the loss function is 
again the categorical cross-entropy. The batch sizes are between 128 and 512, the number of epochs is less than 5 to prevent overfitting, and the 
learning rate is order 10−3 −10−4. The output layer has again two neurons with Softmax activation functions. Validation accuracy in training is higher 
than 0.99 and validation loss is order 10−2. As before, the probability predictions over test datasets are averaged over roughly 150 independent 
samples from the test set for each temperature. 
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Source data for all the figures in the paper and all training and test data used are available upon request from the authors. Source code for training 
and evaluating our neural networks is available upon request from the authors. 

Appendix B. Mapping the Honeycomb lattice to a square array 

The size of the system is 900 sites and the Monte Carlo simulation was performed using periodic boundary conditions. Each unit cell is indexed by 
two integers (i, j), where 0⩽i < N1 = 30 and 0⩽j < N2 = 15 as we show in Fig. B.10. 

We map the honeycomb lattice to a square 30 × 30 array A as follows: Each spin in the honeycomb lattice is indexed by three integers in the 3-rank 
tensor Sk

ij, where i and j determine the unit cell (i, j), and k = 0 or k = 1 corresponds to the left or right spin in the unit cell, respectively. Then, we can 
construct the square 30 × 30 array A by taking 

Amn = Smod(n,2)
m⌊.∗n/2⌋, (B.2)  

with 0⩽m,n < 30, being mod(n,2) the rest in the division of n by two, and ⌊ ∗ n/2⌋ the floor function which gets the integer part in the division. 
Using the mapping (B.2), we can visualize snapshots of the system in a 2D image as we show in Fig. B.11. The left panel corresponds to a Néel 

ordered spin configuration at T = 0.02 whereas the right panel corresponds to a disordered spin configuration at T = 4.53. 
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